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1 Introduction

Special types of vertex-colorings found applications in the frequency assignment
problem [14]. One of the most intensively studied types of such colorings is
an L(p, q)-labeling. A vertex-labeling by non-negative integers of a graph G is
called an L(p, q)-labeling if the labels of adjacentadjacent vertices differ by at
least p and the labels of vertices at distance two differ by at least q. The span
of an L(p, q)-labeling is the maximum label used by it. The smallest span of an
L(p, q)-labeling of a graph G is denoted by λp,q(G). Our work is motivated the
conjecture of Griggs and Yeh [13] that asserts that λ2,1(G) ≤ ∆2 for every graph
G with maximum degree ∆ ≥ 2. We establish the conjecture for planar graphs
with maximum degree ∆ 6= 3. The conjecture has also been proven for several
other classes of graphs: graphs of maximum degree two, outer planar graphs [7],
chordal graphs [25] (see also [6, 21]), Hamiltonian cubic graphs [16, 17], direct
and strong products of graphs [18], etc. For general graphs, the original bound
λ2,1(G) ≤ ∆2+2∆ of [13] was improved to λ2,1(G) ≤ ∆2+∆ in [8]. A more general
result contained in [20] yields λ2,1(G) ≤ ∆2 + ∆ − 1 and the present record of
∆2+∆−2 was proven by Gonçalves [12]. Algorithmic aspects of L(2, 1)-labelings
as well as L(p, q)-labelings are also widely investigated [1, 4, 10, 11, 19, 22] because
of their potential applications in practice.

In this paper, we mainly focus on planar graphs. Let us briefly survey known
results on L(p, q)-labelings of planar graphs: van den Heuvel et al. [15] showed
that λp,q(G) ≤ (4q − 2)∆ + 10p − 38q − 23, and Borodin et al. [5] provides
the bound of λp,q(G) ≤ (2q − 1)d9∆/5e + 8p − 8q + 1 for ∆ ≥ 47. The best
asymptotic result λp,q(G) ≤ qd5∆/3e + 18p + 77q − 18 is due to Molloy and
Salavatipour [23, 24]. Better bounds are known for planar graphs without short
cycles—Wang and Lih [26] showed the following:

• λp,q(G) ≤ (2q − 1)∆ + 4p + 4q − 4 if G is a planar graph of girth at least
seven,

• λp,q(G) ≤ (2q − 1)∆ + 6p + 12q − 9 if G is a planar graph of girth at least
six, and

• λp,q(G) ≤ (2q − 1)∆ + 6p + 24q − 15 if G is a planar graph of girth at least
five.

The bound for planar graphs with girth seven has recently been improved in [9] to
2p+q∆−2 under the assumption that the maximum degree ∆ is sufficiently large
(this bound is best possible if q = 1 which includes the case of L(2, 1)-labelings).
Closely related results on coloring powers of planar graphs of higher order can be
found in [2, 3].

The bound of van den Heuvel et al. [15] implies that the conjecture of Griggs
and Yeh holds for planar graphs with maximum degree ∆ ≥ 7. We consider a
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more general setting of list labelings and show that the conjecture holds (in the
list version) for planar graphs with maximum degree ∆ 6= 3. Let us remark that
our proof is computer-assisted in the case of planar graphs with maximum degree
four.

We would also like to draw the attention of the reader to Lemmas 3.5 and 3.6.
Results on distance constrained labelings are usually more difficult to prove than
their counterparts for ordinary colorings because of a complex interaction between
vertices at distance two, e.g., it is not known that the smallest counterexample
to the conjecture of Griggs and Yeh is 2-connected. Since we needed a tool that
would allow us to cope with this difficulty and that would also allow us to em-
ploy computers in our arguments, we developed a notion of degree configuration
described in the next two section. Informally, we provide a condition on a graph
H such that no minimal graph without an L(2, 1)-labeling of a certain span (no
minimal counterexample) contains a locally injective homomorphic image of H .
Our technique does not apply only for L(p, q)-labelings, but counterparts of Lem-
mas 3.5 and 3.6 can be proved for ordinary coloring as well as for several other
different notions of coloring.

2 Preliminaries

In this section, we introduce notation used throughout the paper. The set of
neighbors of a vertex v in a graph G is denoted by NG(v) and the set of vertices
at distance at most d from v by NG(v, d). We often deal with planar graphs, and
we always assume they are simple and loopless. Whenever we say that we add
an edge uv to a graph G, we mean that we add the edge if the vertices u and v
are not adjacent, and we do nothing, otherwise. If W is a subset of vertices of a
graph G, then the graph G \ W is the graph obtained from G by removing the
vertices of W with all their incident edges and the graph G[W ] is the subgraph
of G induced by the vertices in W . If W = {v}, then we write G \ v instead of
G \ {v}. Finally, if ϕ is a mapping between two sets A and B, ϕ(A′) is the set
of ϕ(a) where a ranges through the elements of A′ ⊆ A and ϕ−1(B′) is the set of
the preimages of the elements of B′ ⊆ B.

A d-face of a plane graph is a face of size d, i.e., d-face with a boundary walk
of length d. More precisely, the size of a face is the number of edges incident
with it counting bridges twice. A ≥d-face is a face of size at least d and a ≤d-
face is a face of size at most d. A d-vertex is a vertex of degree d and we use a
≥d-vertex and a ≤d-vertex in the obvious meanings. An (`1, . . . , `d)-vertex is a
d-vertex that is incident with faces of sizes `1, . . . , `d (in this cyclic order around
the vertex). We also use, e.g., a (≥5, 4, 3)-vertex in the natural meaning.

Proofs of our theorems (Theorems 4.8, 5.13, and 6.20) are based on the dis-
charging method. First, each vertex and face of a plane graph is assigned a fixed
amount of initial charge. The charge is then redistributed among the vertices
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and faces by certain rules. The rules describe when a face f sends charge to an
incident vertex v or a vertex v sends charge to an incident face f . If the face f is
incident several times with a vertex v (this happens when v is a cut-vertex), then
f sends charge to v by several rules—each applies separately to each incidence
of v and f and the charge sent to v is equal to the sum of the amounts of charge
sent by all the rules that apply. The same applies for charge sent by vertices to
the faces. We do not emphasize this important issue in the rest of the paper.

The key notion in our approach is the notion of degree homomorphism. A
pair (H, d) where H is a graph and d : V (H) → N is called a degree configuration
(throughout the paper, N always denotes the set of all non-negative integers). A
mapping ϕ : V (H) → V (G) is said to be a degree homomorphism from (H, d) to
G if it is a degree preserving locally injective homomorphism, i.e., the following
holds:

• the mapping ϕ is a homomorphism, i.e., ϕ(u)ϕ(v) ∈ E(G) if uv ∈ E(H),

• the mapping ϕ is locally injective, i.e., ϕ is injective when restricted to
NH(v) for every v ∈ V (H), and

• degG(ϕ(v)) = d(v) for every v ∈ V (H).

We are sometimes vague when specifying the function d and if this is the case,
then it holds that d(v) = degG(ϕ(v)) whenever the value d(v) is not specified.

Our argument that certain degree configurations cannot appear in a minimal
counterexample is based on the results obtained for the channel assignment prob-
lem. An instance of the channel assignment problem is a graph G with a function
w : E(G) → N that assigns a positive integer to each edge of G. The value
w(e) is called the weight of an edge e. We will be interested in the list channel
assignment problem in which, in addition, each vertex v of G is equipped with a
list L(v) of available labels, i.e., L : V (G) → 2N. If |L(v)| = k for every vertex v
of G, L is called a k-list assignment. The goal is to find a labeling c : V (G) → N

such that c(v) ∈ L(v) and |c(u)− c(v)| ≥ w(uv) for every edge uv ∈ E(G). Such
a labeling is also called a list labeling or a list L(2, 1)-labeling (if appropriate) for
L and we often omit to emphasize the list assignment L if it is clear from the
context. Finally, a subproblem of an instance of the channel assignment problem
that is induced by a vertex set W is the problem with G[W ] and both the list of
vertices and the edge-weights are the same as in the original problem.

L(p, q)-labelings can be viewed as instances of the channel assignment prob-
lem: if G is a graph, define Lp,q(G) to be the channel assignment problem with
a graph that is the square G2 of G and w(e) = p if e ∈ E(G) and w(e) = q,
otherwise. Clearly, a graph G has an L(2, 1)-labeling of span at most Λ if and
only if there is a labeling c of L2,1(G) for the lists L(v) = {0, . . . , Λ}, v ∈ V (G).
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3 Reduction tools

In all our proofs, we first identify certain configurations (subgraphs) that cannot
appear in a minimal counterexample. The proofs of Lemmas 3.5 and 3.6 are
based on a careful application of the following greedy algorithm, first used by
McDiarmid [22] in the area of the channel assignment problem.

Algorithm 1.

Input: ordering of the vertices v1, . . . , vn

edge-weight function w
lists L(v1), . . . , L(vn) of labels available for vertices

Output: (partial) vertex labeling c

X := minimum label contained in L(v1) ∪ · · · ∪ L(vn)
maxcol := maximum label contained in L(v1) ∪ · · · ∪ L(vn)
while X ≤ maxcol do
for i := 1 to n do

if vi is not labeled and X ∈ L(vi)
then

if for all vj ∈ N(vi) that are labeled
it holds that |c(vj) − X| >= w(vivj)

then

label vi by setting c(vi) := X
fi

fi

X := X + 1
endfor

endwhile

The following two lemmas can be found in [20]:

Lemma 3.1. Let G be a graph with edge weights w : E(G) → N and a list
function L : V (G) → 2N. Assume that Algorithm 1 is applied to G together with
an ordering v1, . . . , vn of its vertices. If it holds that

∑

i′<i,vi′vi∈E(G)

w(vi′vi) +
∑

i′>i,vi′vi∈E(G)

(w(vi′vi) − 1) < |L(vi)|,

then the vertex vi is labeled by the algorithm.

Lemma 3.2. Let G be a graph with edge weights w : E(G) → N and a list
function L : V (G) → 2N. Assume that Algorithm 1 is applied to G together with
an ordering v1, . . . , vn of its vertices and that for a vertex vi the following equality
holds:

∑

j<i,vjvi∈E(G)

w(vjvi) +
∑

j>i,vjvi∈E(G)

(w(vjvi) − 1) = |L(vi)| .
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If the vertex vi is not labeled by the algorithm, then all its neighbors are labeled
and the following holds:

L(vi) =
⋃

j<i,vjvi∈E(G)

[c(vj), c(vj) + w(vivj) − 1] ∪

⋃

j>i,vjvi∈E(G)

[c(vj) + 1, c(vj) + w(vivj) − 1] .

Moreover, all the intervals in the above union are disjoint.

As the first step towards Lemma 3.5, we prove its version for non-induced
subgraphs. Loosely speaking, we aim to prove a weaker version of it where locally
injective homomorphisms are replaced by injective homomorphism.

Lemma 3.3. Let G be graph with maximum degree ∆ and H a subgraph of G
(that is not necessarily induced). Let V (H) = {v1, . . . , vn}. Assume that the
following holds for some integer Λ and for every i = 1, . . . , n:

(∆ + 2)(degG(vi) − degH(vi)) +
∑

vj∈NH(vi)

(degG(vj) − degH(vj))+

degH(vi) + |{v1, . . . , vi−1} ∩ NH(vi, 2)| ≤ Λ .

Let L0 be a (Λ + 1)-list assignment of G. If G \ V (H) has a list L(2, 1)-labeling
such that the labels of any two vertices at distance at most two in G are different,
then G also has a list L(2, 1)-labeling.

Proof. Fix a list L(2, 1)-labeling of G \ V (H) such that the labels of any two
vertices at distance at most two in G are different. For every vertex vi ∈ V (H),
let L(vi) be the labels of L0(vi) that are not assigned to any vertex at distance
at most two from vi in G and that differ by at least two from the labels assigned
to the neighbors of vi. We verify that Algorithm 1, when applied to the channel
assignment subproblem of L2,1(G) induced by V (H) together with lists L and the
order v1, . . . , vn of its vertices, assigns each vertex of H a label. By Lemma 3.1,
it is enough to verify that the following holds for every vertex vi ∈ V (H):

2|W1 ∩ {v1,. . ., vi−1}|+|W2 ∩ {v1,. . ., vi−1}|+|W1 ∩ {vi+1,. . ., vn}| =

|W1| + |W1 ∩ {v1, . . . , vi−1}| + |W2 ∩ {v1, . . . , vi−1}| < |L(vi)|,(1)

W1 is the set of the vertices of H that are neighbors of vi in G[V (H)] and W2 is
the set of the vertices of H at distance two from vi in G.

