
LECTURE NOTES ON MATROIDS

MARTIN LOEBL

Abstract. These are lecture notes for the first part of the lecture ”Introduction to Mathematical Program-

ming”.

1. Basic concepts

Definition 1.1. Let X be a finite set and S ⊂ 2X . We say that M = (X,S) is a matroid if the following
conditions are satisfied:

I1 ∅ ∈ S,
I2 A ∈ S and A′ ⊂ A then A′ ∈ S,
I3 U, V ∈ S and |U | = |V | + 1 then there is x ∈ U − V so that V ∪ {x} ∈ S.

Example. Let X be the set of all columns of a matrix over a field and S consist of all the subsets of X
that are linearly independent. Then (X,S) is a matroid (called vectorial matroid).

Definition 1.2. Let M = (X,S) be a matroid. The elements of S are called independent sets of M . The
maximal elements of S (w.r.t. inclusion) are called bases. Let A ⊂ X. The rank of A, r(A), equals maximum
|A′|;A′ ⊂ A,A′ ∈ S. The closure of A, σ(A), equals {x; r(A ∪ {x}) = r(A)}. If A = σ(A) then A is closed.

By repeated use of I3 in 1.1 we get

Corollary 1.3.

• If U, V ∈ S and |U | > |V | then there is Z ⊂ U − V , |Z| = |U − V | and V ∪ Z ∈ S.
• All bases have the same cardinality.

Theorem 1. A non-empty collection B of subsets of X is the set of all bases of a matroid on X if and only
if the following condition is satisfied.

B1 If B1, B2 ∈ B and x ∈ B1 − B2 then there is y ∈ B2 − B1 such that B1 − {x} ∪ {y} ∈ B.

Proof. Property [B1] is true for matroids: apply [I3] to B1−{x}, B2. To show the other implication we need
to prove that each hereditary system satisfying [B1] satisfies [I3] too. First we observe that [B1] implies that
no element of B is a strict subset of another one, and by repeated application of [B1] we observe that in fact
all the elements of B have the same size. To show [I3] let BU , BV be bases containing U, V and such that
their symmetric difference is as small as possible. If (BV ∩ (U − V )) 6= ∅ then any element from there may
be added to V and [I3] holds. We show that (BV ∩ (U − V )) = ∅ leads to a contradiction with the choice of
BU , BV : If x ∈ BV − BU − V then [B1] produces a pair of bases with smaller symmetric difference. Hence
BV − BU − V is empty. But then necessarily |BV | < |BU |, a contradiction. �
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Theorem 2. A collection S of subsets of X is the set of all independent sets of a matroid on X if and only
if I1, I2 and the following condition are satisfied.

I’3 If A is any subset of X then all the maximal (w.r.t. inclusion) subsets Y of A with Y ∈ S have the
same cardinality.

Proof. Property [I’3] is simply equivalent to [I3]. �

Theorem 3. An integer function r on X is the rank function of a matroid on X if and only if the following
conditions are satisfied.

R1 r(∅) = 0,
R2 r(Y ) ≤ r(Y ∪ {y}) ≤ r(Y ) + 1,
R3 If r(Y ∪ {y}) = r(Y ∪ {z}) = r(Y ) then r(Y ) = r(Y ∪ {y, z}).

Proof. Clearly [R1,R2] hold for matroids. To show [R3] let B be maximal independent in Y . If r(Y ) <
r(Y ∪{y, z}) then B is not maximal independent in Y ∪{y, z}, but any enlargement leads to a contradiction.

To show the other direction we say that A independent if r(A) = |A|. Obviously the set of the independent
sets satisfies [I1]. If A independent and B ⊂ A then r(B) = |B| since otherwise (by [R2]) r(A) ≤ |B − A| +
r(B) < |A|. Hence [I2] holds. If [I3] doesnot hold for U, V then by repeated application of [R3] we get that
r(V ∪ (U − V )) = r(V ), but this set contains U , a contradiction.

�

Theorem 4. An integer function on X is the rank function of a matroid on X if and only if the following
conditions are satisfied.

R’1 0 ≤ r(Y ) ≤ |Y |,
R’2 Z ⊂ Y then r(Z) ≤ r(Y ),
R’3 r(Y ∪ Z) + r(Y ∩ Z) ≤ r(Y ) + r(Z). This property is called submodularity.

