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Abstract

We address the following question: When a randomly chosen regular bipartite multi–
graph is drawn in the plane in the “standard way”, what is the distribution of its maximum
size planar matching (set of non–crossing disjoint edges) and maximum size planar sub-
graph (set of non–crossing edges which may share endpoints)? The problem is a general-
ization of the Longest Increasing Sequence (LIS) problem (also called Ulam’s problem).
We present combinatorial identities which relate the number of r-regular bipartite multi–
graphs with maximum planar matching (maximum planar subgraph) of at most d edges
to a signed sum of restricted lattice walks in Zd , and to the number of pairs of standard
Young tableaux of the same shape and with a “descend–type” property. Our results are ob-
tained via generalizations of two combinatorial proofs through which Gessel’s identity can
be obtained (an identity that is crucial in the derivation of a bivariate generating function
associated to the distribution of LISs, and key to the analytic attack on Ulam’s problem).

Keywords: Gessel’s identity, longest increasing sequence, random bipartite graphs, lattice
walks.

1 Introduction
Let U and V henceforth denote two disjoint totally ordered sets (both ordered relations will
be referred to by �). Typically, we will consider the case where |U |= |V |= n and denote the
elements of U and V by u1,u2, . . . ,un and v1,v2, . . . ,vn respectively. Henceforth, we will always
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assume that the latter enumeration respects the ordered relation in U or V , i.e., u1 � u2 � . . .�
un and v1 � v2 � . . .� vn.

Let G = (U,V ;E) denote a bipartite multi–graph with color classes U and V . Two distinct
edges uv and u′v′ of G are said to be noncrossing if u and u′ are in the same order as v and v′;
in other words, if u ≺ u′ and v ≺ v′ or u′ ≺ u and v′ ≺ v. A matching of G is called planar if
every distinct pair of its edges is noncrossing. We let L(G) denote the number of edges of a
maximum size (largest) planar matching in G (note that L(G) depends on the graph G and on
the ordering of its color classes).

For the sake of simplicity we will concentrate solely in the case where |E| = rn and G is
r–regular.

When r = 1, an r–regular multi–graph with color classes U and V uniquely determines a
permutation. A planar matching corresponds thus to an increasing sequence of the permutation,
where an increasing sequence of length L of a permutation π of {1, . . . ,n} is a sequence 1≤ i1 <
i2 < .. . < iL ≤ n such that π(i1) < π(i2) < .. . < π(iL). The Longest Increasing Sequence (LIS)
problem concerns the determination of the asymptotic, on n, behavior of the LIS for a randomly
and uniformly chosen permutation π. The LIS problem is also referred to as “Ulam’s problem”
(e.g., in [Kin73, BDJ99, Oko00]). Ulam is often credited for raising it in [Ula61] where he
mentions (without reference) a “well–known theorem” asserting that given n2 + 1 integers in
any order, it is always possible to find among them a monotone subsequence of n + 1 (the
theorem is due to Erdős and Szekeres [ES35]). Monte Carlo simulations are reported in [BB67],
where it is observed that over the range n≤ 100, the limit of the LIS of n2 +1 randomly chosen
elements, when normalized by n, approaches 2. Hammersley [Ham72] gave a rigorous proof
of the existence of the limit and conjectured it was equal to 2. Later, Logan and Shepp [LS77],
based on a result by Schensted [Sch61], proved that γ ≥ 2; finally, Vershik and Kerov [VK77]
obtained that γ≤ 2. In a major recent breakthrough due to Baik, Deift, Johansson [BDJ99] the
asymptotic distribution of the LIS has been determined. For a detailed account of these results,
history and related work see the surveys of Aldous and Diaconis [AD99] and Stanley [Sta02].

From the previous discussion, it follows that one way of generalizing Ulam’s problem is to
study the distribution of the size of the largest planar matching in randomly chosen r–regular
bipartite multi–graphs (for a different generalization see [Ste77, BW88]). This line of research,
originating in [KL02], turns out to be relevant for the study of several other issues like the
Longest Common Subsequence problem (see [KLM05]), interacting particle systems [Sep77],
digital boiling [GTW01], and is directly related to topics such as percolation theory [Ale94]
and random matrix theory [Joh99].

1.1 Main Results
We establish combinatorial identities which express g(n;d) — the number of r-regular bipartite
multi–graphs with planar matchings with at most d edges — in terms of:

• The number of pairs of standard Young tableaux of the same shape and with a “descend-
type” property (Theorem 5).

• A signed sum of restricted lattice walks in Zd (Theorem 1).

Our arguments can be extended in order to characterize the distribution of the largest size of
planar subgraphs of randomly chosen r–regular bipartite multi–graphs (Theorem 4).
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1.2 Models of Random Graphs: From k-regular Multi–graphs to Permu-
tations

Most work on random regular graphs is based on the so called random configuration model
of Bender and Canfield and Bollobás [Bol85, Ch. II, § 4]. Below we follow this approach,
but first we need to adapt the configuration model to the bipartite graph scenario. Given U ,
V , n and r as above, let U = U × [r] and V = V × [r]. An r–configuration of U and V is a
one–to–one pairing of U and V . These rn pairs are called edges of the configuration. Hence, a
configuration can be considered a graph, specifically, a perfect matching with color classes U
and V . Moreover, viewing a configuration as such bipartite graph enables us to speak also about
its planar matchings (here the total ordering on U =U× [r] and V =V × [r] is the lexicographic
one induced by � and ≤).

