CHROMATIC POLYNOMIAL, Q-BINOMIAL COUNTING AND COLORED JONES
FUNCTION

MARTIN LOEBL

ABSTRACT. We define a g-chromatic function and g-bichromate on graphs and compare it with existing
graph functions. Then we study in more detail the class of general chordal graphs. This is partly motivated
by the graph izomorphism problem. Finally we relate the gq-chromatic function to the colored Jones function
of knots. This leads to a curious expression of the colored Jones function of a knot diagram K as a chro-
matic operator applied to a power series whose coefficients are linear combinations of long chord diagrams.
Chromatic operators are directly related to weight systems by the work of Chmutov, Duzhin, Lando and
Noble, Welsh.
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1. INTRODUCTION

The purpose of this paper has been a desire to recast the complicated combinatorial construction of
categorification of flows of [GL] in more common combinatorial terms.

A graph is a pair G = (V, E) where V is a finite set of vertices and FE is a set of unordered pairs of elements
of V, called edges. If e = xy is an edge then the vertices x,y are called end-vertices of e.

In this paper we study the following g¢-chromatic function on graphs:

Definition 1.1. Let G = (V, E) be a graph. Let V = {1, ..., k} and let V(G, n) denote the set of all vectors
(v1,...,vr) such that 0 < wv; <n —1 for each i < k and v; # v; whenever {i,j} is an edge of G. We let

Mq (G: TL) = Z qu v
(v1...v5)EV(G,n)
Note that My(G, 2)|q=1 is the classic chromatic polynomial of G.
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1.1. Example: g-chromatic function of a complete graph. We first recall some notation:

Forn > 0let (n), = q;_f denote a quantum integer. We let (n)!y =[]}, (é)q and for 0 < k < n we define

the quantum binomial coefficients by
(n) _ ()Y
k/, (B)lg(n —k)ly

A simple quantum binomial formula leads to a well-known formula for the summation of the products of
distinct powers.

Observation 1.
M (Kp,n) = k!(Z) g k=12,
q

Next we extend the definition of the g-chromatic function to g-bichromate.
sub.q
1.2. g-Bichromate. A graph G = (V, E) is connected if it has a path between any pair of vertices. If
a graph is not connected then its maximum connected subgraphs are called connectivity components. If
G = (V,E) is a graph and A C FE then let C(A) denote the set of the connectivity components of graph

(V,A) and ¢(A) = |C(A)|. If W € C(A) then let |W| denote the number of vertices of W. The following
function called bichromate is extensively studied in combinatorics. It is equivalent to the Tutte polynomial.

B(G,a,b) = > alpe@.
ACE

Theorem 1.

M,(G,z) = Z(—l)lAl H (Z)q|w|.

ACE WeC(A)

Proof. If A C E then let W(A,2) ={ve{0,...,2—1}V;if {i,j} € A then v; = v;}.
We use the principle of inclusion and exclusion (PIE): If Ay, ..., A4, are finite sets, and if we let N(4;;i €
J) = Ayj then
k=1 JE(:)
The next considerations connect the PIE with the geometric series formula.
My(Gz)= Y - Y g
v€e{0,...,z—1}V VEUeeEJe

where J.,e = {i,j} € E, denotes the set of all vectors satisfying v; = v;.

By PIE this equals
Z (_1)|A| Z PV — Z (_1)|A| Z $ivi =

ACE v€ENecaJe ACE vEW(A,n)
PG | B DR A D D | ROMEE
ACE WeC(A) z€{0,...,z2—1} ACE WeC(A)

The formula of Theorem 1 leads naturally to a definition of g-bichromate.

Definition 1.2. We let

B,(G,z,y) = Z !4l H (Yy)giwi-

ACE WeC(A)

Note that By=1(G,z,y) = B(G, z,y).
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1.3. Previous work. Let z1,z2,... be commuting indeterminates and let G = (V, E) be a graph. The
g-chromatic function restricted to non-negative integer y is the principal specialization of X, the symmetric
function generalisation of the chromatic polynomial (see [S1], [S2]). This is defined as follows:

Definition 1.3.

Xo =) I] #s»

f vev

where the sum ranges over all proper colorings of G by {1,2,...}.

Further we define symmetric function generalisation of the bad colouring polynomial (see [S1]):

Definition 1.4.
XBg(t,z1,...) = > 1+ )" [] 250,
I vEV
where the sum ranges over ALL colorings of G by {1,2,...} and b(f) denotes the number of monochromatic
edges of f.

Noble and Welsh define in [NW] the U-polynomial and show that it is equivalent to X Bg. Finally
I. Sarmiento proved in [Sa] that the polychromate defined by Brylawski ([Bry]) is equivalent to the U-
polynomial.

Definition 1.5.
Us(z,21...) = Z z(1s)(z — )18,
SCE(G)

where 7 = (n1 > ma > ...nyg) is a partition of |V| determined by the connectivity components of S,

x(T8) = T, - .- Ty, and r(S) = |V| = ¢(S).