Proof. Clearly [R’1.R’2] hold for matroids. To show [R’3] let B be a maximal independent set in Y ∩ Z
and let BY , BZ be maximal independent in Y,Z containing B. We have r(Y ∩ Z) = |BY ∩ BZ | and simply
r(BY ∪BZ) ≤ |Y ∪Z|. Hence [R’3] follows. On the other hand, [R1,R2,R3] simply follow from [R’1,R’2,R’3].

�

Theorem 5. σ(A) is the smallest (w.r.t. inclusion) closed set containing A.

Proof. First observe that σ(A) is closed, since r(σ(A)∪{x}) = r(σ(A)) implies r(A∪{x}) ≤ r(σ(A)∪{x}) =
r(σ(A)) = r(A). To show the second part let A ⊂ C, C closed and x ∈ (σ(A)−C). Hence r(C∪{x}) > r(C)
and this implies r(A ∪ {x}) > r(A) (exercise: why?) which contradicts x ∈ σ(A).

�

Theorem 6. A function σ on X is the closure operator of a matroid on X if and only if the following
conditions are satisfied.

S1 Y ⊂ σ(A),
S2 Z ⊂ Y then σ(Z) ≤ σ(Y ),
S3 σ(σ(Y )) = σ(Y ),
S4 if y /∈ σ(Y ) but y ∈ σ(Y ∪ {z}) then z ∈ σ(Y ∪ {y}). This property is called Steinitz-Maclane

exchange axiom.

We say that matroids Mi = (Xi, Si), i = 1, 2 are izomorphic if there is a bijection f from X1 to X2 so
that A independent if and only if f(A) independent.

2. Basic Examples

We have already learned vectorial matroids. A matroid is representable if it is izomorphic to a vectorial
matroid.

Example. Let G = (V,E) be a graph and let M(G) = (E,S) and S = {F ⊂ E;F acyclic }. Then
M(G) is a matroid called cycle matroid of G. Its rank function is r(F ) = |V | − k(V, F ), where k(V, F ) is
the number of connectivity components of (V, F ). The matroids izomorphic to cycle matroids of graphs are
called graphic matroids. Let us repeat some basic facts about an acyclic subset F of edges: (V, F ) has at
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least 2 vertices of degree 1 (this may be proved in a greedy way), If e ∈ F goes to vertex x of degree 1 then
k(V, F ) = k(V − x, F − e) (obvious) and |F | = |V | − k(V, F ) (this may be proved by induction using the
previous fact).

Example. Let G = (V,E) be a graph. matching matroid of G is (V, S) where A ∈ S if A may be covered
by a matching of G. This is a matroid since the basis axiom corresponds to the exchange along an alternating
path of two maximum matchings of G.

Example: a geometric representation of simple matroids of rank 3.
A matroid is simple if r(A) = |A| whenever |A| < 3. Each matroid is determined by its rank function and

so each simple matroid M of rank 3 is determined by set L(M) = {A ⊂ X; |A| > 2, r(A) = 2, A closed } (if
|A| > 2 then r(A) = 2 iff A is a subset of an element of L(M)).

Lemma 2.1. A,B ∈ L(M) then |A ∩ B| ≤ 1.

Proof. Assume for a contradiction {x, z} ⊂ A ∩ B, a ∈ A − B and b ∈ B − A. Then both a, b belong to
σ({x, z}) and hence by Theorem 5 to any closed set containing {x, z}...a contradiction.

�

A set C ⊂ 2X is configuration on X if each element of C has at least 3 elements and any pair of elements
of C have at most one element of X in common.

Theorem 7. Each configuration is set L(M) of a simple matroid of rank 3 on X.

Proof. Given C, for each A ⊂ X define r(A) = |A| if |A| ≤ 2, and if |A| > 2 then r(A) = 2 iff A is a subset of
an element of C. We show that r is a rank function of a matroid. Note that R1, R2 are obviously satisfied.
We show R3: If r(Y ∪ {y}) = r(Y ∪ {z}) = r(Y ) then |Y | ≥ 2 and both Y ∪ {y}, Y ∪ {z} are subsets of an
element of C. They are in fact subsets of the same element of C since their intersection has size 2. Hence
r(Y ) = r(Y ∪ {y, z}).