Let d1 and d2 be the numbers of vertices of V (G) \ V (H) at distance one and
two from vi, respectively. Clearly, the following holds:

|L(vi)| ≥ Λ + 1 − 3d1 − d2 (2)

d1 ≤ degG(vi) − degH(vi) (3)
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Note that the last inequality can be strict (since H need not be an induced
subgraph of G). In such a case, |W1| = degG(vi) − d1 > degH(vi). However, the
following bounds hold:

|W1| + |W1 ∩ {v1, . . . , vi−1}| ≤

degG(vi) − d1 + (degG(vi) − degH(vi)) − d1 + |NH(vi) ∩ {v1, . . . , vi−1}| ≤

2(degG(vi) − degH(vi) − d1) + degH(vi) + |NH(vi) ∩ {v1, . . . , vi−1}| . (4)

Similarly,

|W2 ∩ {v1, . . . , vi−1}| ≤

(∆ − 1) (degG(vi) − degH(vi)) +
∑

vj∈NH(vi)

(degG(vj) − degH(vj)) − d2 +

|{v1, . . . , vi−1} ∩ (NH(vi, 2) \ NH(vi))| . (5)

Note that the number degG(vi) − degH(vi) − d1 is the number of neighbors
of vi in G that are not neighbors of vi in H—such vertices may precede vi

in the order and thus we count them twice in (4). Similarly, the number
(∆−1) (degG(vi) − degH(vi))+

∑

vj∈NH(vi)
(degG(vj) − degH(vj))−d2 is an upper

bound on the number of the vertices of V (H) at distance two from vi in G that
are at distance three or more from vi in H . Such vertices may precede vi in the
order. We combine (4) and (5):

|W1| + |W1 ∩ {v1, . . . , vi−1}| + |W2 ∩ {v1, . . . , vi−1}| ≤

(∆ + 1) (degG(vi) − degH(vi)) +
∑

vj∈NH(vi)

(degG(vj) − degH(vj)) − 2d1 − d2 +

degH(vi) + |{v1, . . . , vi−1} ∩ NH(vi, 2)| . (6)

We derive the following using (3) and (6):

|W1| + |W1 ∩ {v1, . . . , vi−1}| + |W2 ∩ {v1, . . . , vi−1}| ≤

(∆ + 2) (degG(vi) − degH(vi)) +
∑

vj∈NH(vi)

(degG(vj) − degH(vj)) − 3d1 − d2 +

degH(vi) + |{v1, . . . , vi−1} ∩ NH(vi, 2)| ≤ Λ − 3d1 − d2 . (7)

The condition (1) now follows from (2) and (7).
It remains to verify that the labeling obtained by combining the labeling of

G\V (H) and the labeling of H is an L(2, 1)-labeling of G. The labels assigned to
the neighboring vertices differ by at least two by the choice of the lists L and the
fact that we apply Algorithm 1 to the channel assignment subproblem of L2,1(G).
Let u and v be two vertices at distance two. If both u and v are contained in
V (G) \ V (H), then their labels are different by our assumption on the L(2, 1)-
labeling of G\V (H). If both u and v are contained in V (H), then their labels are

7



different because Algorithm 1 was applied to the channel assignment subproblem
of L2,1(G). Finally, if u ∈ V (H) and v 6∈ V (H) (or vice versa), their labels are
different by the choice of the list L(u).

A careful inspection of the proof of Lemma 3.3 allows us to extend it to the
following lemma that will also be needed in our considerations. In our applica-
tions, we will usually not be able to compute the numbers αi and βi precisely, but
we will be able to establish some lower bounds on them (therefore, we formulate
the lemma with conditions that the numbers αi and βi are at most the described
quantities).

Lemma 3.4. Let G be graph with maximum degree ∆ and H a subgraph of G
(that is not necessarily induced). Let V (H) = {v1, . . . , vn}. Assume that the
following holds for some integer Λ and for every i = 1, . . . , n:

(∆ + 2)(degG(vi) − degH(vi)) +
∑

vj∈NH(vi)

(degG(vj) − degH(vj))+

degH(vi) + |{v1, . . . , vi−1} ∩ NH(vi, 2)| − 2αi − βi ≤ Λ ,

where αi is (at most) the number of edges e between the neighbors of vi such that
e 6∈ E(H) and βi is (at most) the number of vertices of V (G) \ V (H) at distance
two from vi in G that are neighbors of two distinct neighbors of vi. Let L0 be a
(Λ + 1)-list assignment of G. If G \ V (H) has a list L(2, 1)-labeling such that the
labels of any two vertices with distance at most two in G are different, then G
also has a list L(2, 1)-labeling.

We are ready to prove our main reduction lemma:

Lemma 3.5. Let G be a graph with maximum degree ∆ and (H, d) a degree
configuration with V (H) = {v1, . . . , vn}. Assume that the following holds for
every i = 1, . . . , n:

(∆ + 2)(d(vi) − degH(vi)) +
∑

vj∈NH(vi)

(d(vj) − degH(vj))+

degH(vi) + |{v1, . . . , vi−1} ∩ NH(vi, 2)| ≤ Λ .

Let L0 be a (Λ + 1)-list assignment of G. If ϕ is a degree homomorphism from
H to G and G \ ϕ(V (H)) has a list L(2, 1)-labeling such that any two vertices of
G \ ϕ(V (H)) at distance at most two in G are assigned different labels, then G
has a list L(2, 1)-labeling.

Proof. Fix a degree homomorphism ϕ from H to G. Let W = ϕ(V (H)) and let
H0 = G[W ]. For every vertex w ∈ W , let α(w) be the largest index i such that
ϕ(vi) = w. Let w1, . . . , wn0

be the vertices of W listed in the increasing order

8



determined by the numbers α(w). We verify that H0 with the order w1, . . . , wn0

satisfy the conditions of Lemma 3.3.
Fix an integer i0 ∈ {1, . . . , n0} and set i = α(wi0). Let N2 = {ϕ(v)|v ∈

NH(vi, 2)}, i.e., the set of images of the vertices that are distance at most 2 from
vi in H . By the definition of the order w1, . . . , wn0

, if j < i0, then α(wj) < α(wi0)
and thus the following holds:

|{w1, . . . , wi0−1} ∩ N2| ≤ |{v1, . . . , vi−1} ∩ NH(vi, 2))| (8)

Let A1 be the neighbors w ∈ V (H0) of wi0 in H0 such that ϕ−1({w})∩NH(vi) = ∅,
i.e., the set of neighbors of wi0 whose preimages are not neighbors of vi. It is easy
to check that the following equality holds:

|A1| = degH0
(wi0) − degH(vi) (9)

Let A2 be the vertices w ∈ V (H0) at distance two from wi0 in H0 such that
ϕ−1(w)∩NH(wi0, 2) = ∅ and A′

2 ⊆ A2 those vertices whose neighbor is contained
in A1. The following two bounds are straightforward:

|A′

2| +
∑

w∈A1

(

degG(w) − degH0
(w)

)

≤ (∆ − 1)|A1| (10)

|A2 \ A′

2| ≤
∑

v∈NH(vi)

(degH0
(ϕ(v)) − degH(v)) . (11)

We combine (8)–(11) to get the condition of Lemma 3.3:

(∆ + 2)(degG(wi0) − degH0
(wi0))+

∑

w∈NH0
(wi0

)

(

degG(w) − degH0
(w)

)

+

degH0
(wi0) + |{w1, . . . , wi0−1} ∩ NH0

(wi0 , 2)| ≤
by (9)

(∆ + 2)(degG(wi0) − degH0
(wi0))+

∑

v∈NH(vi)

(

degG(ϕ(v)) − degH0
(ϕ(v))

)

+
∑

w∈A1

(

degG(w) − degH0
(w)

)

+

degH(vi) + |A1| + |{w1, . . . , wi0−1} ∩ (N2 ∪ A1 ∪ A2)| ≤

(∆ + 2)(degG(wi0) − degH0
(wi0))+

∑

v∈NH(vi)

(

degG(ϕ(v)) − degH0
(ϕ(v))

)

+
∑

w∈A1

(

degG(w) − degH0
(w)

)

+

degH(vi) + |A1| + |{w1, . . . , wi0−1} ∩ N2| + |A1| + |A′

2| + |A2 \ A′

2| ≤
by (10)
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(∆ + 2)(degG(wi0) − degH0
(wi0))+

∑

v∈NH (vi)

(

degG(ϕ(v)) − degH0
(ϕ(v))

)

+

degH(vi) + (∆ + 1)|A1| + |{w1, . . . , wi0−1} ∩ N2| + |A2 \ A′

2| ≤
by (11)

(∆ + 2)(degG(wi0) − degH0
(wi0)) + (∆ + 1)|A1|+

∑

v∈NH (vi)

(

degG(ϕ(v)) − degH0
(ϕ(v))

)

+

∑

v∈NH(vi)

(degH0
(ϕ(v)) − degH(v)) + degH(vi) + |{w1, . . . , wi0−1} ∩ N2| ≤

by (8)
(∆ + 2)(degG(wi0) − degH0

(wi0))) + (∆ + 1)|A1|+
∑

v∈NH(vi)

(degG(ϕ(v)) − degH(v))

degH(vi) + |{v1, . . . , vi−1} ∩ NH(vi, 2)| ≤
by (9)

(∆ + 2)(d(vi) − degH0
(wi0))) + (∆ + 2)(degH0

(wi0) − degH(vi))
∑

v∈NH (vi)

(d(v) − degH(v)) + degH(vi) + |{v1, . . . , vi−1} ∩ NH(vi, 2)| ≤

(∆ + 2)(d(vi) − degH(vi)))+
∑

v∈NH (vi)

(d(v) − degH(v)) + degH(vi) + |{v1, . . . , vi−1} ∩ NH(vi, 2)| ≤ Λ

The statement of the lemma now follows by Lemma 3.3.

If we apply Lemma 3.4 instead of Lemma 3.3, we can prove the following
generalization of Lemma 3.6.

Lemma 3.6. Let G be a graph with maximum degree ∆ and (H0, d) a degree
configuration. Let H ⊆ H0 and V (H) = {v1, . . . , vn}. Assume that the following
holds for every i = 1, . . . , n:

(∆ + 2)(degG(vi) − degH(vi)) +
∑

vj∈NH(vi)

(degG(vj) − degH(vj))+

degH(vi) + |{v1, . . . , vi−1} ∩ NH(vi, 2)| − 2αi − βi ≤ Λ ,

where αi is the number of edges e between the neighbors of vi in H0 such that
e 6∈ E(H) and βi is the number of vertices of V (H0) \ V (H) at distance two
from vi in H0 that are neighbors of two distinct neighbors of vi. Let L0 be a
(Λ + 1)-list assignment of G. If ϕ is a degree homomorphism from H0 to G
and G \ ϕ(V (H)) has a list L(2, 1)-labeling for L0 such that any two vertices of
G \ϕ(V (H)) with distance at most two in G are assigned different labels, then G
has a list L(2, 1)-labeling for L0, too.

In our applications of Lemma 3.6, both H and H0 will be plane graphs and
we will estimate αi as the number of 3-faces of H0 incident with vi that are not
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v2 v1

v4 v5

v3

Figure 1: The list channel assignment problem from Lemma 3.7; the edges of
weight one are depicted by single lines, those of weight two by double lines.

contained in H and βi as the number of 4-faces of H0 incident with vi that are
not contained in H .

At the end of this section, we state an auxiliary lemma. The proof of the
lemma uses the methods described in this section, in particular Lemmas 3.1
and 3.2. The lemma itself is later used in the proof of Lemma 6.8.

Lemma 3.7. The channel assignment problem depicted in Figure 1 can be labeled
from any list assignment L : V → 2N such that |L(v1)| = |L(v2)| = 3, |L(v3)| = 5
and |L(v4)| = |L(v5)| = 8.

Proof. Apply Algorithm 1 for the vertex sequence v1, . . . , v5. Let c : V → N be
the (partial) labeling constructed by the algorithm. By Lemma 3.1, each of the
vertices v1, v3, v4 and v5 receives a label. If the vertex v2 is also labeled, we
have a labeling of the channel assignment problem. Assume that the vertex v2 is
not labeled. By Lemma 3.2, L(v2) = {c(v1), c(v1) + 1, c(v4) + 1}. In particular,
c(v1) 6= c(v4) + 1. Let x = c(v4). Consider a modified list assignment L′:

L′(v) =

{

L(v4) \ {x} if v = v4,
L(v) otherwise.