The motivation for the work of Noble and Welsh is a series of papers by Chmutov, Duzhin and Lando
([CDL]). It turns out (see [NW]) that the U-polynomial evaluated at z = 0 and applied to the intersection
graphs of chord diagrams satisfies the 4T —relation of the weight systems. Hence the same is true for My (G, 2)
for each positive integer z since it is an evaluation of Ug(0, 27 ... ).

Observation 2. Let z be a positive integer. Then

My (G,2) = (-1)VUg(~1,2,...)

zi=(—1)(gF =D 4ot 1) -

On the other hand, it seems plausible that the g-bichromate determines the U-polynomial. If true, g-
bichromate provides a compact representation of the multivariate generalisations of the Tutte polynomial
mentioned above. This is also interesting since our Theorem 2 states that g-bichromate equals to the partition
function of the Potts model in a magmetic field.

It is not difficult to observe that the following conjecture about the partitions of n = |V| implies that the
g-bichromate determines the U-polynomial.

Let 7 = (ng > ng > ...ny) be a partition of n. We let ¢(7) = (¢(7,9))y=0,1,... be an infinite sequence of
polynomials in ¢ defined by

k
e(ry) = [[@ +q 0™+ +1).

=1

Conjecture 1. Only trivial rational linear combination of ¢(7)’s is identically zero.
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1.4. Main results. We study the g-bichromate with applications in statistical physics and knot theory in
mind. In section 2 we introduce a g-generalisation of the partition function of the Potts model. We prove in
Theorem 2 that g-bichromate equals to the partition function of the Potts model in a magmetic field. Such
an observation is important for computer simulations of the g-bichromate. Jones polynomial may be viewed
via the Kauffman state sum as an evaluation of the Potts partition function. This leads to a conjecture
whether our g-generalisation of the Jones polynomial is a knot invariant.

In section 3 we study g-chromatic function of chordal graphs. A graph is chordal if no cycle of length
bigger than three is induced. We are partly motivated by a seminal conjecture of Bollobas, Pebody and Ri-
ordan ([BR]): Is it true that Tutte polynomial distinguishes almost all graphs? Replacing Tutte polynomial
by g-bichromate should not be too rude generalization in view of Theorem 2. The izomorphism problem for
general graphs may be naturally embedded to the class of chordal graphs: if G = (V, E) is a graph then we
can construct a chordal graph ch(G) so that we subdivide each edge e by one new vertex v, and add all
the edges between vertices of V. Clearly two graphs G,G’ are izomorphic if and only if ch(G),ch(G’) are
izomorphic. R. Stanley conjectures in [S1] that the symmetric function generalisation of the chromatic poly-
nomial distinguishes all trees. We ask in Conjecture 2 whether g-bichromate distinguishes all chordal graphs.
An important consequence of Conjecture 2 is that the chordal graphs are edge and vertex reconstructable.
The edge-reconstructability has already been proved by B. D. Thatte [TH].

Finally in section 4 we derive in Theorems 9 and 10 new formulas for the colored Jones function. It may
be interesting to compare them with the Kontsevich integral expression for the colored Jones function. A
describtion of the theory of Vassiliev knot invariants and weight systems may be found in [BN]. The formulas
of Theorems 9, 10 may be briefly described as follows:

We start with R—matrix state sum of the Jones polynomial (see [Tur]) and apply it to the n-cabling of
a knot. We associate to each state s a triple (f(s),S(s),v(s)), where f(s) is a non-negative integer flow;
you can imagine that the flow lives on the reduced knot diagram K, eventhough it turns out to be more
convenient to define it on the arc graph of the reduced knot diagram.

Further S(s) is a set system on the set of ) f(s)(e) elements where the sum is over all ’jump-up’
transitions e of K (which are later associated to 'red edges’ of the arc graph). Each such set system is called
> f(s)-structure’. The number of f(s)-structures for a flow f(s) is given by a product of binomial coefficients.

Finally v(s) is a non-negative integer vector of length > _ f(s)(e), and for each i, 0 < v(s); < (n —1).

We then represent S(s) as a long chord diagram D(s) (by long chord diagram we mean a system of
intervals on a line with pairwise disjoint end-points) with }, f(s)(e) chords. Let G(s) be the intersection
graph of the chords of D(s), i.e. its vertices are the intervals and the edges are between pairs of intervals
with a non-empty intersection. Note that the difference from the intersection graph of a chord diagram is
that here we also have adges between pairs of intervals where one contains the other.

Let us denote by w(f, S) the sum of the state sum contributions of all states s with f(s) = f and S(s) = S.
We observe that w(f,S) may be written conveniently using a chromatic operator. For instance in Theorem
9 it is

w(f,8) = Zn,; () M (G(s),n),
where Mg®f is a ’defected’ g-chromatic function and Z,, #(t) is a Laurent polynomial in ¢ whose precise form
is given in Theorem 9.
This leads to a curious expression of the colored Jones function of a knot diagram K as a power series
whose coeflicients are equal to a chromatic operator applied to linear combinations of long chord diagrams
constructed from flows on reduced K.