�

Hence we can represent the simple matroids of rank 3 by a system of ’lines’ on the plane corresponding to
the elements of L(M). As an exercise, draw the most famous picture of matroid theory, the Fano matroid: it
is the vectorial matroid over GF [2] (finite field of two elements) of a matrix whose columns are all non-zero
vectors of GF [2]3.

3. Greedy Algorithm

Let (X,S) be a set system and c a weight function on X. Assume we want to find J ∈ S such that∑
x∈X c(x) is maximized. The greedy algorithm to solve this problem is as follows:

• Order elements of X so that c(x1) ≥ c(x2) ≥ . . . c(xn) (n = |X|),
• J := ∅,
• For i = 1, . . . , n do: if J ∪ {xi} ∈ S and c(xi) ≥ 0 then J := J ∪ {xi}.

Theorem 8. Let (X,S) be a hereditary non-empty set system. Then the greedy algorithm works for any
weight function c on X if and only if (X,S) is a matroid.

Proof. As a homework prove that if a hereditary system is not a matroid then there is a weight function c
for which the greedy algorithm doesnot work. Let us prove the opposite implication:

let m be maximal such that xm ≥ 0. Let x′ be the characteristic vector of a set produced by the greedy
algorithm and let x be the characteristic vector of any other set of S. Let Ti = {x1, . . . , xi} for i ≤ m. Notice
that x′(Ti) ≥ x(Ti) for each i since J ∩ Ti is a maximal subset of Ti in S. We have

cx ≤
m∑

i=1

c(xi)xxi
=

m∑

i=1

(x(Ti) − x(Ti−1)) =

m−1∑

i=1

(c(xi) − c(xi+1))x(Ti) + c(xm)x(Tm) ≤
m−1∑

i=1

(c(xi) − c(xi+1))x
′(Ti) + c(xm)x′(Tm) = cx′.

�
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Note that the only property we used was that x′ ≥ 0 and x(Ti) ≤ x′(Ti) = r(Ti). Hence the greedy
algorithm solves also the following linear program:

maximize cx
x(A) ≤ r(A), A ⊂ X;
x ≥ 0.
Hence we get the following corollary.

Corollary 3.1. Edmonds Matroid Polytope Theorem: For any matroid, the convex hull of the characteristic
vectors of the independent sets is described by the above system of linearinequalities.

Finally note that the greedy algorithm is polynomial if there is a polynomial algorithm to answer the
question ’Is J independent’. It is usual for matroids to be represented, for algorithmic purposes, by such an
independence-teting oracle.

4. Connectivity

Definition 4.1. A circuit is each minimal (w.r.t. inclusion) non-empty dependent set.

The circuits of graphic matroids are the circuits of the underlying graphs.

Theorem 9. A collection C 6= {∅} of sets is the set of the circuits of a matroid iff the following conditions
are satisfied.

C1 If C1, C2 are distinct circuits then C1 is not a subset of C2,
C2 If C1, C2 are distinct circuits and z ∈ C1 ∩ C2 then (C1 ∪ C2) − z contains a circuit.

Proof. First we show that a matroid satisfies the above properties. The first one is obvious. For the second
one we have r(C1 ∪ C2) ≤ r(C1) + r(C2) − r(C1 ∩ C2) = |C1| + |C2| − |C1 ∩ C2| − 2 = |C1 ∪ C2| − 2. Hence
(C1 ∪ C2) − z must be dependent. On the other hand we define S to be the set of all subsets which do not
contain an element of C and show that (X,S) is a matroid. Axioms I1,I2 are obvious and we show I3’: let
A ⊂ X and for a contradiction let J1, J2 be maximal subsets of A that belong to S and |J1| < |J2|, and
let |J1 ∩ J2| be as large as possible. Let x ∈ J1 − J2 and C unique circuit of J2 ∪ x. Necessarily there is
f ∈ C − J1 and J3 = (J2 ∪ x) − f belongs to S by uniqueness of C. J3 is closer to J1, a contradiction. �

Corollary 4.2. If A is independent then A ∪ {x} contains at most one circuit.