Apply Algorithm 1 with the lists L′. The algorithm proceeds in the same way
until the point when the vertex v4 was assigned the label x. In particular, the
label x has not been assigned to v1 or v3. Since x 6∈ L′(v4), the vertex v4 remains
unlabeled.

Assume that x is not assigned to the vertex v5 either. The label x + 1 cannot
be assigned to v1 since the algorithm during the first run would have assigned
the label x+1 to v1, too. Next, the label x+1 is assigned to the vertex v2: none
of the vertices joined to v2 by an edge of weight two is assigned the label x or
x + 1 and none of the vertices joined to v2 by an edge weight one is assigned the
label x + 1. Hence, the vertex v2 is labeled. The remaining vertices are labeled
by Lemma 3.1.
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If the label x is assigned to the vertex v5, then v1 cannot be assigned the label
x+1 because of the edge v1v5. Hence, v2 is labeled x+1. The remaining vertices
are again labeled by Lemma 3.1. This completes the proof.

4 Planar graphs with maximum degree six

In this section, we prove the conjecture of Griggs and Yeh for planar graphs with
maximum degree six. In fact we establish a stronger result that each planar graph
with maximum degree six has a list L(2, 1)-labeling for any 33-list assignment.
For the sake of simplicity, we state our arguments only for the coloring setting
but the reader can easily verify that the arguments smoothly translate to the list
labelings. Throughout the section, we say that a planar graph G is 6-minimal if
G has maximum degree six, λ2,1(G) > 32 and every planar graph with maximum
degree six and fewer vertices than G has an L(2, 1)-labeling of span at most 32.

4.1 Reducible configurations

We first identify several configurations that cannot appear in a 6-minimal graph.

Lemma 4.1. Every 6-minimal graph G has minimum degree at least three.

Proof. Consider a 6-minimal graph G with minimum degree one or two. If G has
a vertex v of degree one, let G′ = G \ v. If G has a vertex v of degree two, let
G′ be the graph obtained by suppressing the vertex v. By the 6-minimality of
G, G′ has an L(2, 1)-labeling with span at most 32. The L(2, 1)-labeling can be
extended to the vertex v: at most 2 · 3 labels cannot be assigned to v because
they differ by at most one from a label assigned to a neighbor of v and additional
at most 2 · (∆− 1) = 10 labels cannot be assigned to v because they are assigned
to a vertex at distance two from v. Altogether, there are 16 such labels. Hence,
the L(2, 1)-labeling of G′ can be extended to v. This yields an L(2, 1)-labeling of
G with span at most 32 and contradicts our assumption that G is 6-minimal.

Let us remark that in the remaining proofs of this and the following sections,
we will not provide a detailed counting of the labels that cannot be assigned to
removed vertices as in the proof of Lemma 4.1, but we just state the number of
labels that cannot be assigned to the removed vertices and let the reader verify
it him/herself.

The proofs of all the remaining lemmas of this subsection proceed in the same
way. We assume that G is 6-minimal, remove one vertex v1 from G and add some
new edges in such a way that the distance of any pair u and v of vertices in the
new graph G′ is less or equal than the distance between u and v in G in such a
way that G′ is still planar with maximum degree at most six. By the 6-minimality
of G, G′ has an L(2, 1)-labeling c′. By counting the number of labels that cannot
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v1v2

v3

v4

v2

v3

v4

Figure 2: The configuration from Lemma 4.2 and its replacement.

v1 v2

v3v4v5

v6 v2

v3v4v5

v6

Figure 3: The configuration from Lemma 4.3 and its replacement.

be assigned to the vertex v because they are assigned to some of the vertices of
NG(v, 2), we establish that the L(2, 1)-labeling c′ can be extended to G. This
contradicts the 6-minimality of G.

Lemma 4.2. No 6-minimal graph G contains a 3-vertex incident to a 3-face.

Proof. Let v1 be a 3-vertex of G incident to a 3-face, v3 and v4 the other two
vertices of the 3-face, and v2 the remaining neighbor of v1 (see Figure 2). Remove
v1 from G and add the edge v2v3. By the 6-minimality of G, there exists an
L(2, 1)-labeling c′ of the graph G′ with span at most 32.

A similar calculation as in Lemma 4.1 yields that there are at most 3·(3+5) =
24 labels that cannot be assigned to v1. Since the distances among vertices in G′

are less or equal than in G, c′ can be extended to an L(2, 1)-labeling of the entire
graph G.

Lemma 4.3. No 6-minimal graph G contains a 3-vertex incident with two 4-
faces.

Proof. Let v1 be a 3-vertex incident with two 4-faces, v4 the neighbor of v1 incident
with the two 4 faces, and v2 and v6 the remaining two neighbors of v1 (see
Figure 3). Remove v1 from G and add the edge v6v2. The resulting graph G′

an L(2, 1)-labeling c′ with span at most 32 by the 6-minimality of G. Since the
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v1v2

v3

v4

v2

v3

v4

Figure 4: The configuration from Lemma 4.4 and its replacement.

v1v2

v3

v4

v5

v2

v3

v4

v5

Figure 5: The configuration from Lemma 4.5 and its replacement.

number of labels that cannot be assigned to v1 is at most 3 · (3 + 5) = 24, the
labeling c′ can be extended to the entire graph G.

Lemma 4.4. If G contains a 3-vertex adjacent to a ≤ 5-vertex, then G is not
6-minimal.

Proof. Let v1 be a 3-vertex of G, v2 a ≤ 5-neighbor of v1, and v3 and v4 the
remaining neighbors of v1 (see Figure 4). Remove v1 and add two new edges:
v2v3 and v2v4. Let G′ be the obtained graph. Since v2 is a ≤5-vertex in G, the
degree of v2 in G′ does not exceed six. Hence, G′ has an L(2, 1)-labeling c′ with
span at most 32 by the 6-minimality of G. Since the number of labels that cannot
be assigned to v1 is at most 3 · (3 + 5) = 24, the labeling c′ can be extended to
an L(2, 1)-labeling of the graph G.

Lemma 4.5. No 6-minimal graph G contains a 4-vertex incident with a 3-face
that contains another ≤5-vertex.

Proof. Let v1 be a 4-vertex of G, v2 a ≤5-vertex adjacent to v1 contained in the
3-face incident to v1, and v3 be the remaining vertex of the 3-face. Also let v4

and v5 be the remaining neighbors of v1 (see Figure 5). Remove v1 and add new
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v1v2

v3

v4

v5

v2

v3

v4

v5

Figure 6: The configuration from the Lemma 4.6 and its replacement.

edges v2v4 and v2v5. Since the obtained graph G′ is planar and its maximum
degree is at most 6, it has an L(2, 1)-labeling c′ with span at most 32.

The vertex v1 cannot be assigned at most 4 · 3 + 5 + 5 + 4 + 4 = 30 labels
because of distance constraints. Hence, the L(2, 1)-labeling c′ can be extended
to G.

Lemma 4.6. No 6-minimal graph G contains a (3, 3,≥3,≥3)-vertex (see Figure
6).

Proof. Let v1 be a 4-vertex of the graph G incident to two adjacent 3-faces, v2 the
neighbor of v1 incident to both the 3-faces and v3 and v5 the two neighbors of v1

incident to one of the 3-faces. Finally, let v4 be the remaining neighbor of v1. As
before, we remove the vertex v1 and add an edge v2v4. Since the obtained graph
G′ is planar and its maximum degree is at most 6, there exists an L(2, 1)-labeling
c′ of G′ with span at most 32.

The number of labels that cannot be assigned to the vertex v1 is 4 · 3 + (3 +
4 + 5 + 4) = 28. Since the distances in G′ are less or equal than the distances
between the corresponding vertices in G, we can extend the labeling c′ to a proper
labeling of the graph G.

Lemma 4.7. No 6-minimal graph G contains a 5-vertex incident to four 3-faces
(see Figure 7).

Proof. Let v1 be a 5-vertex of the graph G incident to four 3-faces and v2, . . . , v6

the neighbors of v1 as drawn in Figure 7. Remove the vertex v1 and add an edge
v2v6. Since the resulting graph G′ is planar and its maximum degree is at most 6,
there exists an L(2, 1)-labeling c′ of G′ with span at most 32. Since the number of
labels that cannot be assigned to v1 is at most 5 ·3+(4+3+3+3+4) = 32 < 33,
the labeling c′ can be extended to an L(2, 1)-labeling of G with span at most
32.
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v1

v2

v3

v4v5

v6

v2

v3

v4v5

v6

Figure 7: The configuration from Lemma 4.7 and its replacement.

4.2 Discharging Procedure

In this section, we describe the amount of initial charge of the vertices and the
faces, the rules used for redistributing charge and show that after applying the
rules to a 6-minimal graph, the final amount of charge of each vertex and of each
face is non-negative. Since the sum of the amounts of initial charge assigned to
the vertices and faces is negative, there is no 6-minimal graph that yields the
desired result.

Theorem 4.8. Every planar graph G with maximum degree at most 6 has an
L(2, 1)-labeling with span at most 32, i.e., there is no 6-minimal graph.

Proof. Assume that there exists a 6-minimal graph G. Clearly, G is connected
and has at least two vertices. Assign each vertex v degG(v) − 4 units of charge
and each face f degG(f) − 4 units of charge. It is easy to verify that the sum of
initial charge of all the vertices and faces is negative (−8).

Initial charge is redistributed based on the following set of rules:

Rule A Each ≥5-face sends each incident 3-vertex 1/2 units of charge.

Rule B Each ≥5-vertex sends each incident 3-face 1/3 units of charge.

Rule C If uv is and edge contained in a 3-face f and ≥4-face and v is a 6-vertex,
then v sends 1/6 units of charge to f .

Note that the total amount of charge is preserved.
We determine the final amount of charge of each vertex and face. First, we

verify that each vertex has non-negative final charge. Observe that G contains
only ≥ 3-vertices by Lemma 4.1. Let us consider a 3-vertex v. By Lemmas 4.2
and 4.3, v is not incident to a 3-face or two 4-faces. Hence, v is contained in
at least two ≥ 5-faces. Each of the incident ≥ 5-faces sends 1/2 units of charge
to v and v receives altogether at least one unit of charge and its final charge is
non-negative.
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Since a 4-vertex neither receives nor sends out any charge, its final charge is
zero. Each 5-vertex v of G is contained in at most 3-faces by Lemma 4.7. Hence,
it sends out at most unit charge by Rule B in total. It remains to analyze final
charge of 6-vertices. Each 6-vertex v has initial charge 2. Let t be the number
of 3-faces that contains v. Observe that Rule C can apply at most 2 · (6 − t)
times. We infer that v sends out at most t/3 units of charge by Rule B and at
most 2(6− t)/6 = (6− t)/3 units of charge by Rule C. We conclude that the final
amount of charge of v is non-negative.

We have verified that the final amount of charge of each vertex is non-negative.
Next, we consider final charge of the faces of G.

3-faces: Consider a 3-face f of G. Lemma 4.2 implies that f is incident with
no 3-vertex. By Lemma 4.5, the face f is incident with either one 4-vertex
and two 6-vertices or three ≥5-vertices.

• In the former case, let u be the 4-vertex incident to f and v1 and
v2 the remaining 6-vertices incident to it. The face f receives charge
of 1/3 units of charge from each of the vertices v1 and v2 by Rule
B. By Lemma 4.6, the 4-vertex u is not a (3, 3,≥ 3,≥ 3)-vertex. In
particular, the other face containing the edge uv1 is a ≥4-face. Hence,
v1 sends additional 1/6 units of charge to f by Rule C. Similarly, v2

sends additional 1/6 units of charge. We conclude that final charge of
f is zero.

• In the latter case, each of the three incident vertices sends f 1/3 units
of charge by Rule B.

We conclude that the final amount of charge of f is at least 0.

4-faces: Since no 4-face receives or sends out any charge, its final charge is zero.

≥5-faces: Consider a ≥ 5-face f . By Lemma 4.4, G contains no adjacent 3-
vertices. Hence, f is incident with at most bk/2c 3-vertices. In particular,
it sends at most bk/2c · 1/2 units of charge by Rule A. We conclude that
final charge of f is non-negative.