The natural projection of U = U× [r] and V = V × [r] onto U and V respectively (ignoring
the second coordinate) projects each configuration F to a bipartite multi–graph π(F) with color
classes U and V . Note in particular that π(F) may contain multiple edges (arising from sets of
two or more edges in F whose end–points correspond to the same pair of vertex in U and V ).
However, the projection of the uniform distribution over configurations of U and V is not the
uniform distribution over all r–regular bipartite multi–graphs on U and V (the probability of
obtaining a given multi–graph is proportional to a weight consisting of the product of a factor
1/ j! for each multiple edge of multiplicity j). Since a configuration F can be considered a
graph, it makes perfect sense to speak of the size L(F) of its largest planar matching.

We denote an element (u, i) ∈U by ui and adopt an analogous convention for the elements
of V . We shall further abuse notation and denote by � the total order on U given by ui � ũ j if
u≺ ũ or u = ũ and i≤ j. We adopt a similar convention for V .

Let Gr(U,V ;d) denote the set of all r–regular bipartite multi–graphs on U and V whose
largest planar matching is of size at most d. Note that if |U | = |V | = n, then the cardinality
of Gr(U,V ;d) depends on U and V solely through n. Thus, for |U | = |V | = n, let g(n;d) =
|Gr(U,V ;d)|.

The first step in our considerations is an identification of Gr(U,V ;d) with a subset of con-
figurations of U and V . Specifically, we associate to an r–regular multi–graph G = (U,V ;E)
the r–configuration G of U and V such that π(G) = G where: If (u,v) is an edge of multiplicity
t in G for which there are i edges (u,v′) in G such that v≺ v′, and j edges (u′,v) in G such that
u≺ u′, then for every s ∈ [t], the pairing (ui+s,v j+t−s+1) belongs to G. Note that the number of
edges of G equals the number of edges of G.

Let Gr(U,V ;d) be the collection of configurations G associated to some G ∈ Gr(U,V ;d).
Observe, that g(n;d) = |Gr(U,V ;d)|.

For an edge (u,v) we say that M ⊆
{

u′ ∈U : u′ � u
}
×

{
v′ ∈V : v′ � v

}
is a planar match-

ing that ends with (u,v) if the edges in M are non–crossing and (u,v) ∈ M. Since there is a
unique edge incident to every node in G, say (u,v), we speak of a largest planar matching of G
up to u (or v) in order to refer to a largest planar matching that ends with edge (u,v).

Note that the way in which G is derived from G, implies in particular that for u ∈U and
i ≤ j, the size of the maximum planar matching in G using nodes up to ui is at least as large
as the size of the maximum planar matching using nodes up to u j. A similar fact holds for
elements v ∈V .

Several of the concepts introduced in this section are illustrated in Figure 1.
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Figure 1: (a) A 2–regular multi–graph G. (b) Configuration G associated to G.

1.3 Young tableaux
A (standard) Young tableau of shape λ = (λ1, . . . ,λr) where λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0, is an
arrangement T = (Tk,l) of λ1 + . . .+λr distinct integers in an array of left–justified rows, with
λi elements in row i, such that the entries in each row are in increasing order from left to right,
and the entries of each column are increasing from top to bottom (here we follow the usual
convention that considers row i to be above row i + 1). One says that T has r rows and c
columns if λr > 0 and c = λ1 respectively. The shape of T will be henceforth denoted shp(T )
and the collection of Young tableau with entries in the set S and with at most d columns will be
denoted T (S;d).

The Robinson correspondence (rediscovered independently by Schensted) states that the
set of permutations of [m] is in one to one correspondence with the collection of pairs of
equal shape tableaux with entries in [m]. The correspondence can be constructed through
the Robinson–Schensted–Knuth (RSK) algorithm — also referred to as row–insertion or row–
bumping algorithm. The algorithm takes a tableau T and a positive integer x, and constructs a
new tableau, denoted T ← x. This tableau will have one more box than T , and its entries will
be those of T together with one more entry labeled x, but there is some moving around, the
details of which are not of direct concern to us, except for the following fact:

Lemma 1 [Bumping Lemma [Ful97, pag. 9]] Consider two successive row–insertions, first
row inserting x in a tableau T and then row–inserting x′ in the resulting tableau T ← x, given
rise to two new boxes B and B′ as shown in Figure 2.

• If x≤ x′, then B is strictly left of and weakly below B′.

• If x > x′, then B′ is weakly left of and strictly below B.
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Figure 2: New tableau entries created through row–insertions.

Given a permutation π of [m], the Robinson–Schensted–Knuth (RSK) correspondence con-
structs (P(π),Q(π)) such that shp(P(π)) = shp(Q(π)) by,

• starting with a pair of empty tableaux, repeatedly row–inserting the elements π(1),. . .,π(n)
to create P(π), and,

• placing the value i into the box of Q(π)’s diagram corresponding to the box created during
the i–th insertion into P(π).