Proposition 4.3. A stronger statement than [C3] is true for matroids: If C1, C2 are distinct circuits,
z ∈ C1 ∩ C2, y ∈ C1 − C2 then (C1 ∪ C2) − z contains a circuit through y.

Theorem 10. Let A ⊂ X and x /∈ A. Then x ∈ σ(A) iff there is a circuit C with x ∈ C ⊂ A ∪ {x}.

Proof. If x ∈ σ(A) and B maximal independent in A then B ∪ x dependent and hence contains a circuit.
On the other hand let D be maximal independent set in A containing C − x. Then D is also maximal
independent in A ∪ x and hence x ∈ σ(A). �

Definition 4.4. A matroid is connected if for each x, y in X, there is a circuit containing both x, y.

Proposition 4.5. Graphic matroid M(G) is connected iff G is 2-connected.

Proposition 4.6. Let A ⊂ X. There is a circuit C such that C∩A 6= ∅ 6= C∩(X−A) iff r(A)+r(X−A) >
r(X).

Proof. If C is such a circuit and BA, BX−A maximal independent subsets in A,X −A containing C ∩A,C ∩
(X − A) then BA ∪ BX−A dependent since it contains a circuit, and σ(BA ∪ BX−A) = X by the choice of
BA, BX−A. On the other hand if BA, BX−A maximal independent subsets in A,X − A then the condition
r(A) + r(X − A) > r(X) implies that their union is dependent and hence contains the desired circuit. �

Definition 4.7. If M = (X,S) then M−A = M |(X−A) is the matroid on X−A such that I is independent
in M |(X − A) iff I ∈ S and I ⊂ X − A.

It is very simple to verify that M − A is matroid. This operation is called ’deletion of A’. Matroid M |A
is called ’restriction’ of M to A.
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Theorem 11. M connected iff for each A ⊂ X, r(A) + r(X − A) > r(X).

Proof. The condition is necessary by 4.6. On the other hand let x ∈ X and let A be the set of all y such that
x, y belong to a common circuit. For a contradiction assume that X 6= A and |X| is as small as possible.
Let C be a circuit intersecting both A,X − A. Let y ∈ C ∩ A and D be a circuit containing x, y. Note that
M − (X − (C ∪D)) satisfies the condition of the theorem. Hence if X 6= (C ∪D) we can use the minimality
of X to get a circuit containing x and any other element of (C ∪D), a contradiction. Hence X = (C ∪D)...

not finished �

5. Basic Operations

Definition 5.1. A truncation of M is matroid M ′ on X such that for some k, A is independent iff |A| < k
and A independent in M .

Again each truncation of a matroid is a matroid.

Definition 5.2. Let M1,M2 be matroids and X1 ∩X2 = ∅. M1 +M2 (direct sum of M1,M2) is the matroid
on X1 ∪ X2 such that A independent iff A ∩ X1 independent in M1 and A ∩ X2 independent in M2.

Definition 5.3. Let X be a disjoint union of Xi, i = 1, . . . , n and let Si = {A ⊂ Xi; |A| ≤ 1}. Then∑
i(Xi, Si) is called partition matroid.

Proposition 5.4. Define a relation x ≤ y iff x, y belong to the same circuit. Then this relation is an
equivalence on X.

Proof. Observe: If C,D are circuits with non-empty intersection then M restricted to C ∪ D is connected
(by Theorem 11). �

Definition 5.5. Let A be a class of ′ ≤′. Then M |A is called connectivity component of M .

Proposition 5.6. Each matroid is the sum of its connectivity components.

Proof. The following observation is simple and sufficient to prove the proposition: if r(A)+r(X−A) = r(X)
then for each Y ⊂ X, r(A) + r(Y − A) = r(Y ). �

Definition 5.7. Let T ⊂ X and let J be a maximal independent subset of X − T . M.T (contraction of M
on T ) is matroid on T defined so that A is independent iff A ∪ J independent in M .

Theorem 12. M.T is a matroid and its rank function r′ satisfies r′(A) = r(A ∪ T ) − r(T ). Hence M.T
doesnot depend on the choice of J .