Since the final amount of charge of each vertex and each face of G is non-negative,
we obtain a contradiction and conclude that there is no 6-minimal graph.

5 Planar graphs with maximum degree five

Throughout this section, we say that a planar graph G is 5-minimal if G has
maximum degree five, λ2,1(G) > 25 and every planar graph with maximum degree
five and with fewer vertices, or with the same number of vertices but fewer edges
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has an L(2, 1)-labeling with span at most 25. When applying Lemmas 3.5 or 3.6
for a degree configuration H (with at least one edge) that appears in G via a
degree homomorphism ϕ, we first remove from G one edge contained in the image
of H . By the 5-minimality of G, the resulting graph has an L(2, 1)-labeling with
span at most 25. It can be verified that any two vertices that are not contained
in ϕ(V (H)) and that are at distance two in G receive different labels. We then
verify other conditions of Lemmas 3.5 and 3.6. In the rest of this section, we do
further not emphasize in which way we obtain the L(2, 1)-labeling of Gϕ(V (H))
and kindly ask the reader to recall the just described procedure.

As in the previous section, all our arguments translate to the list labelings
but we leave the reader to verify the details.

5.1 Reducible Configurations

We first establish a simple lower bound on the sum of degrees of adjacent vertices
in a 5-minimal graph.

Lemma 5.1. No 5-minimal graph G contains adjacent vertices v1 and v2 with
degrees d1 and d2 such that d1 + d2 ≤ 7. In particular, the minimum degree of G
is at least three.

Proof. By symmetry, we can assume that d1 ≤ d2 and thus d1 ≤ 3. Contract
the edge v1v2 to a vertex w. Since the obtained graph is a planar graph with
maximum degree at most five, it has an L(2, 1)-labeling of span at most 25 by the
5-minimality of G. Assign the vertex v2 the label of w. The remaining vertices
keep their labels. Since there are at most d1 ·7 ≤ 21 labels that cannot be assigned
to v1, the L(2, 1)-labeling can be extended to v1.

In the next two lemmas, we study the structure of neighborhoods of 3-vertices
in 5-minimal graphs:

Lemma 5.2. If v is a 3-vertex contained in a 5-minimal graph G, then v is
(≥4,≥5,≥5)-vertex and all the neighbors of v are 5-vertices.

Proof. All the neighbors of v are 5-vertices by Lemma 5.1. The statement of the
lemma is violated if v is either a (3,≥ 3,≥ 3)-vertex or a (4, 4,≥ 4)-vertex. Let
v1, v2 and v3 be the neighbors of v as drawn if Figure 8. Let G′ be the graph
obtained from G \ v by adding the edge v1v3. By the 5-minimality of G, G′ has
an L(2, 1)-labeling of span at most 25. Label the vertices of G with the labels
of their counterparts. Since there are at most 3 · 7 = 21 labels that cannot be
assigned to v, the L(2, 1)-labeling can be extended to v.

Lemma 5.3. If G is a 5-minimal graph, then each 5-face f of G is incident with
at most one 3-vertex.
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vv1

v3

v2

v v3

v2

v1

Figure 8: The configurations from Lemma 5.2.

v2

v3

v4v5

v1

w

v2

v4v5

Figure 9: The configuration from Lemma 5.3 and its replacement.
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vv1

v2

v3

v4

v1

v2

v3

v4

Figure 10: The configuration from Lemma 5.5 and its reduction.

Proof. Let v1, . . . , v5 be the vertices incident with f in the cyclic order along f .
Assume that v1 and v3 are 3-vertices. Note that by Lemma 5.1, no 3-vertices can
be adjacent. Add the edge v1v3 to G and contract it. Let G′ be the obtained
graph and w the new vertex (see Figure 9). By the 5-minimality of G, the graph
G′ has an L(2, 1)-labeling with span at most 25. We keep the labels of all the
vertices of G′ except for w to get a labeling of G \ v1, v3. Since each of the
vertices v1 and v3 cannot be assigned at most 3 · 7 = 21 labels, this labeling can
be extended to v1 and v3 assigning v1 and v3 distinct colors. We conclude that
G has an L(2, 1)-labeling with span at most 25.

Next, we focus on the structure around 3-faces.

Lemma 5.4. Each 3-face of a 5-minimal graph G is incident with at most one
≤4-vertex.

Proof. G does not contain a 3-vertex incident with a 3-face by Lemma 5.2. As-
sume that G contains two 4-vertices v1 and v2 that are both incident with the
same 3-face of G. By the 5-minimality of G, the graph G without the edge v1v2

has an L(2, 1)-labeling with span at most 25. Remove now the labels of the ver-
tices v1 and v2. We claim that the labeling can be extended to the vertices v1 and
v2 in the original graph G. Once the vertex v2 is assigned a label, the neighbors
of v1 prevent v1 from assigning at most 7 + 7 + 6 + 5 = 25 labels. We obtain an
L(2, 1)-labeling of G with span at most 25.

Lemma 5.5. A 5-minimal graph G does not contain a (3, 3,≥3,≥3)-vertex.

Proof. Assume the opposite and let v be a (3, 3,≥ 3,≥ 3)-vertex of G and v1,
. . . , v4 its neighbors as depicted in Figure 10. Remove the vertex v from G and
add an edge v1v3. Let G′ be the resulting graph. By the 5-minimality of G, G′

has an L(2, 1)-labeling with span at most 25. We claim that the labeling can be
extended to the vertex v: the neighbors and the vertices at distance two prevent
v from assigning at most 7 + 2 · 6 + 5 = 24 labels. Since the labels of the vertices
v1, v2, v3 and v4 are also mutually distinct, we have obtained an L(2, 1)-labeling
of G with span at most 25.
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y = v3

x = v4

v1

v2

y

x

y
x

y

x

Figure 11: The degree configurations from Lemma 5.6.

In the proof of the next lemma, we first apply one of our reduction lemmas
proven in Section 3:

Lemma 5.6. Let G be a 5-minimal graph and xy an edge of G contained in
a 3-face. If x is a 4-vertex, then y is neither a (3, 3, 3,≥ 3,≥ 3)-vertex nor a
(3, 4, 3, 3,≥3)-vertex.

Proof. By Lemma 5.5, the vertex x incident with at most one 3-face. If y is a
(3, 3, 3,≥ 3,≥ 3)-vertex or a (3, 4, 3, 3,≥ 3)-vertex, then G contains one of the
four degree configurations depicted in Figure 11. Let W = {v1, v2, v3, v4} if y is
a (3, 3, 3,≥3,≥3)-vertex, and let W = {x, y}, otherwise.

We consider an L(2, 1)-labeling of the graph G with the edge xy removed (as
explained in the beginning of this section) and verify the conditions of Lemma 3.6.
In the case of the first configuration, the four inequalities are the following:

v1: 7 · 3 − 2 + (2 + 2) + 2 + 0 = 25 ≤ 25
v2: 7 · 2 − 0 + (3 + 2 + 2) + 3 + 1 = 25 ≤ 25
v3: 7 · 2 − 2 + (3 + 2 + 2) + 3 + 2 = 24 ≤ 25
v4: 7 · 2 − 0 + (2 + 2) + 2 + 3 = 23 ≤ 25

The two inequalities for the second configuration are the following:

x: 7 · 4 − 3 · 2 − 1 + 3 + 1 + 0 = 25 ≤ 25
y: 7 · 3 − 2 + 4 + 1 + 1 = 25 ≤ 25

In the third case and the fourth cases, the two inequalities are the same and they
are the following:

x: 7 · 4 − 3 · 2 − 1 + 3 + 1 + 0 = 25 ≤ 25
y: 7 · 3 − 2 − 1 + 4 + 1 + 1 = 24 ≤ 25

In all the cases, Lemma 3.6 implies that the graph G is not 5-minimal.

In the two final lemmas of this subsection, we study 5-vertices that are incident
to four or five 3-faces:
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v3 v4
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Figure 12: The degree configurations from Lemma 5.8.

Lemma 5.7. No 5-minimal graph G contains a (3, 3, 3, 3, 3)-vertex v.

Proof. By the 5-minimality of G, G \ v has an L(2, 1)-labeling of span at most
25. This labeling can be extended to v since there are at most 5 · 3 + 10 = 25
labels that cannot be assigned to v. Observe that the labels of all the neighbors
of v are different. Hence, we obtain a contradiction with our assumption that G
is 5-minimal.

Lemma 5.8. Let G be a 5-minimal graph and v a (3, 3, 3, 3,≥ 3)-vertex of G.
If f ′ is a face that is not incident with v and that shares an edge with a 3-face
incident with v, then f ′ is a ≥5-face.

Proof. If f ′ is a 3-face or 4-face, then G contains one of the four degree configu-
rations shown in Figure 12 where v4 = v. Let W = {v1, v2, v3, v4}. As explained
in the beginning of this section, we remove one edge of G, say v3v4, consider an
L(2, 1)-labeling of the resulting graph and apply Lemma 3.6. If f ′ is 4-face and
it is not incident with v3, then the inequalities that we have to verify are the
following:

v1: 7 · 3 − 2 + (2 + 2) + 2 + 0 = 25
v2: 7 · 3 − 3 + (2 + 2) + 2 + 1 = 25
v3: 7 · 2 − 0 + (3 + 3 + 2 − 2) + 3 + 2 = 25
v4: 7 · 2 − 4 + (3 + 3 + 2) + 3 + 3 = 24

If f ′ is a 3-face, then we should subtract −2 instead of −1 in the inequality for v2.
Similarly, if f ′ is incident with v3, then we should subtract −1 or −2, depending
whether f ′ is a 3-face or a 4-face, in the inequality for v3. In all the cases, the
conditions of Lemma 3.6 are satisfied and G is not a 5-minimal graph.

5.2 Discharging Procedure

Assign each vertex v degG(v) − 4 units of charge and each face f degG(f) − 4
units of charge, It is easy to verify that the sum of initial charge of all the vertices
and faces is negative (−8) if G is a connected planar graph. The charge assigned
to the vertices and faces is redistributed by the following rules:
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Rule F.1 Each ≥5-face sends each incident 3-vertex 1/2 unit of charge.

Rule F.2 Each ≥5-face f sends 1/6 units of charge to each 3-face f ′ such that
the faces f and f ′ share an edge.

Rule V.1 Each 5-vertex incident with at most two 3-faces sends 1/2 units of
charge to each incident 3-face.

Rule V.2 Each 5-vertex incident with precisely three 3-faces sends 1/3 units of
charge to each incident 3-face.

Rule V.3 Each (3, 3, 3, 3,≥ 4)-vertex v incident with the 3-faces f1, f2, f3 and
f4 (in the order around v as depicted in Figure 13) sends 1/3 units of charge
to each of f1 and f4, and 1/6 units of charge to each of the faces f2 and f3.

In the next four lemmas, we analyze the final charge of vertices and faces.

Lemma 5.9. If G is a 5-minimal graph, then the final charge of each vertex is
non-negative.

Proof. If v is a 3-vertex, then it is incident with at least two ≥ 5-faces by
Lemma 5.2. Each of these faces sends 1/2 units of charge to v by Rule F.1
and the final charge of v is non-negative. If v is a 4-vertex, then it does not send
out or receive any charge and thus its final charge is zero. If v is a 5-vertex, then
either Rule V.1, V.2 or V.3 applies. In each of the cases, it sends out at most
one unit of charge in total and thus its final charge is non-negative.

Lemma 5.10. If G is a 5-minimal graph, then the final charge of any 3-face f
incident with a 4-vertex v is non-negative.

Proof. By Lemma 5.4, the remaining two vertices v1 and v2 incident with f are
5-vertices. For each i = 1, 2, we claim that f receives from vi and from the other
face fi incident with the edge vvi 1/2 units of charge in total. By Lemma 5.6, the
vertex vi is either incident with at most two 3-faces or it is incident with three
3-faces and fi is ≥5-face. In the former case, the vertex vi sends f 1/2 units of
charge by Rule V.1. In the latter case, vi sends f 1/3 units of charge by Rule
V.2 and fi sends f 1/6 units of charge. We conclude that f receives 1/2 units of
charge from vi and fi. In total, f receives at least one unit of charge and its final
charge is non-negative.

Lemma 5.11. If G is a 5-minimal graph, then the final charge of any 3-face f
is non-negative.
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Figure 13: The notation used in the definition of Rule V.3 and in the proof of
Lemma 5.11.