Two remarkable facts about the RSK algorithm which we will exploit are:

Remark 1 [RSK Correspondence [Ful97, pag. 40]] The RSK correspondence sets up a one–
to–one mapping between permutations of [m] and pairs of tableaux (P,Q) with the same shape.

Remark 2 [Symmetry Theorem [Ful97, pag. 40]] If π is a permutation of [m], then P(π−1) =
Q(π) and Q(π−1) = P(π).

Moreover, it is easy to see that the following holds:

Remark 3 Let π be a permutation of [m]. Then, π has no ascending sequence of length greater
than d if and only if P(π) and Q(π) have at most d columns.

The reader interested on an in depth discussion of Young tableaux is referred to [Ful97].

1.4 Walks
We say that w = w0 . . .wm is a lattice walk in Zd of length m if ||wi −wi−1||1 = 1 for all
1 ≤ i ≤ m. Moreover, we say that w starts at the origin and ends in ~p if w0 =~0 and wm = ~p.
For the rest of this paper, all walks are to be understood as lattice walks in Zd . Let W (d,m;~p)
denote the set of all walks of length m from the origin to ~p ∈ Zd .

We will often identify the walk w = w0 · · ·wm with the sequence d1 . . .dm such that wi−
wi−1 = sign(di)~e|di|, where ~e j denotes the j–th element of the canonical basis of Zd . If di is
negative, then we say that the i–th step is a negative step in direction |di|, or negative step for
short. We adopt a similar convention when di is positive.
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We say that two walks are equivalent if both subsequences of the positive and the negative
steps are the same. For each equivalence class consider the representative for which the posi-
tive steps precede the negative steps. Each such representative walk may hence be written as
a1a2 · · · |b1b2 · · · where the ai’s and b j’s are all positive. For an arbitrary collection of walks
W , all with the same number of positive and the same number of negative steps, we henceforth
denote by W ∗ the collection of the representative walks in W .

Recall that one can associate to a permutation π of [d] the Toeplitz point T (π) = (1−
π(1), . . . ,d−π(d)). Note that in a walk from the origin to a Toeplitz point, the number of steps
in a positive direction equals the number of steps in a negative direction. In particular, each
such walk has an even length.

In cases where we introduce notation for referring to a family of walks from the origin to a
given lattice point ~p, such as W (d,m;~p), we sometimes consider instead of ~p a subset of lattice
points P. It is to be understood that we are thus making reference to the set of all walks in
the family that end at a point in P. A set of lattice points of particular interest to the ensuing
discussion is the set of Toeplitz points, henceforth denoted T.

We now come to a simple but crucial observation: there is a natural identification of U× [r]
with [rn] that respects the total order in each of these sets (� in the former and ≤ in the latter).
A similar observation holds for V × [r]. Hence, when m = rn the sequences of positive and
negative steps in a walk in W (d,2m;T) can be referred to as:

au1
1
· · ·aur

1
au1

2
· · ·aur

2
· · ·au1

n
· · ·aur

n and bv1
1
· · ·bvr

1
bv1

2
· · ·bvr

2
· · ·bv1

n
· · ·bvr

n .

Let W ′(d,2m;T (π)) be the set of all walks in W ∗(d,2m;T (π)) whose positive steps au1
1
· · ·aur

n

and negative steps bv1
1
· · ·bvr

n satisfy: aui ≥ aui+1 and bvi ≥ bvi+1 for all u∈U , v∈V and 1≤ i < r.

2 Counting Planar Mathchings and Planar Subgraphs
We are now ready to state the main result of this paper.

Theorem 1

g(n;d) = ∑
π

sign(π)
∣∣W ′(d,2rn;T (π))

∣∣ .

Our proof of Theorem 1 is strongly based on the arguments used in [GWW98] to prove the
following result concerning 1–regular bipartite graphs:

Theorem 2 The signed sum of the number of walks of length 2m from the origin to Toeplitz
points is

(2m
m

)
times the number um(d) of permutations of length m that have no increasing

sequence of length bigger than d.

This last theorem gives a combinatorial proof of the following well known result:

Theorem 3 [Gessel’s Identity] If Iν(t) denotes the Bessel function of imaginary argument, then

∑
m≥0

um(d)
(m!)2 x2m = det(I|r−s|(2x))r,s=1,...,d.
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We now describe a random process which researchers have studied, either explicitly or im-
plicitly, in several different contexts. Let Xi, j be a non–negative random variable associated to
the lattice point (i, j) ∈ [n]2. For C ⊆ [n]2, we referr to ∑(i, j)∈C Xi, j as the weight of C. We
are interested on the determination of the distribution of the maximum weight of C over all
C = {(i1, j1),(i2, j2), . . .} such that i1, i2, . . . and j1, j2, . . . are strictly increasing.

Johansson [Joh99] considered the case where the Xi, js are independent identically dis-
tributed according to a geometric distribution. Sepäläinen [Sep77] and Gravner, Tracy and
Widom [GTW01] studied the case where the Xi, js are independent identically distributed Ber-
noulli random variables (but, in the latter paper, the collections of lattice points C = {(i1, j1),
(i2, j2), . . .} were such that i1, i2, . . . and j1, j2, . . . were weakly and strictly increasing respec-
tively).