Proof. Obviously M.T satisfies I1, I2. Let A ⊂ T and let J ′ be maximal subset of A that is independent in
M.T . Observe that J ∪ J ′ is maximal independent in A ∪ T , by the choices if J, J ′. �

6. Duality

Definition 6.1. Let M = (X,S) be a matroid. Its dual matroid M ∗ is (X,S∗) such that I ∈ S∗ iff
r(X − I) = r(X) (r is rank of M).

Proposition 6.2. M∗ is a matroid and its rank function r∗ satisfies r∗(A) = |A| − r(X) + r(X − A).

Proof. Again the only nontrivial property is I3’. Let A ⊂ X and let J maximal subset of A which belongs
to S∗. Let B be maximal independent (in M) subset of X −A and let B ′ be a basis of M containing B and
B′ ⊂ X − J . If there is x ∈ (A− J)−B′ then J was not maximal (a contradiction). Hence A− J ⊂ B ′ and
the formula for r∗ follows. �

The objects (bases, circuits, closed sets) of M ∗ are called dual objects or coobjects, e.g. dual bases or
cobases, cocircuits... Realise some simple facts: M ∗∗ = M . The dual bases are exactly complements of the
bases. The cocircuits are minimal (w.r.t. inclusion) sets intersecting each basis. The cocircuits are exactly
complements of hyperplanes (A hyperplane of M is a closed set whose rank is one less than r(X)).

Proposition 6.3. Let G be a graph. Then the cocircuits are exactly minimal (w.r.t. inclusion) edge cuts.
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Proof. Note that edge-cuts are exactly the sets of edges intersecting each basis of M(G). �

Definition 6.4. M is called minor of N if M is obtained from N by several deletions and contractions.

Let G be a graph. Minor of G is a graph obtained from G by deletions and contractions. Observe the
following: H minor G if and only if M(H) minor M(G).

The following series of propositions is proved by comparing the rank functions (remember that the rank
function uniquelly determines the matroid).

Proposition 6.5.

1. M connected iff M∗ connected,
2. (M.T )∗ = M∗|T ,
3. (M |T )∗ = M∗.T ,
4. M is minor of N iff M∗ is a minor of N∗,
5. M is minor of N iff M may be obtained from N by a restriction (contraction) followed by a con-

traction (restriction).

Matroid M is called cographic if it is izomorphic to M ∗(G) for some graph G. It is also called cocycle
matroid of G. U2

4 is not cographic.
Next we relate the duality in matroids with planar graphs. Recall the basic theorem of Kuratowski: G is

planar iff G has no minor izomorphic to K5 or K3,3.

Proposition 6.6. M(K5) and M(K3,3) are not cographic.

Proof. Assume M(K3,3) = M∗(G). Then |E(G)| = 9, and each edge cut of G has at least 4 edges. Hence
each degree of G is at least 4 and we get 4|V (G)| ≤ 18.... a contradiction.

For K5 go on analogously and use the fact that such a graph G has no circuit of length 3. �

The following is a basic theorem of Whitney.

Theorem 13. G planar iff its cycle matroid is cographic.

Proof. G planar then M(G) = M∗(G∗) where G∗ is the geometric dual of G. To show the other direction,
using the Kuratowsky theorem it suffices to observe that a minor of a cographic matroid is cographic (this
is dualising the statement that a minor of a graphic matroid is graphic), and use 6.6. �

Here is an equivalent formulation: Matroid M is both graphic and cographic iff M is a cycle matroid of
a planar graph.

In the end of this section let us introduce a linear algebra duality between edge-cuts and circuits of a
graph G = (V,E). Let D = (V,D(E)) be an arbitrary orientation of G. Define V × E(D) matrix A(D) by
av,e = 1 if v is the tail of e, av,e = −1 if v is the head of e, and av,e = 0 otherwise.

Theorem 14. A(D) represents M(G) over arbitrary field.

Proof. Note that a set of columns is linearly dependent iff its index set contains a circuit of G. �

Let A(G) = A(D) over GF [2]. Hence A(G) is the standard incidence matrix of G. A subset A of edges
is called even if (V,A) has each degree even (possibly zero).

Theorem 15.

1 Ker2(A(G)) = {x;A(G)x = 2(mod2)} (the kernel over GF [2]) is a vector space over GF [2]; it is the
set of the characteristic vectors of even subsets of edges.