1.5. Acknowledgement. I would like to thank to Stavros Garoufalidis and Iain Moffatt for many very
helpful comments. I would also like to thank to T.Y. Chow and R.P. Stanley for mentioning the references
[S1], [S2], and to M. Noy for mentioning the references [Sa] and [NW].
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2. Q-PorTs

sec.bich

It is well known that the bichromate counts several interesting things in statistical physics. Next we
discuss the Potts and Ising partition functions, and their g-extensions.

sub.p

2.1. Potts partition function.
def.P

Definition 2.1. Let G = (V, E) be a graph, k > 1 integer and J, a weight (coupling constant) associated

with edge e € E. The Potts model partition function is defined as

Jo) = ZeE(P’“)(S)7
s
where the sum is over all functions s from V to {1,...,k} and
D Tid(s(i), s(5))-
{i,j}€E
Following [FK, KF], we may write
J) = I A +wid(s@),s(i) =Y kD [ viss
s {i,j}€E ACE {i.j}eA
where v;; = e’ii — 1. The RHS is sometimes called multivariate Tutte polynomial; see [S] for recent survey.
If all J;; are the same we get an expression of the Potts partition function in the form of the bichromate:
Z H e0(s(1),5() — Z kXA (er —1)4l = B(G,e* — 1, k).
s {i,j}€E ACE
What happens if we replace B(G,e® — 1,k) by By(G,e* — 1,k)? It turns out that this introduces an

additional external field to the Potts model.

thm.qP

Theorem 2.

Z H (k) giwi H Uz’j:ZqE”EVS(”)eE(Pk)(S),

ACE WeC(A) {i.jteA
where v;; = e’ii — 1 as above.

Proof. Let us recall that W (A, k) denotes the set of all colourings s which are monochromatic on each edge
of A. We have

Je) — Zqzuev S(U) H (]. + 1)”6(8(7/), S(J))) =

{i,j}eE

Zq vev 8(v) Z H ’Uz] ))

ACE {i,j}eA
S5 S ] =
ACE seW (A, k) {i,j}€A
oI ®ewi I vis
ACE WeC(A) {i,j}€A
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2.2. Ising partition function. The Ising partition function Z(G) of a graph G is equivalent to P%(G):
2(G,Je) = Y ePHE),
s

where the sum is over all functions s from V to {1,—1} and
E(Z)(s)= > Jis(i)s(h)-
{i,j}€E
We immediately have
Z(G, J,) = e~ Xwarer 1 p2(G, 2J,).
Not surprisingly, g-bichromate again adds an external field to the Ising partition function.

Corollary 2.2.
Z(G,z) = e 1PPB(G, e - 1,2)

and
Zunev 5(v) o B(Z)(s) — q73|V|zef|E|qu(G7 2% _ 1,2).

2.3. Van der Waerden Theorem. A remarkable fact about the Ising partition function is a theorem of
Van der Waerden which expresses it using the generating function of even subgraphs. It is not hard to
formulate its g-generalisation. We use the following notation:

) e —e? et 4e? _ sinh(x)
sinh(z) = T,cosh(w) = 5 ,th(z) = cosh(z)”

Theorem 3.
Z uneV S(v)ez{i,j}eE Jijs(i)s(4) —

I coshr) Y TI thia—a )" @ (g+q)V=o,
{i.5}€E ACE {i,j}cA
where o(E) denotes the number of vertices of G of an odd degree.

The proof uses a lemma:

Lemma 2.3. Let G = (V, E) be a graph. Then

D geeve @ T s(i)s(i) = (g— g7 )P g+ ¢ ")VImo®),
s {i.j}eE

where the first sum is over all functions s from V to {—1,1} and o(E) denotes the number of vertices of G

of an odd degree.

Proof. (of Lemma 2.3)
First note that if E is a cycle and s arbitrary then []; . s(¢)s(j) = 1. Hence, we can delete from G

any cycle without changing the LHS
Yo T s(@)s().
s

{i,j}eE
This reduces the proof to the case that E is acyclic. If E is a path, then it follows from the observation above
that for s arbitrary, [[;; g $(1)s(j) = 1 if and only if s is constant on the end-vertices of E. Hence, we
can delete from E any maximal path and replace it by the edge between its end-vertices, without changing
the LHS. Hence it suffices to prove the proposition for the case that each component of G contains at most

one edge. This is however simply true.
O
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Proof. (of Theorem 3)
Using the identity

e?D3G)) = cosh(x) + s(i)s(j)sinh(z),

we have:
Z unev s(v) E{i,j}eE Jijs(i)s(d) —

Zq vev“’) H [cosh(J;;) + s(i)s(j)sinh(Js;)] =

{i,j}eE

H cosh(Ji; ZquE"S(”) H [1+ s(0)s(5)th(Ji)] =

{i,j}eE {i,j}e€E

H cosh(J;; Zqzvevs(”) Z H Jij) =

{i,j}eE ACE {i,j}€A

I cosh(7iy) > [ th(Jy)U(A)

{i,j}€E ACE {i,j}eA

A) =) gxeere® T s(i)s(h)-
s {i,j}eA
Theorem now follows from next Lemma 2.3. O

where

2.4. Kauffman state sum of the Jones polynomial. Following [VN] we show how the Jones polynomial
may be derived from the Potts partition function. Let G = (V, E) be a planar directed graph which is a
directed knot diagram; hence each vertex (crossing) v has a ’directed’ sign sign(v) associated with it, and
two arcs entering and leaving it.