The main result of this paper, i.e., Theorem 1, says that if (Xi, j)(i, j)∈[n]2 is uniformly dis-
tributed over all adjacency matrices of r–regular multi–graphs, then the distribution of the max-
imum weight evaluated at d can be expressed as a signed sum of restricted lattice walks in Zd .
A natural question is whether a similar result holds if one relaxes the requirement that the
sequences i1, i2, . . . and j1, j2, . . . are strictly increasing. For example, if one allows them to
be weakly increasing. This is equivalent to asking for the distribution of the size of a planar
subgraph, i.e., the largest set of non–crossing edges which may share endpoints in a uniformly
chosen r–regular multigraph. A line of argument similar to the one we will use in the derivation
of Theorem 1 yields:

Theorem 4 Let ĝ(n;d) be the number of r-regular bipartite multi–graphs with no larger than
d set of non–crossing edges which may share endpoints. Then, ĝ(n;d) equals the number of
pairs of equal shape Young tableaux in T ([rn];d) satysifying:

Condition (T̂): If for each i ∈ [n] and 1≤ s < r, the row containing r(i−1)+ s+1
is weakly above the row containing r(i−1)+ s.

Moreover,
ĝ(n;d) = ∑

π

sign(π)
∣∣∣Ŵ ′(d,2rn;T (π))

∣∣∣ ,

where Ŵ ′(d,2rn;T (π)) is the set of all walks in W ∗(d,2rn;T (π)) whose positive steps au1
1
· · ·aur

n

and negatives steps bv1
1
· · ·bvr

n satisfy: aui < aui+1 and bvi < bvi+1 for all u ∈ U, v ∈ V and
1≤ i < r.

In the rest of the paper we give two independent proofs of Theorem 1.

3 First Proof
Let m = rn. Recall that Gr(U,V ;d) can be thought of as a collection of permutations of [m].
Thus, we may think of the RSK correspondence as being defined over Gr(U,V ;d). In particular,
for an r–configuration F of U and V we may write (P(F),Q(F)) to denote the pair of Young
tableaux associated to the permutation determined by F . Figure 3 shows the result of applying
the RSK algorithm to an r–configuration.

We say that a Young tableau in T ([m];d) satisfies

Condition (T): If for each i ∈ [n] and 1≤ s < r, the row containing r(i−1)+ s is
strictly above the row containing r(i−1)+ s+1.
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Figure 3: Pair of Young tableaux associated through the RSK algorithm to the 2–configuration
of Figure 1.b.

The following result characterizes the image of Gr(U,V ;d) through the RSK correspondence.

Theorem 5 The number g(n;d) equals the number of pairs of equal shape tableaux in T ([m];d)
satisfying condition (T). Specifically, the RSK correspondence establishes a one–to–one corre-
spondance between Gr(U,V ;d) and the collection of pairs of equal shape tableaux in T ([m];d)
satisfying condition (T).

Proof: Let G ∈ Gr(U,V ;d)). Remark 3 implies that P(G) and Q(G) are tableaux of equal
shape that belong to T ([m];d). Corollary 1 implies that, for every i ∈ [n] the row insertion
process through which P(G) is built is such that the insertion of the values r(i− 1)+ 1, . . . ,ri
gives rise to a sequence of boxes each of which is strictly below the previous one. This implies
that Q(G) satisfies condition (T).

We still need to show that P(G) also satisfies condition (T). For G ∈ Gr(U,V ;d) let the trans-
pose of G, denoted GT , be the bipartite graph over color classes U and V such that uiv j is
an edge of GT if and only if u jvi is an edge of G. Note that GT ∈ Gr(U,V ;d) if and only if
G ∈ Gr(U,V ;d). A direct consequence of Remark 2 is that (P(GT ),Q(GT )) = (Q(G),P(G)).
Hence, P(G) must also satisfy condition (T).

Suppose now that (P,Q) is a pair of equal shape tableaux in T ([m];d) both of which satisfy
condition (T). Let F be an r–configuration of U and V such that (P(F),Q(F)) = (P,Q) (here
we identify us

i and vs
i and view F as a permutation of [m]). The existence of F is guaranteed by

Remark 1. Remark 3 implies that F’s largest planar matching is of size at most d. Moreover,
since Q(F) satisfies property (T), Lemma 1 implies that the edges of F incident to us

i and us+1
i

cross. Similarly, one can conclude that the edges fo F incident to vs
i and vs+1

i cross. It follows
that F belongs to Gr(U,V ;d).

Example 1 Note that condition (T), as guaranteed by Theorem 5, is reflected in the tableaux
shown in Figure 3 (for the tableau in the left; 4, 1 and 3 are strictly above 6, 2 and 5 respectively,
while for the tableau in the right; 1, 3 and 5 are strictly above 2, 4 and 6 respectively).

For a walk w = a1 · · ·am|b1 · · ·bm in W ′(d,2m;T (π)) let w̃ = ã1 · · · ãm|b̃1 · · · b̃m be such that
ãi = ai and b̃i = bm−i. Denote by W̃ (d,2m;T (π)) the collection of all w̃ for which w belongs to
W ′(d,2m;T (π)). Our immediate goal is to establish the following

8



Theorem 6 There is a bijection between Gr(U,V ;d) and the walks in W̃ (d,2m;~0) staying in
the region x1 ≥ x2 ≥ . . .≥ xd .