Proof. The face f cannot be incident with a 3-vertex by Lemma 5.2. If f is inci-
dent with a 4-vertex, then its final charge is non-negative by Lemma 5.10. Hence,
f is incident only with 5-vertices. Note that G does not contain a (3, 3, 3, 3, 3)-
vertex by Lemma 5.7. If f is not incident with a (3, 3, 3, 3,≥ 4)-vertex, then it
receives charge of at least 1/3 from each of the three incident 5-vertices by Rules
V.1 and V.2. Hence, its final charge is non-negative.

It remains to consider the case when the face f is incident with a (3, 3, 3, 3,
≥ 4)-vertex v. Let f1, f2, f3 and f4 be the 3-faces incident with f in the cyclic
order around v and v1, v2, v3, v4 and v5 be the neighbors of v (see Figure 13).
By Lemma 5.8, each of the other four faces that contain one of the edges v1v2,
v2v3, v3v4 and v4v5 is a ≥5-face. In particular, each of the vertices v2, v3 and v4

is incident with at most three 3-faces.
By symmetry, we can assume that the face f is either f1 or f2. If f = f1, then

f receives charge of 1/3 units from v by Rule V.3, at least 1/6 from v1 (by Rule
V.1, V.2 or V.3), at least 1/3 from v2 (by Rule V.1 or V.2) and 1/6 from the
≥5-face containing the edge v1v2 by Rule F.2. If f = f2, then f receives charge
of 1/6 units from v by Rule V.3, at least 1/3 from each of the vertices v2 and v3

(by Rule V.1 or V.2), and charge of 1/6 units from the ≥ 5-face containing the
edge v2v3 by Rule F.2. We conclude that f receives at least one unit of charge
and its final charge is non-negative.

We finish the analysis of final charge of faces:

Lemma 5.12. If G is a 5-minimal graph, then the final charge of each face f of
G is non-negative.

Proof. If f is a 3-face, its final charge is non-negative by Lemma 5.11. If it is a
4-face, it neither receives nor sends out any charge and its final charge is zero.
We now consider the case that f is a 5-face. By Lemma 5.3, f is incident with at
most one 3-vertex. If f is incident with no 3-vertices, then it sends out at most
5/6 units of charge by Rule F.2. If f is incident with one 3-vertex, then it shares
an edge with at most three 3-faces (note that a 3-vertex cannot be incident to a
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3-face by Lemma 5.2). Hence, f sends out 1/2 units of charge by Rule F.1 and
at most 1/2 units of charge in total by Rule F.2.

It remains to consider the case that f is an `-face with ` ≥ 6. The initial
amount of charge of f is `−4. Let k be the number of 3-vertices incident with f .
Since no two 3-vertices of G can be adjacent by Lemma 5.1, k ≤ `/2. Let k′ be
the number of 3-faces that share an edge with f . Since no 3-face can be incident
with a 3-vertex by Lemma 5.2, k′ ≤ ` − 2k. By Rules F.1 and F.2, the face f
sends out the following amount of charge:

k/2 + k′/6 ≤ k/2 +
` − 2k

6
= `/6 + k/6 ≤ `/6 + `/12 = `/4 .

Since ` ≥ 6, charge sent out of the face f does not exceed ` − 4 and the final
charge of f is non-negative.

We immediately infer from Lemmas 5.9 and 5.12 that the following holds:

Theorem 5.13. Every planar graph G with maximum degree five has an L(2, 1)-
labeling with span at most 25.

6 Planar graphs with maximum degree four

As in the previous two section, we prove our theorem for ordinary L(2, 1)-labelings
and the reader is welcomed yourself to verify that the same proof applies for list
L(2, 1)-labelings. We say that a graph G is 5-minimal if G is a planar graph
with maximum degree at most four and λ2,1(G) > 16 and every planar graph
G′ with maximum degree at most four and with fewer vertices than G has an
L(2, 1)-labeling with span at most 16. Two special types of 4-vertices and 3-faces
in 5-minimal graphs will require our special attention. A 4-vertex is red if it is a
(3, 4,≤ 4, 4)-vertex, and it is blue if it is a (3, 4, 3,≥ 5)-vertex. A 3-face is red if
it is incident with a red vertex and it is blue if it is incident with a blue vertex.
We later show that no 3-face is both red and blue (Lemma 6.7).

Before we proceed with showing that some (degree) configurations cannot
appear in a 4-minimal graph, we restate Lemmas 3.5 and 3.6 to the case of 4-
minimal graphs. Note that in both Lemmas 6.1 and 6.2, the assumption on the
existence of an L(2, 1)-labeling of G \ ϕ(V (H)) that assigns different labels to
vertices of G \ ϕ(V (H)) at distance at most two in G is dismissed. This allows
us more straightforward applications of both the lemmas in our proofs since we
do not have to construct a suitable graph (smaller than G) to apply induction
for in each of our proofs separately.

Lemma 6.1. Let (H, d) be a degree configuration and V (H) = {v1, . . . , vn}.
Assume that the following holds for every i = 1, . . . , n:

6(d(vi) − degH(vi)) +
∑

vj∈NH(vi)

(d(vj) − degH(vj))+
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degH(vi) + |{v1, . . . , vi−1} ∩ NH(vi, 2)| ≤ 16 .

If there is a degree homomorphism from H to a graph G, then the graph G is not
4-minimal.

Proof. Let ϕ be the degree homomorphism from H to a 4-minimal graph G. Note
that each vertex v ∈ ϕ(V (H)) has at most two neighbors not contained in ϕ(H)
since d(vi) − degH(vi) ≤ 2 by the condition of the lemma. Let G′ be the graph
obtained from G by removing the vertices of the set ϕ(V (H)), and adding an edge
v′v′′ for each vertex v ∈ ϕ(V (H)) with two neighbors v′, v′′ 6∈ ϕ(V (H)). Observe
that this does not increase the degree of the vertices v′ and v′′. In particular,
G′ is a planar graph with maximum degree four. By the 4-minimality of G, G′

has an L(2, 1)-labeling with span at most 16. Since any two vertices contained
in G′ with distance at most two in G are at distance at most two in G′, G is not
4-minimal by Lemma 3.5.

Lemma 6.2. Let G be a plane graph with maximum degree four and (H0, d) a
plane degree configuration, i.e., H0 is a plane graph. Let H ⊆ H0 and V (H) =
{v1, . . . , vn}. Assume that the following holds for every i = 1, . . . , n:

6(degG(vi) − degH(vi)) +
∑

vj∈NH(vi)

(degG(vj) − degH(vj)) +

degH(vi) + |{v1, . . . , vi−1} ∩ NH(vi, 2)| − 2αi − βi ≤ 16 ,

where αi is the number 3-faces that contains vi, are contained in H but not in
H0, and βi is the number of such 4-faces. Assume in addition that degG(vi) −
degH(vi) ≤ 2. If ϕ is a degree homomorphism from H0 to G, then G is not
4-minimal.

The proof of Lemma 6.2 is analogous to the proof of Lemma 6.1. We apply
Lemma 3.6 instead of Lemma 3.5 and use the 3-faces and 4-faces contained in H
but not in H0 to estimate the numbers αi and βi from the statement of Lemma 3.6.
We leave further details to the reader.

6.1 Reducible configurations

In this subsection, we identify substructures that cannot appear in a 4-minimal
graph.

Lemma 6.3. The minimum degree of a 4-minimal graph G is at least three.

Proof. Assume that G contains a ≤2-vertex v1 and let v2 be any of its neighbors.
Contract the edge v1v2 in G to a vertex w. By the 4-minimality of G, the
obtained graph has an L(2, 1)-labeling of span at most 16. Assign the vertex v2

the label of w and let the remaining vertices keep their labels. Since there are at
most 2 · 6 = 12 labels that cannot be assigned to v1, the L(2, 1)-labeling can be
extended to v1.
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Figure 14: The configurations from Lemma 6.5 and their reductions.

In the next two lemmas, we focus on 3-vertices in 4-minimal graphs:

Lemma 6.4. No 4-minimal graph G contains two adjacent 3-vertices.

Proof. Assume that G contains the degree configuration formed by an edge v1v2

with d(v1) = d(v2) = 3. We aim to apply Lemma 6.1 and verify the two inequal-
ities of the statement of the lemma:

v1: 6 · 2 + 2 + 1 + 0 = 15 ≤ 16
v2: 6 · 2 + 2 + 1 + 1 = 16 ≤ 16

We conclude that this degree configuration cannot appear in a 4-minimal graph.

Lemma 6.5. If v is a 3-vertex of a 4-minimal graph G, then v is a (≥4,≥5,≥5)-
vertex.

Proof. All the neighbors of v are 4-vertices by Lemma 6.4. The statement of the
lemma is violated if v is either a (3,≥ 3,≥ 3)-vertex or a (4, 4,≥ 4)-vertex. Let
v1, v2 and v3 be the neighbors of v as drawn if Figure 14. Let G′ be the graph
obtained from G \ v by adding an edge v1v3. Observe that G′ is a graph with
maximum degree at most four. By the 4-minimality of G, G′ has an L(2, 1)-
labeling of span at most 16. Label the vertices of G as their counterparts are
labeled in G′ and extend the labeling to v: since there are at most 3 · 6 − 2 = 16
labels that cannot be assigned to v, this is possible. Note that by the construction
of G′, all the vertices v1, v2 and v3 have different labels.
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Figure 15: The degree configurations from the proof of Lemma 6.6.

The next lemma states that if two 3-faces share an edge in a 4-minimal graph,
then any other face that shares an edge with either of them is a ≥5-face.

Lemma 6.6. A 4-minimal graph does not contain a (3, 3,≤4,≥3)-vertex.

Proof. Assume that a 4-minimal graph G contains a (3, 3,≤ 4,≥ 3)-vertex. It
follows that G contains one of the two degree configurations depicted in Figure 15
with d(vi) = 4 for i = 1, 2, 3, 4 (note that no 3-face can be incident with a 3-vertex
by Lemma 6.5). We aim to apply Lemma 6.2. The inequalities for the degree
configuration depicted in the left part of Figure 15 are the following:

v1: 6 · 2 − 0 + 2 + 2 + 0 = 16 ≤ 16
v2: 6 · 2 − 1 + 2 + 2 + 1 = 16 ≤ 16
v3: 6 · 1 − 0 + 5 + 3 + 2 = 16 ≤ 16
v4: 6 · 1 − 1 + 5 + 3 + 3 = 16 ≤ 16

If the degree configuration in the right part appears in G, then there is −2
subtracted instead of −1 in the second and the fourth inequality.

In the next two lemmas, we turn our attention to red faces and red vertices:

Lemma 6.7. If f is a red 3-face of a 4-minimal graph G, then f is incident with
a red vertex v and two (3,≥ 4,≥ 4,≥ 4)-vertices. In particular, no red face is
incident with a blue vertex. In addition, if f is a blue 3-face, then it shares an
edge with exactly one 4-face of G.

Proof. Assume that u is a red vertex incident with a face f , and that f is incident
with a vertex w 6= u such that w is incident with two 3-faces. By Lemma 6.6,
w is a (3, 4, 3,≥ 4)-vertex and G contains one of the two degree configurations
depicted in the left part of Figure 16 with u = v5 and w = v6. Note that d(vi) = 4
for i = 1, . . . , 6 since all the vertices v1, . . . , v6 have degree four by Lemma 6.5.
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Figure 16: The degree configurations from the proof of Lemma 6.7.

v1 v2

v3

v4 v5

v1

v2v3

v1

v2v3

Figure 17: The degree configurations from the proof of Lemma 6.8.

If a blue 3-face shares an edge with two 4-faces, then the degree configuration
depicted in the right part of Figure 16 appears in G. In this case, d(vi) = 4 for
i = 2, . . . , 6 (by Lemma 6.5) and d(v1) is either 3 or 4.

We aim to apply Lemma 6.2. We verify the conditions for the rightmost
degree configuration depicted in Figure 16 (with d(v1) = 4):

v1: 6 · 2 − 0 + 2 + 2 + 0 = 16
v2: 6 · 2 − 0 + 1 + 2 + 1 = 16
v3: 6 · 2 − 1 + 1 + 2 + 2 = 16
v4: 6 · 1 − 0 + 4 + 3 + 3 = 16
v5: 6 · 1 − 1 + 4 + 3 + 4 = 16
v6: 6 · 0 − 0 + 6 + 4 + 5 = 15

The conditions get weaker in the remaining cases.

Lemma 6.8. Each red 3-face f of a 4-minimal graph G is incident with exactly
one red vertex.