Given G, we construct its medial graph M (G) = (V(M(G)), E(M(G))) as follows: first color the faces of
G white and black so that neighbouring faces receive a different color. Let b(v) be the 'undirected’ sign of
crossing v, induced by this coloring (see e.g. [W] for the definition of sign(v), b(v)).

Assume the outer face is white; then let V(M (G)) be the set of the black faces, and two vertices are joined
by an edge if the corresponding faces share a crossing. Note that M (G)) is again a planar graph. For edge
e of M(G) let b(e) be the 'undirected’ sign of the crossing shared by the end-vertices of e.

Let us now describe what will a state be: we can ’split’ each vertex v of G so that the white faces incident
with v are joined into one face and the black faces are disconnected, or vice versa. Let |V| = n. There are
2™ ways to split all the vertices of G: the ways are called states. After performing all the splittings of a state
s, we are left with a set of disjoint non-self-intersecting cycles in the plane; let S(s) denote their number.
For vertex v € V let €,(s) = 1 if s splits v so that the black faces are joined (i.e. the corresponding edge of
the medial graph is not cut) and let €,(s) = —1 otherwise. The following statement consists of Theorems
2.6 and 2.8 by Kauffman (see [K1]).

Theorem 4. Let G = (V, E) be an oriented knot diagram. The following function fx(G) is a knot invariant:
fK(G,A) — (_A)73W(G) Z(_AZ _ Aiz)s(s)flAEvGV b(v)eu(s)7

8

where W(G) = 3, cy sign(v). Moreover the Jones polynomial equals
J(G,A™") = fk(G, A).

Each state s determines a subset of edges E(s) of M(G), which are not cut by the splittings of s, and it
is easy to see that this gives a natural bijection between the set of states and the subsets of edges of M(G).

Moreover for each state s
Z b(v)ey(s) = — Z b(e) + 2 Z b(e)

veV ecE(M(@)) e€E(s)
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Proposition 2.4.
S(s) = 2¢(E(s)) + |E(s)| — [V(M(G))],
where c(E(s)) denotes the number of connectivity components of (V(M(QG)), E(s)).

Proof. Note that S(s) = f(E(s))+c(E(s))—1, where f(E(s)) denotes the number of faces of (V (M (G)), E(s)).
Hence the formula follows from the Euler formula for the planar graphs. d

Corollary 2.5.
fx(G,A) = (_A)—3W(G)(_A2 _ A—2)—|V(M(G))\—1A— 2Yeerm(ay be)

Z(_AZ _ A—Q)ZC(E(S)) H (_A2 _ A_2)A2b(e).

s e€E(s)

This obviously provides an expression for the Jones polynomial of each knot-diagram with the same
undirected sign of each crossing (i.e. each alternating diagram) as a bichromate.

Question 1. Is
Z H (—A2 _ A72)A2b(e) H ((—A2 _ A72)2)q|W|
s e€E(s) WeC(E(s))
times an appropriate constant also a knot invariant?

3. Q-CHROMATIC FUNCTION OF CHORDAL GRAPHS

Next we study chordal graphs, i.e. graphs such that each cycle of length at least four has a chord. The
main result is Theorem 5 which gives a formula for )~ , M,(G, z) where G ranges over all chordal graphs of
a given ’shape’. This may be viewed as a partition function of a model with states given by chordal graphs
G with the same ’shape’ and energy M,(G, z).

Our motivation here partly comes from a conjecture of Bollobas, Pebody and Riordan ([BR]) which asks
whether almost all graphs are determined by the Tutte polynomial, and by a conjecture of Stanley ([S1])
which asks whether X, the symmetric function generalisation of the chromatic polynomial, determines
all trees. If the following conjecture is true, then g-bichromate provides a graph function close to Tutte
polynomial (by Theorem 2, g-bichromate is the partition function of Potts model in magnetic field), which,
with simple graph preprocessing, tells non-izomorphic graphs apart.

Conjecture 2. Is it true that g-bichromate distinguishes all chordal graphs?

Let G = (V, E) be a chordal graph. We fix a linear ordering x1, ..., 2y of the vertices of V' so that for each
i, vertex x; is a simplicial vertex, i.e. its neighbourhood is complete, in the subgraph induced by vertices
Z1,...,2;; let m(i) denote the number of vertices in that neighbourhood of z;. It is well-known that the
existence of such an order of vertices characterises the chordal graphs.

A tree is an acyclic connected graph. We consider trees rooted, i.e. a vertex r is distinguished in each
tree. Hence we will denote trees by a triple T'= (V, E,r). For each vertex x # r of T there is unique path
P(z) in T connecteing z to r. The neighbour of z on P(z) is called predecessor of x and denoted by p(x).
We say that a subtree of a rooted tree starts at its unique nearest vertex to the root.