We now discuss how to associate walks to Young tableaux. First we need to introduce additional
terminology. We say that a walk w = a1 · · ·am satisfies

Condition (W): If for each i∈ [n] and 1≤ s < r it holds that ar(i−1)+s≥ ar(i−1)+s+1.

Let ϕ be the mapping from T ([m];d) to walks in W (d,m;Zd) such that ϕ(T ) = a1 · · ·am where
ai equals the column in which entry i appears in T . It immediately follows that:

Lemma 2 The mapping ϕ is a bijection between tableaux in T ([m];d) satisfying condition (T)
and walks of length m starting at the origin, moving only in positive directions, staying in the
region x1 ≥ x2 ≥ . . .≥ xd and satisfying condition (W).

Proof: If ϕ(T ) = ϕ(T ′) for T,T ′ ∈ T ([m];d), then T and T ′ have the same elements in each
of their columns. Since in a Young tableau the entries of each column are increasing from top
to bottom, it follows that T = T ′. We have thus established that ϕ is an injection.

Assume now that w = a1 · · ·am is a walk of length m starting at the origin, moving only in
positive directions, staying in the region x1≥ x2≥ . . .≥ xd and satisfying condition (W). Denote
by C(l) the set of indices j for which a j = l. Note that since w is a walk in Zd , then C(l) is
empty for all l > d. Let T be the Young tableau whose l–th column entries correspond to C(l)
(obviously ordered increasingly from top to bottom). Note that T is indeed a Young tableau
since |C(1)| ≥ |C(2)| ≥ . . . ≥ |C(d)| and given that the entries on each row of T are strictly
increasing (the latter follows from the fact that w stays in the region x1≥ x2≥ . . .≥ xd). Observe
that T belongs to T ([m];d). We claim that T satisfies condition (T). Indeed, by construction and
since w satisfies condition (W), for each i ∈ [n] it must hold that the indices of the columns of
the entries r(i−1)+1, . . . ,ri of T is a weakly decreasing sequence. Hence, for every 1≤ s < r,
the entry r(i−1)+s+1 is weakly to the left of r(i−1)+s. Since r(i−1)+s+1 > r(i−1)+s
and T is a tableau, it must be the case that the entry r(i−1)+ s + 1 is strictly below the entry
r(i−1)+ s.

Note that if T and T ′ belong to T ([m];d) and have the same shape, then ϕ(T ) and ϕ(T ′) are
walks that terminate at the same lattice point.

Corollary 1 There is a bijection between ordered pairs of tableaux of the same shape be-
longing to T ([m];d) satisfying condition (T), and walks in W̃ (d,2m;~0) staying in the region
x1 ≥ x2 ≥ . . .≥ xd .

Proof: By Lemma 2 there is a bijection between ordered pairs of tableaux with the claimed
properties and ordered pairs of walks of length m starting at the origin, moving only in positive
directions that stay in the region x1 ≥ x2 ≥ . . . ≥ xd and satisfy condition (W). Say such pair
of walks are c1 · · ·cm and c′1 · · ·c′m respectively. Then, c1 · · ·cm|c′m · · ·c′1 is the sought after walk
with the desired properties.

Figure 4 illustrates the bijection implicit in the proof of Corollary 1. Note that Theorem 6 is an
immediate consequence of Theorem 5 and Corollary 1.
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~0

Figure 4: Walk in W̃ (d,2m;~0) associated to the pair of Young tableaux of Figure 3 (and thus
also to the graph of Figure 1).

Proof: [of Theorem 1] The desired conclusion is an immediate consequence of Theorem 6 and
the existence of a a parity-reversing involution ρ on the walks w in W̃ (d,2m;~0) not staying in
the region x1 ≥ x2 ≥ . . .≥ xd . The involution is most easily described if we translate the walks
to start at (d−1,d−2, . . . ,0); the walks are then restricted not to lie completely in the region
R defined by x1 > x2 > .. . > xd . Let N be the subset of the translated walks of W̃ (d,2m;~0) not
lying completely in R. Let w = c1 . . .c2m ∈ N and let t be the smallest index such that the walk
given by the initial segment of c1 . . .ct of w terminates in a vertex (p1, . . . , pd) 6∈ R. Hence,
there is exactly one j such that p j = p j+1.

Walk ρ(w) is constructed as follows:

• Leave segment c1 . . .ct unchanged.

• For each i∈ [2n], define S(i) = {s ∈ [2m] : r(i−1) < s≤ ri}, S0(i) = {s∈ S(i):s > t,cs =
j} and S1(i) = {s ∈ S(i) : s > t,cs = j +1}. For i ≤ n (respectively i > n), assign the
value j +1 to the |S0(i)| first (respectively last) coordinates of (cs : s ∈ S0(i)∪S1(i)) and
the value j to the remaining |S1(i)| coordinates.