2. Its basis may be constructed as follows: let T ⊂ E be a maximal acyclic set of edges in G. For e /∈ T
let Ce be the unique circuit in T ∪ {e}. Then the characterictic vectors of the sets Ce, e /∈ T form a
desired basis.

Proof. To observe the first part note that if x is the characteristic vector of A ⊂ E then [A(G)x]v equals
the number of edges of A incident with v. To show the second part first note that the constructed vectors
are obviously linearly independent. Let D be an even set of edges and let W be an even set of edges such
that its characteristic vectors equals the sum of Ce, e ∈ D − T . Then the symmetric difference of D,W is a
subset of T hence acyclic hence the empty set hence D = W . �
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Corollary 6.7. The number of even subsets of edges is 2E−V +k where k is the number of connectivity
components of G.

Theorem 16. The orthogonal complement of Ker2(A(G)) is the set of the characteristic vectors of edge-cuts
of G.

Proof. The orthogonal complement of the kernel is generated by the rows of A(G). The rows are the incidence
vectors of N(v), v ∈ V where N(v) = {e; v ∈ e}. Note that C is the characteristic vector of an edge-cut
defined by V ′ ⊂ V iff C is the sum of the rows of the vertices of V ′. �

7. Matroid intersection

Given two matroids on the same set X, the matroid intersection problem is to find a maximum cardinality
common independent set. Let us mention two special cases: maximum matching in bipartite graphs (here
the two matroids are partition matroids), and maximum branching in a digraph (branching is a forest in
which each node has in-degree at most one); here one of the matroids is the corresponding graphic matroid
and the second one is a partition matroid of the set-system of sets of the incoming arcs to the same vertex.

Theorem 17. For matroids S1, S2 on X, maximum |J | such that J ∈ S1 ∩ S2 equals minimum of r1(A) +
r2(X − A), over all A ⊂ X.

Proof. If J ∈ S1∩S2 then for each A ⊂ X, J ∩A ∈ S1 and J ∩ (X−A) ∈ S2. Hence |J | ≤ r1(A)+r2(X−A).
The second part is proved by induction on |X|. Let k equal minimum of r1(A) + r2(X − A) and let x be
such that {x} ∈ S1 ∩ S2. Note: if there is no such x then k = 0, and if we take A = {x; r1({x}) = 0 and we
are done. Let X ′ = X − x. If the minimum over A ⊂ X ′ of r1(A) + r2(X − A) equals k too then we are
done by the induction assumption. Let S ′

i denote Si contracted on X − x. If the minimum over A ⊂ X ′ of
r′1(A) + r′2(X − A) is at least k − 1 then induction gives a common independent set of S ′

1, S
′

2 of size k − 1
and adding x gives the desired common independent set of S1, S2. If none of these happen then there are
A,B ⊂ X ′ so that

r1(A) + r2(X
′ − A) ≤ k − 1

and
r1(B ∪ {x}) − 1 + r2((X

′ − B) ∪ {x}) − 1 ≤ k − 2.

Adding and applying submodularity we get

r1(A ∪ B ∪ {x}) + r1(A ∩ B) + r2(X − (A ∩ B)) + r2(X − (A ∪ B ∪ {x})) ≤ 2k − 1.

It follows that the sum of the middle two terms or the outer two terms is at most k− 1, a contradiction. �

Note that the above theorem gives a good characterization. A polynomial algorithm exists, even for the
weighted case, but we do not include it here.

8. Matroid union

Matroid union (sometimes called matroid partitioning)is closely related to matroid intersection, as you
will see. Let us start with a basic theorem of Edmonds:

Theorem 18. Let M ′ = (X ′, S′) be a matroid and f an arbitrary function from X ′ to X. Let S = {f(I); I ∈
S′}. Then (X,S) is a matroid with rank function

r(U) = minT⊂U (|U − T | + r′(f−1(T ))).

Proof. It suffices to show the formula for the rank function since obviously S is non-empty and hereditary.
Note that r(U) equals maximum size of a common independent set in M ′ and the partition matroid (X ′,W )
induced by the family (F−1(s); s ∈ U). �

Definition 8.1. If Mi = (Xi, Si), i = 1, . . . , k are matroids then their union is the set-system (∪iXi, {I1 ∪
I2 · · · ∪ Ik; Ii ∈ Si}.