Another well known characterisation says that a graph is chordal if and only if it is an intersection graph
of subtrees of a tree. Let G = (V, E) be a chordal graph and 1, ...,z the specified ordering of its vertices.
Let T = (W, F) be the tree whose subtrees 'represent’ G, i.e. there are subtrees T,,v € V of T so that
T, NT, # 0 if and only if uv is an edge of G. We can choose a vertex r € W arbitrarily as a root of T and
define sets A,,, By, w € W as follows: A,, = {v; T, starts at w} and B,, = {v; T, contains but does not start
at w}. Then these have the following properties:

1. the A, ’s are disjoint and V = U; A;.
2. By C Uyrep(w)Aw - In particular B, = 0.
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3. if 4,7, are different vertices of T such that ¢ € P(j),j' € P(j),i € P(j') and ¢ € B; N A; then
x € By

4. 1f:c€A,,y€AJ,z;£J and z < y then i ¢ P(j).

5. e € E if and only if e C A, U B,, for some w.

This leads to the following definition of a tree structure.

def.str

Definition 3.1. Let T = (W, F) be a tree, V = {z1,...2,} be an ordered set and sets A(w), B(w) :
w € W satisfy the above properties 1.,2.,3.,4. Moreover let |B,| = by. Then (B, : w € W) is called a
(T,V,(Ap, by : w € W))— tree structure (tree structre for short). The set of all structures is denoted by
S(T,V,(Ay, by : w € W)).

What distinguishes tree structures are the sets B,,. B, is an arbitrary subset of A
elements. Hence we get the following observation.

prop .numstr

)UB )Ofbw

p(w p(w

Proposition 3.2. The number of tree structures is H#wew (ap(”)b+bp(”)).

w
rem.s

Remark 3.3. On the other hand, each tree structure on T' = (W, F,r),V = {1,...,k} determines a set
Ty,1 <wv < k of subtrees of T so that T,, NT, # 0 if and only if u,v € A, U B,, for some w € W, by reversing
the construction of the tree structure described above.

def.strdef

Definition 3.4. Let S be a tree structure, v € {0,...,2 — 1}V and z € A,, for some w € W.
e We denote by G(S) the unique chordal graph with tree structure S (see the remark above).
e We let m(S, z) be the number of y € A, U By, such that y < z. Note that m(S,z) equals b, plus
the number of elements of A,, that are smaller than z. Hence m(S,z) does not depend on S and we
let m(S,z) = m(z).
e Welet V(S,2) ={ve{0,...,2 —1}V; if {z,y} C A, U B,, for some w then v, # v,}.
o We let def(S,v, ) equal to the number of y € A,, U B, such that y < 2 and v, < v,.

thm. str20

Theorem 5.

| Aw |
H H by +_7 H (ap(W)b':)bP(w)) H(z—m(x))tr

q-1
SEE(T,V,(Aw,bw:wEW)) weW j r#EweW z€V

sub. thm2

3.1. Proof of theorem 5. We first deduce a formula for a modified g-chromatic function. Recall the
definition of a tree structure S for a chordal graph G, and note that V(S,2) = V(G, z).
prop.str2
Proposition 3.5. Let G be a chordal graph and S its tree structure. Then
k

Z qz’ v; —def(S,v,i) — H(z _ m(z))q
v=(v1...v5)EV(G,2) i=1
Proof. The basis for the calculation is the following Claim.
Claim. Fix numbers v, ...,v;_1 between 0 and z — 1 so that no edge of G receives two equal numbers.

Then
°
tvk—def(v,k) —A-B+ C,
v v=(v1,...,05)EV(G,2)
k —i )
where A =3, vg ™ B=Y10 7 and C = Y, yene) t-

¢ A+C =Yy, tFand A= B +C =172
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Proof of Claim. Note that the second part simply follows from the first one.
Let vp < -++ < vy, be a reordering of {vi;{i,k} € E(G)}. We may write vj = 2z —i1,...,V,4) =
2 —lm(k)s 1 < im(k) < --+ <i1. The LHS becomes

( z tvk) _tZ—i1+1 _ ”‘_tz—iz—l _tz—i2+1 _ “‘—tz_im(k)_l _tz_im(lc)"rl _ ”‘_tz—l +tz—z'1 RS
vEvEV(G,2)

(7t —2 + 721 N tz—m(k)—l‘
This equals to the RHS of the equality we wanted to show. The Proposition simply follows from the Claim.
O

The proof of Proposition 3.5 yields the following

prop.str.10

Proposition 3.6. Let S be a structure. Then

Z H qvm—def(S,v,w) — H (Z _ m(:c))q

veV(S,z) z€V z€eV

Hence

Z H q'um —def(S,v,z)

vEV(S,z) TEV

is invariant for S € X(T,V, (Ay, by : w € W)). Note that the same is not true for the non-defected version:
path of three edges and star of three edges, with their tree being the path, provide a contraexample.