It is easy to see that if w terminates in (q1, . . . ,qd), then ρ(w) terminates in (q1, . . . ,q j+1,q j,
. . . ,qd). Hence, ρ reverses the parity of w. Moreover, ρ ◦ ρ is the identity. It remains to
show that ρ(w) ∈ N. Obviously ρ(w) does not stay in R (as w does not). Hence, it suffices
to show the following: if ρ(w) = a1 . . .am|b1 . . .bm, then for each i ∈ [n] and 1 ≤ s < r we
have ar(i−1)+s ≥ ar(i−1)+s+1 and br(i−1)+s ≤ br(i−1)+s+1. This is clearly true for every block
{r(i−1)+ s : 1≤ s≤ r} completely contained inside w’s unchanged segment (i.e., 1, . . . , t)
and inside w’s modified segment (i.e., t +1, . . . ,2m), given that it is true for w and by the
definition of ρ. There is still the case to handle where t ∈ {r(i−1)+ s : 1≤ s≤ r}. Here, it is
true by the following observation: if t ≤ m then ct = j +1, otherwise ct = j.

4 Second proof
Henceforth let m = rn. In this section we introduce two mappings Φ and φ. The former is
shown to be an injection that, when restricted to F = Gr(U,V ;d), takes values in W ′(d,2m;~0).
Our first goal is to characterize those walks that belong to Φ(F ). The second mapping φ plays
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~0

Figure 5: Walk Φ(G) = 111122|112121 for the multi–graph G of Figure 1 (direction 1 is to the
right and direction 2 is up — negative steps are represented by segmented lines.)

B

A

Figure 6: Crossing obtained from left to right ordered sets A and B.

a crucial role in fulfilling this latter objective. Then, relying on the aforementioned charac-
terization we define a parity reversing involution on W ′(d,2m;T) \Φ(F ). This essentially
establishes Theorem 1.

Let Φ be the function that associates to an r–configuration F of U and V the value Φ(F) =
au1

1
· · ·aur

n|bv1
1
· · ·bvr

n ∈W ∗(d,2m;Zd), where

• au equals the largest size of a planar matching of F using nodes up to u,

• bv equals the largest size of a planar matching of F using nodes up to v.

Note that indeed Φ(F) ∈W ∗(d,2m;Zd) when F is an r–configuration of U and V . Figure 5
illustrates the definition of Φ(·).

The following definition will be instrumental in the introduction of a mapping between
walks and configurations.

Definition 1 Let A and B be two linearly ordered sets of equal size. We say that a quasi
configuration is obtained from A and B in a crossing way if the first element of A is paired with
the last element of B, and so on, until finally the last element of A is paired to the first element
of B.

Figure 6 illustrates the concept just introduced. We say that H is a quasi r–configuration of U
and V if it can be obtained from a configuration F of U and V by “breaking” (deleting) some of
its “edges” (pairings). Note that the same quasi r–configuration may be obtained by “breaking”
different r–configurations.

11



Figure 7: The quasi configuration φ(w) associated to w = 112122|122122. Continuous lines
corresponds to the crossing of A1(w) and B1(w) and segmented lines to the crossing of A2(w)
and B2(w).

For w = au1
1
· · ·aur

n|bv1
1
· · ·bvr

n ∈W ∗(d,2m;Zd), let Ak(w) = {u : au = k} and Bk(w) = {v :
bv = k}. We are now ready to introduce a mapping between walks and quasi configurations.
Let φ be a function that associates to a walk w ∈W ∗(d,2m;Zd) a quasi r–configuration φ(w)
as follows: for each k, if |Ak(w)| ≥ |Bk(w)| then connect the initial segment of Ak(w) of size
|Bk(w)| in a crossing way with Bk(w). If |Ak(w)| ≤ |Bk(w)|, then connect the terminal segment
of Bk(w) of size |Ak(w)| in a crossing way with Ak(w). Figure 7 illustrates φ(·)’s definition.

Fact 1 Let w ∈W ∗(d,2m;Zd). Then, the edges in φ(w) incident to two distinct elements of
Ak(w) must cross. A similar observation holds for Bk(w).

Fact 2 Let w = Φ(F) for an r–configuration F of U and V and let (u,v) be a pairing of F.
Then, u ∈ Ak(w) if and only if v ∈ Bk(w).

The following result gives an interpretation in terms of graphs of what it means for a walk
starting at the origin to terminate also at the origin.

Lemma 3 Let w ∈W ∗(d,2m;Zd). Then, φ(w) is an r–configuration of U and V if and only if
w ∈W ∗(d,2m;~0) for some d.

Proof: A closed walk w passes through the origin if and only if |Ak(w)| = |Bk(w)| for all k.
The latter is certainly equivalent to φ(w) being a configuration.

We now prove a technical result.

Lemma 4 Let k ∈ [d] be arbitrary. For every r–configuration F of U and V , the set of edges
incident to Ak(Φ(F)) equals the set of edges incident to Bk(Φ(F)).

Proof: Let u ∈ Ak(Φ(F)). There is a unique v such that (u,v) is a pairing of F . By Fact 2, it
must hold that v ∈ Bk(Φ(F)).

The following result establishes that Φ(·) is an injection.

Lemma 5 For every r–configuration F of U and V , it holds that φ(Φ(F)) = F.

Proof: By Fact 1 and Lemma 4, Ak(Φ(F)) and Bk(Φ(F)) are equal size sets that must be
joined in the crossing way in F . Since a pairing of F is an element of Ak(Φ(F))×Bk(Φ(F))
for some k, it follows that φ(Φ(F)) = F .