Proof. If the lemma does not hold, then G contains one of the three degree
configurations depicted in Figure 17. Note that d(vi) = 4 for all vi by Lemma 6.5.
The middle configuration depicted in the figure cannot appear in G by Lemma 6.2:

v1: 6 · 2 − 2 + 4 + 2 + 0 = 16 ≤ 16
v2: 6 · 2 − 3 + 4 + 2 + 1 = 16 ≤ 16
v3: 6 · 2 − 4 + 4 + 2 + 2 = 16 ≤ 16
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v1 v2

v3

v4 v5

Figure 18: The replacement of the leftmost degree configuration from Figure 17
in the last case considered in the proof of Lemma 6.8.

In the case of the rightmost configuration, we subtract −4 instead of −3 in the
condition for v2, thus Lemma 6.2 applies again.

If the degree configuration that is depicted leftmost in Figure 17 appears in
G, we proceed as follows. First, observe that v1, v2, v3, v4 and v5 are mutually
distinct. If v2 is adjacent to v3, the degree configuration depicted in Figure 17
with the edge v2v3 added cannot be contained in a 4-minimal graph by Lemma 6.1
applied to the ordering v1, v2, v3, v4 and v5 of the vertices:

v1: 6 · 2 + 2 + 2 + 0 = 16 ≤ 16
v2: 6 · 1 + 4 + 3 + 1 = 14 ≤ 16
v3: 6 · 1 + 3 + 3 + 2 = 14 ≤ 16
v4: 6 · 1 + 4 + 3 + 3 = 16 ≤ 16
v5: 6 · 1 + 3 + 3 + 4 = 16 ≤ 16

Similarly, if v2 and v4 are adjacent, then the degree configuration depicted in
Figure 17 with the added edge v2v4 cannot be contained in a 4-minimal graph by
Lemma 6.1 applied to the order v1, v3, v2, v5, v4:

v1: 6 · 2 + 1 + 2 + 0 = 15 ≤ 16
v3: 6 · 2 + 1 + 2 + 1 = 16 ≤ 16
v2: 6 · 1 + 3 + 3 + 2 = 14 ≤ 16
v5: 6 · 1 + 3 + 3 + 3 = 15 ≤ 16
v4: 6 · 0 + 6 + 4 + 4 = 14 ≤ 16

The cases when v1 is adjacent to v3 or v5 are symmetric. Hence, we may assume
in the rest that v1 is adjacent to neither v3 nor v5 and v2 to neither v3 nor v4.

Neither Lemma 6.1 nor Lemma 6.2 can be used to handle with this final
case. A finer argument, using Lemma 3.7, is needed. We first remove the degree
configuration from G and add the edges as shown in Figure 18. Let G′ be the
resulting planar graph. The graph G′ has an L(2, 1)-labeling of span at most 16
by the 4-minimality of G. Since any two vertices of V (G′) at distance at most
two in G are also at distance at most two in G′, it is enough to show that the
L(2, 1)-labeling of G′ can be extended to the vertices v1, v2, v3, v4 and v5. It is
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v3

v4 v5
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Figure 19: The degree configuration from the proof of Lemma 6.9.

easy to verify that there at least 3 labels that do not conflict with labels of the
vertices at distance at most two from v1. Similarly, there are 3 labels that can
be assigned to v2, 5 labels that can be assigned to v3 and 8 labels that can be
assigned to each of the vertices v4 and v5. By Lemma 3.7, the L(2, 1)-labeling can
be extended to the subgraph induced by v1, v2, v3, v4 and v5 (the ordering of the
vertices matches that of Lemma 3.7). We have obtained an L(2, 1)-labeling of G
with span at most 16 which contradicts our assumption that G is 4-minimal.

Similarly to the red faces, each blue face can be incident only with one blue
vertex:

Lemma 6.9. Each blue 3-face f of a 4-minimal graph G is incident with exactly
one blue vertex.

Proof. Assume the opposite. Since f shares an edge with at most one 4-face by
Lemma 6.7, G must contain the degree configuration depicted in Figure 19. Note
that d(vi) = 4 for i = 1, . . . , 7 by Lemma 6.5. We now verify the conditions of
Lemma 6.1 and eventually obtain a contradiction with the assumption that G is
4-minimal:

v1: 6 · 2 + 1 + 2 + 0 = 15 ≤ 16
v2: 6 · 2 + 1 + 2 + 0 = 15 ≤ 16
v3: 6 · 2 + 0 + 2 + 2 = 16 ≤ 16
v4: 6 · 1 + 3 + 3 + 3 = 15 ≤ 16
v5: 6 · 1 + 3 + 3 + 4 = 16 ≤ 16
v6: 6 · 0 + 5 + 4 + 5 = 14 ≤ 16
v7: 6 · 0 + 5 + 4 + 6 = 15 ≤ 16

We end this subsection with five auxiliary lemmas that we will need in the
proof of Lemma 6.17. Each of the next five lemmas states that certain pairs of
vertices cannot be adjacent on a boundary of a ≥5-face.

31



v3

v7

v6

v5

v2

v4

v1

v3

v7

v6

v5

v2

v4

v1

Figure 20: The degree configurations from Lemma 6.10.

Lemma 6.10. Let G be a 4-minimal graph and u and v be two vertices consecutive
on a boundary of a ≥5-face. If u is a (3, 4, 4,≥5)-vertex contained in a red or a
blue 3-face, then v is not a 3-vertex.

Proof. Since a red face is incident with exactly one red vertex by Lemma 6.8, G
contains one of the two degree configurations depicted in Figure 20. We assume
that d(vi) = 4 for i = 1, 2, 3, 4, 5, 7 and d(v6) = 3. If d(vi) is also equal to 3 for
i 6= 6, our arguments smoothly translate to this case, too. We apply Lemma 6.2:

v1: 6 · 2 − 0 + 2 + 2 + 0 = 16 ≤ 16
v2: 6 · 2 − 1 + 2 + 2 + 0 = 15 ≤ 16
v3: 6 · 2 − 0 + 1 + 2 + 1 = 16 ≤ 16
v4: 6 · 1 − 0 + 4 + 3 + 3 = 16 ≤ 16
v5: 6 · 1 − 1 + 4 + 3 + 3 = 15 ≤ 16
v6: 6 · 1 − 0 + 2 + 2 + 4 = 14 ≤ 16
v7: 6 · 0 − 0 + 5 + 4 + 6 = 15 ≤ 16

In the case when the edge v2v5 is contained in a 3-face, we subtract −2 instead
of −1 in the conditions for the vertices v2 and v5.

Lemma 6.11. Let G be a 4-minimal graph and u and v be two vertices consecutive
on a boundary of a ≥5-face. If u is a (4, 3, 4,≥5)-vertex, then v is not a 3-vertex.

Proof. Assume the opposite, i.e., G contains the degree configuration depicted in
Figure 21 with d(vi) = 4 for i = 1, 2, 3, 5 and d(v4) = 3 (note that degrees of the
vertices v1, v2, v3 and v5 are four by Lemmas 6.4 and 6.5). We apply Lemma 6.2:

v1: 6 · 2 − 0 + 2 + 2 + 0 = 16 ≤ 16
v2: 6 · 2 − 1 + 2 + 2 + 1 = 16 ≤ 16
v3: 6 · 1 − 0 + 5 + 3 + 2 = 16 ≤ 16
v4: 6 · 1 − 0 + 3 + 2 + 3 = 14 ≤ 16
v5: 6 · 1 − 1 + 4 + 3 + 4 = 16 ≤ 16
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Figure 21: The degree configuration from Lemma 6.11.

v3

v4 v8 v7

v2 v5 v6 v1

Figure 22: The degree configuration from Lemma 6.12.

Lemma 6.12. Let G be a 4-minimal graph and u and v be two vertices consecutive
on a boundary of a ≥ 5-face. If u is a (3, 4, 4,≥ 5)-vertex, then v is not a
(4, 3, 4,≥5)-vertex.

Proof. Assume the opposite, i.e., G contains the degree configuration depicted in
Figure 22. Assume d(vi) = 4 for all i—our arguments translate smoothly to the
case when some of vi’s are 3-vertices. We apply Lemma 6.2:

v1: 6 · 2 − 1 + 2 + 2 + 0 = 15 ≤ 16
v2: 6 · 2 − 0 + 2 + 2 + 0 = 16 ≤ 16
v3: 6 · 2 − 0 + 1 + 2 + 1 = 16 ≤ 16
v4: 6 · 1 − 0 + 4 + 3 + 2 = 15 ≤ 16
v5: 6 · 1 − 0 + 3 + 3 + 4 = 16 ≤ 16
v6: 6 · 1 − 0 + 4 + 3 + 3 = 16 ≤ 16
v7: 6 · 1 − 1 + 3 + 3 + 5 = 16 ≤ 16
v8: 6 · 0 − 0 + 5 + 4 + 7 = 16 ≤ 16
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v1 v5 v6 v2

Figure 23: The degree configuration from Lemma 6.13.

Lemma 6.13. Let G be a 4-minimal graph and u and v be two vertices consecutive
on a boundary of a ≥5-face. If the vertex u is a (3, 4, 4,≥5)-vertex and the edge
uv is contained in a 4-face, then v is not a (4, 4, 3,≥5)-vertex.

Proof. Assume the opposite, i.e., G contains the degree configuration depicted in
Figure 23. Assume d(vi) = 4 for all i—our arguments translate smoothly to the
case when some of vi’s are 3-vertices. We apply Lemma 6.1:

v1: 6 · 2 + 2 + 2 + 0 = 16 ≤ 16
v2: 6 · 2 + 2 + 2 + 0 = 16 ≤ 16
v3: 6 · 2 + 1 + 2 + 1 = 16 ≤ 16
v4: 6 · 2 + 1 + 2 + 1 = 16 ≤ 16
v5: 6 · 1 + 3 + 3 + 3 = 15 ≤ 16
v6: 6 · 1 + 3 + 3 + 4 = 16 ≤ 16
v7: 6 · 1 + 4 + 3 + 3 = 16 ≤ 16
v8: 6 · 1 + 4 + 3 + 3 = 16 ≤ 16
v9: 6 · 0 + 4 + 4 + 7 = 15 ≤ 16
v10: 6 · 0 + 4 + 4 + 8 = 16 ≤ 16

Lemma 6.14. Let G be a 4-minimal graph and u and v be two vertices consecutive
on a boundary of a ≥5-face. If the vertex u is a (4, 3, 4,≥5)-vertex contained in
a red 3-face, then v is not a (4, 3, 4,≥5)-vertex.

Proof. Assume the opposite, i.e., G contains of the four degree configurations
depicted in Figure 24. Assume d(vi) = 4 for all i—our arguments translate
smoothly to the case when some of vi’s are 3-vertices. We apply Lemma 6.2. In

34



v3 v11 v8

v6 v10 v9 v7 v2

v1 v5 v4

v2 v10 v7

v5 v9 v8 v6 v1

v4 v3

v6 v7

v5 v9 v8 v3

v1 v4 v2

v5 v6

v4 v8 v7 v2

v1 v3

Figure 24: The degree configurations from Lemma 6.14.

the case of the first degree configuration, we have the following:

v1: 6 · 2 − 0 + 2 + 2 + 0 = 16 ≤ 16
v2: 6 · 2 − 1 + 2 + 2 + 0 = 15 ≤ 16
v3: 6 · 2 − 0 + 1 + 2 + 1 = 16 ≤ 16
v4: 6 · 2 − 0 + 1 + 2 + 1 = 16 ≤ 16
v5: 6 · 1 − 0 + 4 + 3 + 2 = 15 ≤ 16
v6: 6 · 1 − 0 + 4 + 3 + 3 = 16 ≤ 16
v7: 6 · 1 − 0 + 3 + 3 + 2 = 14 ≤ 16
v8: 6 · 1 − 1 + 3 + 3 + 3 = 14 ≤ 16
v9: 6 · 0 − 0 + 3 + 4 + 7 = 14 ≤ 16
v10: 6 · 0 − 0 + 2 + 4 + 8 = 14 ≤ 16
v11: 6 · 0 − 0 + 3 + 4 + 9 = 16 ≤ 16
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The second one yields the following system of conditions:

v1: 6 · 2 − 1 + 2 + 2 + 0 = 15 ≤ 16
v2: 6 · 2 − 0 + 1 + 2 + 0 = 15 ≤ 16
v3: 6 · 2 − 0 + 1 + 2 + 0 = 15 ≤ 16
v4: 6 · 1 − 0 + 3 + 3 + 2 = 14 ≤ 16
v5: 6 · 1 − 0 + 3 + 3 + 3 = 15 ≤ 16
v6: 6 · 1 − 0 + 3 + 3 + 2 = 14 ≤ 16
v7: 6 · 1 − 1 + 3 + 3 + 3 = 14 ≤ 16
v8: 6 · 0 − 0 + 3 + 4 + 7 = 14 ≤ 16
v9: 6 · 0 − 0 + 2 + 4 + 7 = 13 ≤ 16
v10: 6 · 0 − 0 + 3 + 4 + 9 = 15 ≤ 16