Proof. (of Theorem 5)

Z Z H qvm—def(S,v,z) — Z Z H qu—def(S,v,w) —

SEX(T,V,(Aw,bw:weW)) veV(S,z) TEV S=(Bw:weW)veV(S,z) z€V

v —def(S,v,z) ve —def(S,v,2)] —
> 2 I« [ X > II « )

V2;ZE Ay By;p(w)=r TEA, (Bw:p(w)#7) vo;2¢ A, wEV(S,2) zEV - A,

S 3 A I 0 Y > I q=derse,

v(r)! By;p(w)=r TEA, (Buw:p(w)#£r) va;2¢ A wEV(S,2) zEV A

where the first sum is over all vectors v(r)" = (v(r),;z € A;) so that v(r)!, > v(r), for z < y. In the above
equality we used

Y gHGarisiai<ai} = ()1,
K

This further equals

Z (|AT|)!q—1 Z H q'v(T);[ Z Z H qvmfdef(S,v,z)] —

Bw;p(w):T U(T)’ weA"‘ (Bw:p(w);ﬁ"') Uz;$¢Ar7v€V(Saz) -Z'EV—A,.

AT !q—l v Ve —de v,T
DD I | R D SUND DI | (e

By;p(w)=r Vg ;2EA, TEA, (Bw:p(w)#7) vo;2¢ A weV(S,2) TEV A,
[ Auw|
(buw +J
> I1 [T %t v > e
SEX(T,V,(Aw buwiweW)) weW j=1 VeV (S,z) 2EV

Theorem now follows from Proposition 3.6. O
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4. A MOTIVATION FROM THE QUANTUM KNOT THEORY: COLORED JONES FUNCTION

The motivation to the previous discussion comes from a study of the colored Jones function .J,, which is a
joint work with Stavros Garoufalidis in [GL]. Colored Jones function is the quantum group invariant of knots
that corresponds to the (n + 1)-dimensional irreducible representation of slz. In [GL] a non-commutative
formula for the colored Jones function is presented.

Fix a generic planar projection K of an oriented knot with r crossings. Let ¢; for i = 1,...,r denote an
ordering of the crossings of X'. Then K consists of r arcs a;, which we label so that each arc a; ends at the
crossing i. We will single out a specific arc of K which we decorate by x. Without loss of generality, we may
assume that the crossings of a knot appear in increasing order, when we walk in the direction of the knot,
and that the last arc is decorated by x. We denote by K the long knot obtained by removing x from X.

Given K, we define a weighted directed graph Gx. In a directed graph, each edge e is directed, i.e. has
its starting vertex s(e) and its terminal vertex t(e).

def .arcgraph

def.flow

Definition 4.1. The arc-graph Gx has r vertices 1,...,r, r blue directed edges (v,v + 1) (v taken modulo
r) and r red directed edges (u,v), where at the crossing u the arc that crosses over is labeled by a,.

The vertices of G are equipped with a sign, where sign(v) is the sign of the corresponding crossing v of
K, and the edges of Gk are equipped with a weight 3, where the weight of the blue edge (v,v+1) is ¢—sien(v)
and the weight of the red edge (u,v) is 1 — ¢t &%) Here t is a variable.

Finally, Gk denotes the digraph obtained by deleting vertex r from Gi.

It is clear from the definition that from every vertex of G, the blue outdegree is 1, the red outdegree is
1, and the blue indegree is 1. It is also clear that Gx has a Hamiltonian cycle that consists of all the blue
edges. We denote by e? (e7) the blue (red) edge leaving vertez i.

Example 4.2. For the figure 8 knot we have:

*

+4

TIts arc-graph G with the ordering and signs of its vertices is given by

-3 +2

+4 -1

where the blue edges are the ones with circles on them.

Definition 4.3. A flow f on a digraph G is a function f : Edges(G) — N of the edges of G that satisfies
the (Kirkhoff) conservation law
Yo fe= Y fe

e begins at v eends atv

at all vertices v of G. Let f(v) denote this quantity and let F(G) denote the set of flows of a digraph G.
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If B is a weight function on the set of edges of G and f is a flow on G, then the weight 5(f) of f is given
by B(f) =1, B(e)’), where B(e) is the weight of edge e.

In order to express the Jones polynomial as a function of the reduced arc graph G, we need to add the
following two structures, which may be read off from the knot diagram.

e We associate in a standard way a rotation rot(e) to each edge e of Gk; the exact definition is not
relevant here; it may be found in [GL].

o We linearly order the set of edges of Gk terminating at vertex v € {1,...,r — 1} as follows: if we
travel along the arc of K corresponding to vertex v, we 'see’ one by one the arcs corresponding to
the starting vertices of red edges entering v: this gives the linear order of the red edges entering v.
Finally there is at most one blue edge entering v, and we make it smaller than all the red edges
entering v. The linear order will be denoted by <, and let P(e) denote the set of predecessors of an
edge e in the corresponding linear order.

With these decorations we define

rot(f) =D flerot(e),  exc(f) =) sign()f(e)( Y fe),  8(f) = exc(f) —rot(f).
ecE v ecP(en)

Let S(G) denote the set of all admissible subgraphs C' of G such that each component of C is a directed
cycle. Note that S(G) may be identified with a finite subset of 7(G) since the characteristic function of C
is a flow.