12



Lemma 6 Let F be a family of r–configurations of U and V . A walk w belongs to Φ(F ) if and
only if Φ(φ(w)) = w and φ(w) ∈ F .

Proof: If φ(w)∈F , then w = Φ(φ(w)) belongs to Φ(F ). If w = Φ(F) for some r–configuration
F of U and V , then Lemma 5 implies that φ(w) = F . If in addition F ∈ F , then one gets that
φ(w) ∈ F .

Two walks in W ∗(d,2m;Zd) are certainly equal if their sequence of positive and negative steps
agree. The next lemma gives a simpler necessary and sufficient condition for the equality of
two walks w and Φ(φ(w)) when w is a closed walk that goes through the origin. Indeed, it says
that one only needs to focus on establishing the equality of the sequence of their positive steps.
The result will be useful later in order to establish the equality of two walks w and Φ(φ(w)).

Lemma 7 Let w ∈W ∗(d,2m;~0). Then, Φ(φ(w)) and w agree in their positive steps if and only
if Φ(φ(w)) = w.

Proof: If Φ(φ(w)) = w, then Φ(φ(w)) and w clearly agree in their positive steps. To prove
the converse, let w′ = Φ(φ(w)). Assume w′ and w agree in their positive steps. First, recall
that by Lemma 3, φ(w) is an r–configuration of U and V . Hence, Lemma 5 implies that
φ(w′) = φ(Φ(φ(w))) = φ(w). Thus, Ak(w) = Ak(w′) for every k. Since φ(w′) and φ(w) are
the same configurations, they have the same set of edges. Consider v ∈ Bk(w). There is a
unique edge (u,v) of φ(w) incident on v. By Fact 2, we have that u ∈ Ak(w) = Ak(w′). But
edge (u,v) is an edge of φ(w′). Hence, again by Fact 2, we get that v ∈ Bk(w′). We have shown
that Bk(w)⊆ Bk(w′). The reverse inclusion can be similarly proved. Since k was arbitrary, we
conclude that the negative steps of w and w′ are the same, and the two walks must thus be equal.

For the walk w = au1
1
· · ·aur

n|bv1
1
· · ·bvr

n , denote by k(u) and l(u) the number of occurrences
of au and au−1 in

{
u′ ∈U : u′ � u

}
respectively.

Example 2 For the walk 111122|112121 of Figure 5 we have:

u 1 2 3 4 5 6
k(u) 1 2 3 4 1 2
l(u) 0 0 0 0 4 4

We say that w satisfies

Condition (C): If for each u such that au > 1, l(u) > 0 and the l(u)–th-to-last
appearance of au−1 in the negative steps of w, if it exists, comes before the k(u)–
th-to-last appearance of au in the negative steps of w.

Lemma 8 Let w = au1
1
· · ·aur

n|bur
1
· · ·bvr

n be a walk in W ∗(d,2m;T). Then, Φ(φ(w)) = w and
φ(w) is an r–configuration of U and V if and only if w satisfies condition (C).

Proof: Since φ(w) is an r–configuration of U and V , Lemma 3 implies that w must terminate
at the origin. On the other hand, if w satisfies condition (C), then w also needs to terminate at
the origin. Hence, φ(w) would be an r–configuration of U and V . Indeed, let j be the smallest
coordinate in which the terminal point of w is positive. Note that j > 1 by the definition of
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Toeplitz points. Let u be maximum so that au = j. By the choice of j, there will be fewer
than k(u) appearances of j and at least l(u) appearances of j− 1 among the negative steps.
This contradicts the the fact that w satisfies condition (C). We thus can assume without loss of
generality that w starts and ends at the origin.

Let Φ(φ(w)) = a′
u1

1
· · ·a′ur

n
|b′vr

1
· · ·b′vr

n
. By Lemma 7, Φ(φ(w)) and w are distinct if and only if

they differ in some positive step. Assume that au = a′u for each u ≺ ũ and aũ 6= a′ũ. We claim
that a′ũ ≤ aũ. Indeed, suppose this is not the case. Since a′ũ equals the size of the largest planar
matching of φ(w) up to ũ, there is a u≺ ũ such that a′u = aũ and the edges incident to u and ũ of
φ(w) are non-crossing. We also have a′u = au by the choice of ũ. Hence, u and ũ belong to Ak(w)
for some k. By Fact 1 the edges incident to u and ũ must be non-crossing. A contradiction.
This establishes our claim.

It follows that a′ũ = aũ if and only if a′ũ≥ aũ. We now establish a condition equivalent to a′ũ≥ aũ
by considering the following two cases:

• Case aũ = 1: Then, certainly a′ũ ≥ aũ.

• Case aũ > 1: Then, there is a u ≺ ũ such that a′u = aũ− 1 and the edges incident to u
and ũ are non–crossing in φ(w). So we can extend with the edge incident to ũ the size a′u
planar matching of φ(w) up to u. Thus, it must be the case that a′ũ ≥ aũ.

Summarizing aũ = a′ũ if and only if

• aũ = 1, or

• if aũ > 1 and there is a u≺ ũ such that a′u = aũ−1 and the edges ũ and u are non–crossing
in φ(w).