For the third degree configuration, we verify the following conditions:

v1: 6 · 2 − 0 + 2 + 2 + 0 = 16 ≤ 16
v2: 6 · 2 − 0 + 1 + 2 + 1 = 16 ≤ 16
v3: 6 · 2 − 1 + 1 + 2 + 1 = 15 ≤ 16
v4: 6 · 1 − 0 + 4 + 3 + 2 = 15 ≤ 16
v5: 6 · 1 − 1 + 3 + 3 + 2 = 13 ≤ 16
v6: 6 · 1 − 1 + 3 + 3 + 3 = 14 ≤ 16
v7: 6 · 1 − 1 + 2 + 3 + 5 = 15 ≤ 16
v8: 6 · 0 − 0 + 5 + 4 + 6 = 16 ≤ 16
v9: 6 · 0 − 0 + 3 + 4 + 8 = 15 ≤ 16

Finally, the next set of conditions appears in the fourth case:

v1: 6 · 2 − 0 + 2 + 2 + 0 = 16 ≤ 16
v2: 6 · 2 − 1 + 1 + 2 + 0 = 14 ≤ 16
v3: 6 · 1 − 0 + 2 + 3 + 2 = 13 ≤ 16
v4: 6 · 1 − 1 + 3 + 3 + 2 = 13 ≤ 16
v5: 6 · 1 − 1 + 3 + 3 + 3 = 14 ≤ 16
v6: 6 · 1 − 1 + 2 + 3 + 5 = 15 ≤ 16
v7: 6 · 0 − 0 + 4 + 4 + 5 = 13 ≤ 16
v8: 6 · 0 − 0 + 3 + 4 + 7 = 14 ≤ 16

6.2 Discharging phase

In this subsection, we describe the discharging phase of the proof. First, each
vertex v is assigned degG(v) − 4 units of charge and each face f is assigned
degG(f)−4 units of charge. The sum of initial charge of all the vertices and faces
is negative (−8). Charge assigned to the vertices and faces is redistributed by
the following set of rules (cf. also Figure 25):
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Figure 25: Rules 3.1–4.12 used in Section 6.
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Rule F.r A red 3-face receives 1/2 units of charge from each incident vertex that
is not red.

Rule F.b1 A blue 3-face receives 1/2 units of charge from the incident [3, 4,≥
4,≥ 5]-vertex (note such a vertex is unique by Lemma 6.9).

Rule F.b2 A blue 3-face receives 1/3 units of charge from the incident [3,≥ 5,≥
3,≥ 5]-vertex (note such a vertex is unique by Lemma 6.9).

Rule F.b3 A blue 3-face receives 1/6 units of charge from the incident [3, 4, 3,≥
5]-vertex (note such a vertex is unique by Lemma 6.9).

Rule F A 3-face that is neither red nor blue receives 1/3 units of charge from
each incident vertex.

Rule 3.1 A (≥ 5)-face sends 1/2 to every incident [4,≥ 5,≥ 5]-vertex.

Rule 3.2 A (≥ 5)-face sends 1/3 to every incident [≥ 5,≥ 5,≥ 5]-vertex.

Rule 4.1 A (≥ 5)-face sends 1/2 to every incident [3, 4, 4,≥ 5]-vertex that is
contained in a blue 3-face.

Rule 4.2 A (≥ 5)-face sends 1/2 to every incident [4, 3, 4,≥ 5]-vertex that is
contained in a red 3-face.

Rule 4.3 A (≥ 5)-face sends 1/2 to every incident [3, 4, 4,≥ 5]-vertex that is
contained in a red 3-face.

Rule 4.4 A (≥ 5)-face sends 1/3 to every incident blue vertex, i.e., a [3, 4, 3,≥ 5]-
vertex.

Rule 4.5 A (≥ 5)-face sends 1/3 to every incident [3, 4,≥ 5,≥ 5]-vertex that is
contained in a blue 3-face.

Rule 4.6 A (≥ 5)-face sends 1/3 to every incident [3,≥ 5, 3,≥ 5]-vertex.

Rule 4.7 A (≥ 5)-face sends 1/3 to every incident [3, 4, 4,≥ 5]-vertex that is not
contained in a red 3-face.

Rule 4.8 A (≥ 5)-face sends 1/3 to every incident [4, 3, 4,≥ 5]-vertex that is not
contained in a red 3-face.

Rule 4.9 A (≥ 5)-face f sends 1/3 to every incident [3, 4,≥ 5,≥ 5]-vertex v that
is contained in a red 3-face that shares an edge with the face f .

Rule 4.10 A (≥ 5)-face sends 1/3 to every incident [3, 3,≥ 5,≥ 5]-vertex.
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Rule 4.11 A (≥ 5)-face f sends 1/6 to every incident [3,≥ 4,≥ 4,≥ 4]-vertex
v such that the 3-face containing v shares an edge with f and f sends v
charge by none of Rules 4.1–4.10.

Rule 4.12 A (≥ 5)-face f sends 1/6 to every incident [≥ 5, 3, 4,≥ 5]-vertex v if
neither Rule 4.9 nor Rule 4.11 apply (note that in such a case the face f
shares an edge with the 4-face containing v).

Next, we analyze final charge of vertices and faces of a 4-minimal graph after
applying the described set of rules. We start with determining final charge of the
vertices:

Lemma 6.15. If G is a 4-minimal graph, then the amount of final charge of
every vertex is zero.

Proof. G contains no ≤ 2-vertices by Lemma 6.3. Let v be a vertex of G. If v
is a 3-vertex, then v is either a (4,≥ 5,≥ 5)-vertex or a (≥ 5,≥ 5,≥ 5)-vertex by
Lemma 6.5. In the former case, v receives 1/2 units of charge from every incident
≥5-face by Rule 3.1. In the latter case, it receives 1/3 units of charge from each
of the three incident ≥5-faces by Rule 3.2. In both the cases, the final charge of
v is zero.

We now focus on the case that v is a 4-vertex. The vertex v is incident with
at most two 3-faces by Lemma 6.6. If v is incident with no 3-face, then it neither
receives nor sends out any charge and its final charge is zero.

We first consider the case that v is incident with two 3-faces, say f1 and f2.
By Lemma 6.6, v is a (3,≥ 4, 3,≥ 4)-vertex or a (3, 3,≥ 5,≥ 5)-vertex. Suppose
first that v is a (3,≥ 4, 3,≥ 4)-vertex. If v is a (3, 4, 3, 4)-vertex, then v neither
receives nor sends out any charge and its final charge is zero. Otherwise, neither
of the two faces f1 and f2 is red by Lemma 6.7. If v is a (3, 4, 3,≥ 5)-vertex,
then both faces f1 and f2 are blue. Hence, v receives 1/3 units of charge by
Rule 4.4 and it sends to each incident blue face 1/6 units of charge by Rule F.b3.
We conclude that its final charge is zero. If v is a (3,≥ 5, 3,≥ 5)-vertex, then it
receives 1/3 units of charge from each incident ≥ 5-face by Rule 4.6 and sends
1/3 units of charge to each incident 3-face by Rule F or F.b2. Hence, its final
charge is zero.

The other case is that v is a (3, 3,≥ 5,≥ 5)-vertex. Note that neither f1 nor
f2 is red or blue by Lemma 6.6. The vertex v receives charge of 1/3 units from
each incident ≥5-face by Rule 4.10 and it sends each of the faces f1 and f2 1/3
units of charge by Rule F.

It remains to consider the case when v is incident with a single 3-face f , i.e.,
v is a (3,≥4,≥4,≥4)-vertex. We distinguish three cases: the face f is red, f is
blue or f is neither red nor blue. If f is red and v is a (3, 4, 4, 4)-vertex, then v
neither receives nor sends out any charge. If f is red and v is a (3, 4,≥5, 4)-vertex,
v receives 1/2 units of charge by Rule 4.2 and sends out 1/2 units of charge by
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Rule F.r. If f is red and v is a (3, 4, 4,≥5)-vertex, v receives 1/2 units of charge
by Rule 4.3 and sends out 1/2 units of charge by Rule F.r. Finally, if f is red and
v is a (3, 4,≥ 5,≥ 5)-vertex, v receives 1/3 units of charge by Rule 4.9 and 1/6
units of charge by Rule 4.12, and v sends out 1/2 units of charge to f by Rule
F.r.

Next, assume that the face f is blue. Since v is incident with only one 3-
face, v is not blue. By Lemma 6.7, v is either a (3, 4,≥ 4,≥ 5)-vertex or a
(3,≥ 5,≥ 3,≥ 5)-vertex. If v is a (3, 4, 4,≥ 5)-vertex, then v receives 1/2 units
of charge by Rule 4.1 and it sends f charge of 1/2 units by Rule 3.b1. If v is
a (3, 4,≥5,≥5)-vertex, then v receives 1/3 units of charge by Rule 4.5 and 1/6
units of charge by Rule 4.11, and v sends f 1/2 units of charge by Rule 3.b1.
The vertex v cannot be a (3,≥ 5, 3,≥ 5)-vertex since it is incident with a single
3-vertex. If v is a (3,≥ 5,≥ 4,≥ 5)-vertex, then it receives 1/6 units of charge
from the two incident ≥5-faces and it sends f 1/3 units of charge by Rule 3.b2.
We conclude that in all the cases, the final charge of v is zero.

Finally, assume that the face f is neither red or blue. In particular, at least
one face incident with v is a ≥5-face. If v is a (3, 4, 4,≥5)-vertex or a (3, 4,≥5, 4)-
vertex, then it receives charge of 1/3 units from the incident ≥5-face by Rule 4.7
or Rule 4.8. If v is a (3, 4,≥5,≥5)-vertex, v receives charge of 1/6 units from each
of the incident ≥5-faces by Rule 4.11 and 4.12. Finally, if v is a (3,≥5,≥4,≥5)-
vertex, then it receives charge of 1/6 units from each of the incident ≥5-faces by
Rule 4.11. Since v sends out 1/3 units of charge to f by Rule F, its final charge
is zero.

It is rather easy to determine the final amount of charge of 3-faces and 4-faces.

Lemma 6.16. If G is a 4-minimal graph, then the amount of final charge of
every 3-face and every 4-face is zero.

Proof. Since a 4-face does not send out or receive any charge, its final charge is
zero. Let us consider a 3-face f . It is incident only with 4-vertices by Lemma 6.5.
If f is red, then it is incident exactly with one red vertex by Lemma 6.8. Hence,
f receives charge of 1/2 units from each of the incident non-red vertices by Rule
F.r and its final charge is zero.

If f is blue, then it shares an edge with exactly one 4-face and it is incident
with exactly one blue vertex by Lemma 6.9. In particular, f is incident with a
(3, 4, 3,≥5)-vertex (the blue vertex), a (3, 4,≥4,≥5)-vertex and a (3,≥5,≥3,≥
5)-vertex. It receives charge of 1/2, 1/3 and 1/6 units from the incident vertices
by Rules F.b1, F.b2 and F.b3. Hence, the final charge of f is zero.

The last case is that f is neither red nor blue. In this case, f receives charge
of 1/3 units from each incident vertex by Rule F and thus its final charge is
zero.

The next lemma will be needed in the analysis of the final charge of ≥7-faces:
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Lemma 6.17. Let u and v be two vertices consecutive on a boundary of a ≥5-face
f . The face sends u and v together at most 5/6 units of charge.

Proof. Since the f face sends each incident vertex at most 1/2 units of charge, we
have to exclude the case when both u and v receive 1/2 from f . By Lemma 6.4,
at most one of the vertices u and v is a 3-vertex. Assume that u is a 4-vertex
and v is a 3-vertex. Note that v cannot be incident to a 3-face by Lemma 6.5.
If u receives 1/2 units of charge by Rule 4.1 or 4.3, then v cannot be a 3-vertex
by Lemma 6.10. If u receives 1/2 units of charge by Rule 4.2, then v is not a
3-vertex by Lemma 6.11. The case when u is a 3-vertex and v is a 4-vertex is
symmetric.