Let K be a knot projection. The writhe of K, w(K), is the sum of the signs of the crossings of K, and
rot(K) is the rotation number of K, defined as follows: smoothen all crossings of K, and consider the oriented
circles that appear; one of them is special, marked by x. The number of circles different from the special one
whose orientation agrees with the special one, minus the number of circles whose orientation is opposite to
the special one is defined to be rot(K). We further let §(K,n) = 1/2(n?w(K)+nrot(K)), and §(K) = §(K, 1).

The following theorem appears in [LW] (see also [GL]).

thm.arcjones

Theorem 6.

JI) () =17 N~ #98().

c€S(Gk)

The colored Jones function equals to the Jones polynomial of a proper ’cabling’ of the knot diagram.
Using graph theory, this may be described as follows.

def.cabled2
Definition 4.4. Fix a red-blue digraph G. Let G‘™ denote the digraph with vertices af fork=1,...,r and

j=1,...,n. G™ contains blue directed edges (aé-,aé“) with weight t~<" (where € € {—1,+1} is the sign

of the crossing l) for each I = 1,...,7 (I + 1 considered modulo 7) and j = 1,...,n. Moreover, if (ax,a;) is
a red directed edge of G, then G(™ contains red edges (af,al) for all i,j = 1,...n with weight tJ=) (1 —¢t)

resp. t~ ("9 (1 — ¢~ 1), if the sign of the i crossing is —1 resp. +1.

We will denote the set of admissible even subgraphs of G(™ by S,,(G). The following theorem appears in
[GL] as Theorem 10.

thm.frst

Theorem 7. For every knot diagram K and every n € N, we have
Tn(K)(t) = 0Fm  $S™ 0 295(c).
c€S,(GK)

Recall that for an integer m, we denote by

q—1
the quantum integer m. This defines the quantum factorial and the quantum binomial coefficients by

(m)g! = (1)4(2)g. - (m), (m) _ (m)!

n (n)gl(m —n),!



thm.main

def.cd
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for natural numbers m,n with n < m. We also define

mult,(f) = ]| ( f((e?)) ey

v

One of the key propositions of [GL] (Theorem 7) is the following expression of the colored Jones function
(as a deformed zeta function of the reduced arc graph).

Theorem 8. For oriented knot diagram K we have:

f(e)—1

T = 8D S e, (PO [ esem@n T ] (1 - e S, SO,

FEF(GK) veEVK ered;t(e)=v j=0

The proof of Theorem 8 is based on a rather complicated combinatorial construction. In this paper we
present a curious interpretation of this construction as a chromatic operator applied to a power series whose
coeflicients are linear combinations of chord diagrams.

Definition 4.5. Given reduced knot diagram K and a flow f on Gk, we define:

def.intersection

re.qdet

A collection I4,..., I, of intervals on 1,...,r — 1 is relevant (for K, f) if for each 1 < v <r — 1, the
number of intervals starting at v equals ) f(e);e red edge entering v, and the number of intervals
terminating at v equals f(el). We fix an order on the intervals of the relevant collection starting in
the same vertex v, according to <.

Each relevant collection of intervals defines a set of long chord diagrams:

For each 1 < v < r — 1 we introduce vertices vy,... ,’Uo(v),’Ul, ..., v%") We assume that all the
new vertices appear in the introduced order along a line. For each interval we introduce a chord on
this line. The chords corresponding to intervals starting at v will start at vy, ..., v,(), in agreement
with the fixed ordering of the intervals. The chords corresponding to intervals terminating at v will
terminate at v!,...,v"®) in an arbitrary order. If D is a resulting long chord diagram, then we
denote by deg(D) the number of long chord diagrams obtained from the same relevant collection of
intervals as D. We assume that the chords (intervals) in a long chord diagram are ordered by their
starting vertices.

We denote by A(K, f) the set of the long chord diagrams obtained in this way from a relevant
collection of intervals for K, f.

Definition 4.6. Let D be a long chord diagram. We define intersection graph of its chords G(D) =
(D, E(D)) so that the chords of D form the set of vertices of G(D), and there is an edge between two vertices

if the corresponding chords intersect or one contains the other.
def .chromdef

Definition 4.7. Let D be a long chord diagram, ¢ € D and v € V(G(D),n).

We denote by P(D,c) the set of chords ¢ € D which encircle the starting vertex of ¢,

defy (D, v, ¢) equals the number of chords ¢' of P(D,¢) satisfying ve < v,

We denote by Q(D,c) the set of chords ¢’ € D which encircle the terminal vertex z of ¢ and at least
one starting vertex of a chord after z,

defa(D, v, ¢) equals the number of chords ¢ of Q(D, ¢) satisfying ve < v,

M;ief (G(D), n) — Z H tvcfdefl(D,v,c)fdefg(D,v,c) .
veV(G(D),n) ceD

Remark 4.8. We remark that def; here is equivalent to the def of a tree structure, see Definition 3.4. It is
very close to the definition of sign for quantum determinants, first introduced by L. Fadeev, N. Reshetikhin
and L. Takhtadjian in [FRT]. Indeed, Theorem 8 is used in [GL] to give a non-commutative formula for the
colored Jones function.