The lemma follows by observing that when aũ > 1, the fact that w satisfies condition (C)
amounts to saying that there is a u≺ ũ such that au = aũ−1 and the edges incident to u and ũ
are non–crossing in φ(w). So, all positive steps of Φ(φ(w)) and w agree if and only if for each
u such that au > 1, l(u) > 0 and the l(u)–th-to-last appearance of au−1 in the negative steps of
w, if it exists, comes before the k(u)–th-to-last appearance of au in the negative steps of w.

So far in this section we have not directly being concerned with walks W ′(d,2m;T) nor the
collection of configurations Gr(U,V ;d). The next result is the link through which we use all
previous results in order to prove Theorem 1.

Lemma 9 Let w ∈W ′(d,2m;~0). If Φ(φ(w)) = w, then φ(w) ∈ Gr(U,V ;d).

Proof: Suppose Φ(φ(w)) = w and w = au1
1
· · ·aur

n|bv1
1
· · ·bvr

n is such that φ(w) does not belong
to Gr(U,V ;d). Note that since w is a closed walk that goes through the origin, by Lemma 3,
we have that φ(w) is an r–configuration of U and V . Thus, it must be the case that either there
is a u ∈U such that for some s < t the edges incident to us and ut are non–crossing, or there is
a v ∈V such that for some s < t the edges incident to vs and vt are non–crossing. Without loss
of generality assume the former case holds. It follows that, the largest planar matching up to us

is strictly smaller than the largest planar matching up to ut , i.e., aus < aut . This contradicts the
fact that w belongs to W ′(d,2m;~0).
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Theorem 7 The mapping Φ is a bijection between Gr(U,V ;d) and the collection of walks in
W ′(d,2m;T) satisfying condition (C).

Proof: By Lemma 5 we know that Φ is an injection. We claim it is also onto. Indeed, if w
is a walk in W ′(d,2m;T) satisfying condition (C), then Lemmas 3, 6, 8, and 9 imply that φ(w)
belongs to Gr(U,V ;d) and Φ(φ(w)) = w.

Proof: [of Theorem 1] The desired conclusion is an immediate consequence of Theorem 7 and
the existence of a parity-reversing involution ρ on walks w in W ′(d,2m;T) that don’t satisfy
condition (C). To define ρ, assume w = au1

1
· · ·aur

n|bv1
1
· · ·bvr

n and let u be the smallest index for
which w does not satisfy condition (C). Let v be such that bv is the l(u)–th-to-last occurrence
of au−1 among the negative steps; if l(u) = 0 then let v = rn+1.

Walk ρ(w) is constructed as follows:

• Leave segments au1
1
· · ·au and bv · · ·bvr

n unchanged.

• For every i∈ [n], let S0(i) =
{

s : aus
i
= au,u≺ us

i

}
and S1(i) =

{
s : aus

i
= au−1,u≺ us

i

}
.

Assign the value au to the |S1(i)| first coordinates in (aus
i

: s ∈ S0(i)∪S1(i)) and the value
au−1 to the remaining |S0(i)| coordinates.

The application of ρ does not change the smallest index not satisfying the sufficient condi-
tion of Lemma 8. It follows that ρ(w) also violates condition (C). We claim that ρ(w) =
a′

u1
1
· · ·a′ur

n
|b′

v1
1
· · ·b′vr

n
belongs to W ′(d,2m;T). We need to show that for each i∈ [n] and 1≤ s < r,

we have a′us
i
≥ a′

us+1
i

and b′vs
i
≥ b′

vs+1
i

. This is clearly true for every block {us
i : s ∈ [r]} completely

contained in the unchanged segments, and also inside the modified segment. The remaining two
cases to consider are u = us

i and/or v = vs′
j for some s < r and/or s′ > 1. Both cases are easy to

handle. We leave the details to the reader.

Assume w terminates at T (π) for some permutation π of [d]. Let τ be a transposition of au
and au−1. Finally, we claim that ρ(w) terminates in T (π◦ τ). Indeed, by our choice of u, the
number of appearances of au in bv · · ·bvr

n is less than k(u). It must equal to k(u)−1, otherwise
we could have chosen the index of the (k(u)− 1)–th appearance of au for u. Hence, in the
unchanged segments of the walk w, there is one net positive step in direction au and zero net
steps in direction au−1. It follows that in the segment of w that changes, there are au−π(au)−1
and au−1−π(au−1) net positive steps in directions au and au−1 respectively. Let σs denote
the s–th coordinate of the terminal point of a walk σ. We get that ρ(w)au = au− 1−π(au−
1)+1 = au−π(au−1) and similarly ρ(w)au−1 = au−π(au)−1 = au−1−π(au).
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[KLM05] M. Kiwi, M. Loebl, and J. Matoušek. Expected length of the longest common
subsequence for large alphabets. Advances in Mathematics, 2005. In press.

[LS77] B. Logan and L. Shepp. A variational problem or random Young tableaux. Adv. in
Math., 26:206–222, 1977.

[Oko00] A. Okounkov. Random matrices and ramdom permutations. International Mathe-
matics Research Notices, pages 1043–1095, 2000.

[Sch61] C. Schensted. Longest increasing and decreasing subsequences. Canad. J. Math.,
13:179–191, 1961.
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