Corollary 8.2. Matroid union (partitioning) theorem: The union of matroids is again a matroid, with its
rank function given by

r(U) = minT⊂U (|U − T | + r1(T ∩ X1) + . . . rk)T ∩ Xk)).
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Definition 8.3. Let G = (V,W,E) be a bipartite graph. For each x ∈ V define matroid Mx on the set of
neighbours of x so that a set is independent iff its cardinality is at most one. Then the union of Mx, x ∈ V
is called transversal matroid.

Proof. To see that it is a matroid, make Xi first disjoint and then use the previous theorem. For the rank
function also use the previous theorem. �

Corollary 8.4. Maximum size of a union of k independent sets of a matroid M is

minT⊂X(|X − T | + kr(U)).

Corollary 8.5. X can be covered by k independent sets if and only if for each U ⊂ X,

kr(U) ≥ |U |.

Proof. X can be covered by k independent sets if and only if there is a union of k independent sets of size
|X|.

�

Corollary 8.6. There are k disjoint bases if and only if for each U ⊂ X,

k(r(X) − r(U)) ≤ |X − U |.

Proof. There are k disjoint bases if and only if the maximum size of the union of k independent sets is kr(X).
�

Corollary 8.7. A finite subset X of a vector space can be covered by k linearly independent sets if and only
if for each U ⊂ X,

kr(U) ≥ |U |.

9. Representable matroids

Matroid is called binary if representable over GF [2]. It is called regular if representable over arbotrary
field. Let A be a matrix representing matroid M and let A′ be obtained from A by an elementary row
operation. Then again A′ represents M . A representation of matroid M is called standard w.r.t. a basis B
if it has form I|A, where I is the identity matrix of r(M) rows whose columns are idexed by the elements of
B. Since the elementary row operations do not change the matroid, we get that each representable matroid
has a standard representation w.r.t. an arbitrary basis.

Theorem 19. Let I|A be a standard representation of M . Then AT |I is a representation of M∗.

Proof. standard linear algebra
�

Corollary 9.1. If M representable over F and N is minor of M then N is representable over F .

Proof. Deletion clearly corresponds to deletion of the corresponding column in a representation. For con-
traction use the above theorem and the duality between contraction and deletion. �

Corollary 9.2. If N is not representable over F and N is minor of M then M is not representable over F .

Theorem 20. U4
2 is not binary. Hence binary matroids do not have U 4

2 as a minor.

Proof. It is easy to show that a standard representation cannot exist. �

Next we list some basic theorems of Tutte, characterising classes of matroids by a few forbidden ’pictures’.

Theorem 21. M binary if and only if M does not have U 4
2 as a minor.

Theorem 22. M regular if and only if M binary and does not have F7 or F ∗

7 as a minor.

Remember that F7 is the famous Fano matroid.

Theorem 23. M graphic if and only if M regular and does not have M(K5)
∗ or M(K3,3)

∗ as a minor.
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10. Submodular functions

Function f on subsets of X is submodular if f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U).

Theorem 24. Function f is submodular if and only if

f(U ∪ {s}) + f(U ∪ {t}) ≥ f(U) + f(U ∪ {s, t})

Proof. We show sufficiency by induction on |UδT |. If |UδT | ≤ 2 we have it from the assumption. If |UδT | ≥ 3
then we may assume w.l.o.g. that |T − U | ≥ 2; let t ∈ T − U . Then, by induction,

f(T ∪ U) − f(T ) ≤ f(T − {t} ∪ U) − f(T − {t}) ≤ f(U) − f(T ∩ U),

as |Tδ((T − {t}) ∪ U)| < |TδU |.
�

Define two plyhedra associated with a set function f :

• Polymatroid: Pf = {x ∈ RX ;x ≥ 0, x(U) ≤ f(U) for each U ⊂ X},
• Extended polymatroid: EPf = {x ∈ RX ;x(U) ≤ f(U) for each U ⊂ X}.

Edmonds showed that it is possible to optimize a linear function wT x over an (extended) polymatroid by
an extension of the greedy algorithm.

Moreover, there is a strongly polynomial algorithm to find the minimum value of a submodular function,
given by a value-giving oracle.
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