The following two theorems belong to the main esults of the paper.
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thm.ma2

Theorem 9.
Tn(K) (@) =5 3" Z,5(8) Y deg(D) ' M{N(G(D),n),
feF(Gk) DeA(K,f)
where Zy, ¢(t) is a Laurent polynomial in t with integer coefficients and parameters f and n:

Zn,j(t) = t5(f)t"(fb_—fb+)(1 -t (1— t—l)fr+ H ¢~ (n=1=[P(f.e)]) H (e f(ed)
ecFt v;sign(v)=+

Moreover for each n only flows bounded by n may contribute a non-zero to the RHS.
The terms f, , f,f, 7, T FF are defined in 4.1 and the term P(f,e) is defined in Definition 4.11.

thm.ma3

Theorem 10.
Tu(E)(t) =05 N W, (1) ) deg(D) ' My(G(D),n),
FEF(GK) DeA(K,f)
where W, #(t) is a Laurent polynomial in t with integer coefficients and parameters f and n:

W, (1) = PO —FD (1 — )F7 (1 — ¢~ 1) = (n-1EF H HP(e)) H $1(eD)F(e)
ecF;t v;sign(v)=+

ﬁ[<f(v)) (f(v)> VT e i
sub.prbla v=1 f(eg) ! f(eg) j=F(eb) f( g) +
4.1. Categorification of flows: proof of Theorem 9. Recall Theorem 7. Each ¢ € S,,(Gk) projects to
a flow on Gk. An analysis of the contribution of each flow is obtained via categorification of the flows and
their multiplicities in [GL]. Next we briefly describe this.
Let f be a flow on Gk. Let F (resp. F;) denote the multiset that contains each edge (resp. red edge) e
of Gg with multiplicity f(e).
Let F;F denote the set of all red edges of F' which leave a vertex with + sign. Let f;F = |F}|. Analogously
we define F~,....
If e is an edge of Gk then we let F(e) C F be the set of all copies of e in F, and fix an arbitrary total
order on each F(e).
def.conf

Definition 4.9. Fix a flow f on Gg. A flow configuration of f is a sequence C' = (Cy,...,Cr_2) so that Cy
is a subset of {e € F,;e terminates in vertex 1} of f(e}) elements and for each 2 <i <r — 1, C; is a subset
of C;—1 U {e € F,;e terminates in vertex i} of f(e?) elements.

Let us denote by C(f) the set of all flow configurations of f.

def . AConf

Definition 4.10. Let f be a flow on Gk, n > 0 a natural number, C € C(f), and v € {0,...,n — 1}, We
say that a pair P = (C,v), is admissible if, for every two edges e,e’ € F, such that v, = ve and e ends in
vertex ¢ and e’ ends in vertex j and j > i, there exists an [, ¢ <[ < j such that e & C;. We denote the set of
admissible flow configurations by AC(f).

def.prd

Definition 4.11. Let ¢’ € F(e). We define set P(f,e') as follows: if ¢] € F(ey) then e} € P(f,¢') if

e1 € P(e) in Gk or e = e; and €] < €' in our fixed total order of F(e).
def.okk

Definition 4.12. Let e € F,.. We define

o defi(C,v,e) = |{e' € P(f,e) :ve < v},
o defy(C,v,e) = [{e' € Cy(e) : ver < ve}|, where d(e) is the biggest index such that d(e) > t(e) and
€ ¢ Cd(e)-



def.Ifn

Definition 4.13. If v € {0,...,n— 1} then we define f(v) = 3
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ccr- Ve and we define f;F(v) analogously.

The following formulas appear in paragraph 7.3 of [GL].

thm.catmm
Theorem 11. .
T (K)(t) = t0Km) Z té(f)tn(f;—f;>(1 _f - t_l)f;
fEF(GK)
H $—(n=1=|P(f.e)]) H NICSHCS! Z H fve—def1(C,v,e)—def2(Cu,e)
ecF;F i:sign()=+ (C,w)EAC(f,n) eEF,

Tn(K)(t) = t7Em) Z PO =1 (1 — p)F (1 = ¢ 1) (= 1fF

FEF(GK)
e e")f(eb d f’U
[ervo 1 e (M) Ta-irwon
ecFt isign(i)=+ v=1 v/t o,

From flow structures to relevant collections of intervals. The formula of Theorem 11 may be
interpreted in terms of chordal graphs. The basic observation is that each flow structure is a (T, V, (A, by :
w € W))— tree structure where T' is a path with vertices 1,...,r—1rooted at 1, By 11 = Cy, and 4,, = {e €
F.; e terminates in vertex w}. Now we recall that each chordal graph is the intersection graph of subtrees
of a tree, and this representation may be obtained from its tree structure (see section 3). However, if a
tree structure of a graph is a path, then the graph is the intersection graph of subpaths (intervals) of the
path. This directly leads to the relevant collection of intervals. Hence the first part of Theorem 11 implies
Theorem 9 and the second part of Theorem 11 together with Theorem 5 implies Theorem 10.
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