We now consider the case when both u and v are 4-vertices. We distinguish
six cases based on which rules apply to u and v:

• Rule 4.1 applies to both u and v. By structural reasons, the other face
containing the edge uv is a 4-face and both u and v are (3, 4, 4,≥5)-vertices.
However, Lemma 6.13 excludes this case.

• Rule 4.2 applies to both u and v. Hence, u and v are (4, 3, 4,≥ 5)-
vertices and the edge uv is contained in a 4-face. However, this is excluded
by Lemma 6.14.

• Rule 4.3 applies to both u and v. Since each red face is incident with
one red vertex by Lemma 6.8, the other face containing the edge uv is a
4-face and both u and v are (3, 4, 4,≥ 5)-vertices. However, Lemma 6.13
excludes this case.

• Rule 4.1 applies to u and Rule 4.2 applies to v. By structural reasons,
the edge uv is contained in a 4-face, u is a (3, 4, 4,≥ 5)-vertex and v is a
(4, 3, 4,≥5)-vertex. However, this is impossible by Lemma 6.12.

• Rule 4.1 applies to u and Rule 4.3 applies to v. Since the 3-face
incident to u is blue and the 3-face incident to v is red, the edge uv must
be contained in a 4-face. Note that both u and v are (3, 4, 4,≥5)-vertices.
However, this case is excluded by Lemma 6.13.

• Rule 4.2 applies to u and Rule 4.3 applies to v. By structural reasons,
the edge uv is contained in a 4-face, u is a (4, 3, 4,≥ 5)-vertex and v is a
(3, 4, 4,≥5)-vertex. However, this is impossible by Lemma 6.12.

We can now conclude that no two consecutive vertices on a boundary of a ≥5-face
can together receive 1 unit of charge.

We now analyze the final charge of ≥7-faces.

Lemma 6.18. Let G be a 4-minimal graph. The final charge of every ≥7-face f
of G is non-negative.
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Proof. By Lemma 6.17, the face f sends each pair of consecutive vertices on its
boundary at most 5/6 units of charge. Hence, if f is an `-face, then it sends at
most 5`/12 units of charge to all its incident vertices. Since the initial charge of
f is ` − 4 and ` ≥ 7, the final charge of f is non-negative.

The next lemma has been verified using a computer program. We provide a
detailed explanation of the procedure in the next subsection.

Lemma 6.19. Let G be a 4-minimal graph. The final charge of every 5- and
every 6-face is non-negative.

Since the sum of the initial amounts of charge of all the vertices and faces of
a 4-minimal graph is −8 (note that each 4-minimal graph G is connected) and
the final charge of all the vertices and faces after redistributing by the described
set of rules is non-negative (see Lemmas 6.15, 6.16, 6.18 and 6.19), we conclude
that there is no 4-minimal graph G.

Theorem 6.20. Every planar graph with maximum degree four has an L(2, 1)-
labeling with span at most 16.

Since all our arguments are based either on simple counting forbidden labels
or on Lemmas 3.5 and 3.6 that hold for list labelings, Theorem 6.20 translates to
this setting:

Theorem 6.21. Every planar graph with maximum degree four has a list L(2, 1)-
labeling for any 17-list assignment.

6.3 Computer-checked cases

In this subsection, we describe our approach for verification that Lemma 6.19
holds. Two of the authors independently wrote computer programs that pro-
ceeded in the following way:

1. The program first generates the description of a “neighborhood” of a 5-face
or a 6-face. This determines which discharging rules apply to each of the
vertices.

2. The program then computes the charge sent out by the face.

3. If the amount of charge was larger than 1 in the case of a 5-face and larger
than 2 units in the case of a 6-face, the program verified using Lemma 6.2
that the corresponding configuration cannot appear in a 5-minimal graph.

Next, we describe in more detail each of the three steps.
Fix size ` ∈ {5, 6} of the face. Each configuration that can appear around

an `-face is encoded by a sequence of 2` integers αi (i = 1, . . . , 2`) between 1

42



and 5. Let us consider an `-face f0 of a 4-minimal graph that is incident with
vertices v1, . . . , v`. The number α2i−1 is defined as follows, where f is the face that
contains the edge vi−1vi and is different from f0 (indices of vertices are modulo `
and of α’s modulo 2` where appropriate):

• α2i−1 = 1 if f is a 3-face and the 4-vertex w incident with f that is different
from vi−1 and vi is contained in a 3-face that contains neither the edge
vi−1w nor viw.

• α2i−1 = 2 if f is a 3-face and the 4-vertex w incident with f that is different
from vi−1 and vi is contained in a 4-face that contains neither the edge
vi−1w nor viw.

• α2i−1 = 3 if f is a 3-face and neither of the previous two rules apply.

• α2i−1 = 4 if f is a 4-face.

• α2i−1 = 5 if f is a ≥5-face.

The number α2i is equal to 1 if vi is a 3-vertex. Otherwise, vi is a 4-vertex and
α2i is defined as follows where f is the face incident with vi that contains neither
the edge vi−1vi nor vivi+1:

• α2i = 2 if f is a 3-face and all the three vertices incident with f are (4, 3, 4,≥
3)-vertices (note that this implies that α2i−1 = α2i+1 = 4 as we discuss
later).

• α2i = 3 if f is a 3-face and the previous rule does not apply.

• α2i = 4 if f is a 4-face.

• α2i = 5 if f is a ≥5-face.

An example of encoding is described in Figure 26.
In order to avoid multiple tests for the same configuration, a sequence of 2`

integers is tested to be the lexicographically minimal one among all its cyclic
rotations (by an even number of positions) and reflections. If the sequence is
not lexicographically minimal, the sequence is not further tested (this reduces
time required by the computation). The sequence is also not further tested if
it contains one of the following subsequences α2i−1α2iα2i+1 (the sign * stands
for any number between 1 and 5) since the corresponding configurations cannot
appear in a 4-minimal graph.

11*,21*,31*,*11,*12,*13 The configurations corresponding to such a subse-
quence are excluded by Lemma 6.5 since no 3-vertex can be incident with
a 3-face in a 4-minimal graph.
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Figure 26: The configuration encoded by the sequence 1441534245 (the numbers
αi are written inside the corresponding faces neighboring with the central 5-face).
Note that v2 has degree three. The charge sent out by the face is computed as
follows: 1/2 + 1/2 + 1/6 + 1/2 + 1/6 = 11/6. The set A found by the program is
the set A = {v1, . . . , v5} and the order of the vertices is v4, v5, v3, v1, v2.

414 The configuration corresponding to this subsequence is excluded by
Lemma 6.5 since a 4-minimal graph cannot contain a (4, 4, `)-vertex.

12*,13*,*21,*31,333,334,433 The configurations corresponding to this subse-
quences are excluded by Lemma 6.6 since a 4-minimal graph cannot contain
a (3, 3,≤4,≥3)-vertex.

141,142,143,241,242,243,341,342 The configurations corresponding to such
subsequences are excluded by Lemmas 6.7 and 6.9 or it is the same as 343.

444,445,544,525,535,545 If we replace α2i ∈ {1, 2, 3, 4} with 5, we get a con-
figuration that receives the same amount of charge as the original one and
the original one is a subconfiguration of the new one. Hence, it is enough
only to test the new one.

α2i−12α2i+1 with α2i−1 6= 4 or α2i+1 6= 4 If we replace α2i−12α2i+1 with
α2i−13α2i+1, then the vertex vi receives the same amount of charge in
the new configuration as in the original one. Since the new one is a
subconfiguration of the original one, it is enough to test the new one only.

The following subsequences α2i−1α2iα2i+1α2i+2 are also excluded.
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Charge The subsequence α2i−1αiα2i+1

1/2 415, 514 (Rule 3.1)
144, 441 (Rule 4.1 or Rule 4.3)
424 (Rule 4.2)
244, 442 (Rule 4.3)

1/3 515 (Rule 3.2)
343 (Rule 4.4)
145, 541 (Rule 4.5 or Rule 4.9)
151, 153, 351, 353 (Rule 4.6)
344, 443 (Rule 4.7)
434 (Rule 4.8)
245, 542 (Rule 4.9)
335, 533 (Rule 4.10)

1/6 154, 155, 345, 354, 355, 451, 551, 453, 543, 553 (Rule 4.11)
435, 534 (Rule 4.12)

Table 1: The amount of charge sent to a vertex vi.

*α2i2α2i+2 with α2i 6= 4 or α2i+2 6= 4 Similarly to the last item of the previous
list, it is enough to test the configuration corresponding to the sequence
where α2i2α2i+2 is replaced with α2i3α2i+2.

*515 Similarly to the previous case, it is enough to test the corresponding con-
figuration with the sequence replaced with *535.

*1*1 The configuration corresponding to such a subsequence cannot appear in
a 4-minimal graph, since no two 3-vertices can be adjacent in a 4-minimal
graph by Lemma 6.4.

If the encoding does not contain any of the subsequences that are listed above,
the charge sent out to the neighboring vertices by the face f0 is computed.
The amount of charge sent to the vertex vi is determined by the subsequence
α2i−1α2iα2i+1 (see Table 1). Note that in the case when α2i−1α2iα2i+1 = 424, the
vertex vi may receive only 1/3 units of charge, but the computed charge is always
an upper bound on the amount of charge sent out by the face.

If the total charge sent out by the face is more than ` − 4, the degree con-
figuration H corresponding to the configuration around the `-face is constructed
(see Figure 26 for an example). Let n = |V (H)|.

The program then generates all the 2n−1 non-empty subsets A of the vertices
of H together with all |A|! orders of their vertices and for each such subset A,
the program checks whether the following holds:

• each vertex of A has at most two neighbors out of the set A, and
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• the condition of Lemma 6.2 is satisfied for each vertex of A.

Once such a subset A satisfying these conditions is found, the testing of the config-
uration is stopped because we can infer from Lemma 6.2 that the configuration H
cannot appear in a 4-minimal graph. If no such subset A had existed, the program
would have reported it. This has not happened, i.e., either each generated con-
figuration causes that the face sends out at most `−4 units of charge or it cannot
appear in a 4-minimal graph by Lemma 6.2. The reader can find all 3032 configu-
rations tested for ` = 5 together with the found subsets A and all 2409 configura-
tions tested for ` = 6 together with the sets A witnessing that they cannot appear
in a 4-minimal graph on http://kam.mff.cuni.cz/∼kral/l21-planar.html.

7 Conclusion

As we have already noted all our results apply to the list setting as well. Moreover,
it is not hard to check that the conjecture of Griggs and Yeh also holds for planar
graphs with maximum degree ∆ > 6 in the list setting. Hence, we may state the
following theorem:

Theorem 7.1. Let G be a planar graph with maximum degree ∆ 6= 3 and let
L : V (G) → 2N be a (∆2 + 1)-list assignment. There exists a list L(2, 1)-labeling
c of G for L.

We finish with a remark on L(2,1)-labelings of subcubic planar graphs, the
remaining open case for planar graphs. The conjecture of Griggs and Yeh remains
open for planar graphs with maximum degree three. Note that Kang [16] showed
that the conjecture holds for cubic hamiltonian graphs. It is also not difficult to
observe that the conjecture holds for subcubic bipartite planar graphs: let A and
B be the parts of the bipartite graph G. Let GA be the graph with vertex set
A such that two vertices are adjacent in GA if and only if their distance in G is
two, i.e., they have a common neighbor in G. Similarly, let us define a graph GB.
Observe that both graphs GA and GB are planar. By the Four Color Theorem,
GA can be labeled with labels 0, 1, 2 and 3 and GB with labels 5, 6, 7 and 8 in
such a way that no two vertices with the same label are adjacent in GA or GB.
These two labelings form an L(2, 1)-labeling of G with span at most eight.
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of planar graphs with no short cycles, submitted. A preliminary version avail-
able as ITI series 2005-243.

[10] J. Fiala, J. Kratochv́ıl, T. Kloks, Fixed-parameter complexity of λ-
labelings , Discrete Appl. Math. 113(1) (2001), 59–72.

[11] D. A. Fotakis, S. E. Nikoletseas, V. G. Papadopoulou, P. G.

Spirakis, NP-Completeness results and efficient approximations for radio-
coloring in planar graphs, B. Rovan, ed., Proc. MFCS’00, LNCS Vol. 1893,
Springer, 2000, 363–372.
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