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Abstract

Tension-continuous (shortly TT ) mappings are mappings between the

edge sets of graphs. They generalize graph homomorphisms. From an-

other perspective, tension-continuous mappings are dual to the notion of

flow-continuous mappings and the context of nowhere-zero flows motivates

several questions considered in this paper.

Extending our earlier research we define new constructions and opera-

tions for graphs (such as graphs ∆M (G)) and give evidence for the complex

relationship of homomorphisms and TT mappings. Particularly, solving

an open problem, we display pairs of TT -comparable and homomorphism-

incomparable graphs with arbitrarily high connectivity.

We give a new (and more direct) proof of density of TT order and study

graphs such that TT mappings and homomorphisms from them coincide;

we call such graphs homotens. We show that most graphs are homotens,

on the other hand every vertex of a nontrivial homotens graph is contained

in a triangle. This provides a justification for our construction of homotens

graphs.
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1 Introduction

It is a traditional mathematical theme to study the question when a map between

the sets of substructures is induced (as a lifting) by a mapping of underlying struc-

tures. In a combinatorial setting (and as one of the simplest instances of this gen-

eral paradigm) this question takes the following form:

Question 1. Given undirected graphs G, H and a mapping g : E(G) → E(H)
does there exist a mapping f : V (G)→ V (H) such that g({x, y}) = {f(x), f(y)}
for every edge {x, y} ∈ E(G)?

In the positive case we say that g is induced by f . It is easy to see that such

mapping f is a homomorphism G
hom
−−→ H and that to each homomomorphism

corresponds exactly one induced mapping g. Thus Question 1 asks which map-

pings g between edge sets are induced by a homomorphism. Various instances

of this problem were considered for example by Whitney [21], the first author

[15], Kelmans [10], and by Linial, Meshulam, and Tarsi [13]. More recently, De-

Vos, Nešetřil, and Raspaud [3] isolated the following necessary condition for a

mapping g : E(G)→ E(H) to be induced by a homomorphism.

For every cut C ⊆ E(H) the set g−1(C) is a cut of G. (1)

Here, a cut means the edge set of a spanning bipartite induced subgraph. It

is natural to call any mapping g satisfying condition (1) a cut-continuous map-

ping G
cc
−→ H . Cut-continuous mappings extend and generalize the notion of a

homomorphism and the relationship of these two notions is the central theme of

this paper. We provide evidence in both directions. We present various exam-

ples of cut-continuous mapping that are not induced, in particular in Proposition 4

we construct such mappings between highly connected graphs, thereby solving a
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problem from our previous paper [19]. On the other hand, as described in Sec-

tion 4, for most of the graphs all cut-continuous mappings are induced.

Cut-continuous mappings were defined and investigated in [3, 19] in the more

general context of nowhere-zero flows and circuit covers. As such, the tension-

continuous mappings (being duals of flow-continuous mappings) have deep com-

binatorial meaning. For example, for a cubic graph G the number of cut-continu-

ous mappings G∗ cc
−→ K3 equals the number of 1-factorizations of G. (Conse-

quently, there is a cut-continuous mapping K4
cc
−→ K3, while there is clearly no

homomorphism K4
hom
−−→ K3.) On a similar note, let T be a graph with two

vertices, one edge connecting them and one loop. It is known that the number

of homomorphisms f : G
hom
−−→ T equals to the number of independent sets of

the graph G, a graph parameter that is important and hard to compute. The cor-

responding parameter, the number of cut-continuous mappings g : G
cc
−→ T is

simple to compute (but still interesting): it is equal to the number of cuts in G,

that is to 2|V (G)|−k, where k is the number of components of G.

The analysis of flow problems by means of edge mappings between graphs

was pioneered by Jaeger [9]; the basic definitions were stated and developed in [3].

In [19] we studied tension-continuous (mainly Z2-tension-continuous, that is cut-

continuous) mappings more thoroughly. Here we extend and complement results

of [19] by treating tension-continuous mappings in an arbitrary abelian group in-

stead of Z2. We also solve several open problems from [19]. Particularly, we

find examples of k-connected graphs that are equivalent with respect to tension-

continuous mappings and not with respect to homomorphisms (Proposition 4 in

Section 3). On the positive side we give a characterization of a large class of

graphs where tension-continuous mappings coincide with homomorphisms. Such

graphs (called here left and right homotens graphs) are studied in Sections 4 and 5.

This also implies a shorter proof of some results of [19], particularly of universal-

ity (Theorem 4) and density (Theorem 6) of tension-continuous mappings. The

proof of the latter uses construction ∆M(G) (defined in Section 5), which is inter-

esting in itself.

2 Definition & Basic Properties

2.1 Basic notions—flows and tensions

We refer to [4, 8] for basic notions on graphs and their homomorphisms.

By a graph we mean a finite directed graph with multiple edges and loops
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allowed. We write uv (or sometimes (u, v)) for an edge from u to v (one of them,

if there are several parallel edges). A circuit in a graph is a connected subgraph

in which each vertex is adjacent to two edges. For a circuit C, we let C+ and C−

be the sets of edges oriented in either direction. We will say that (C+, C−) is a

splitting of edges of C.

A cycle is an edge-disjoint union of circuits. Given a graph G and a set X
of its vertices, we let δ(X) denote the set of all edges with one end in X and the

other in V (G) \X; we call each such edge set a cut in G. Let M be a ring (by this

we mean an asociative ring with unity). We say that a function ϕ : E(G)→M is

an M -flow on G if for every vertex v ∈ V (G)
∑

e enters v

ϕ(e) =
∑

e leaves v

ϕ(e) .

A function τ : E(G) → M is an M -tension on G if for every circuit C in G
(with (C+, C−) being the splitting of its edges) we have

∑

e∈C+

τ(e) =
∑

e∈C−

τ(e) .

We remark that for definition of flows and tensions we could use any abelian

group. But as our emphasis is on finite graphs, we are interested in finitely gen-

erated abelian groups. Every such group is of form Z
k ×

∏

Z
ki
ni

, therefore we

can introduce a ring structure on it. In proof of Lemma 14 we present a way how

results about general abelian groups can be inferred from finitely generated ones.

Note that M -tensions on a graph G form a module over M (or even a vector

space, if M is a field). Its dimension is |V (G)| − k(G), where k(G) denotes the

number of components of G. This module will be called the M -tension module

of G.

For a cut δ(X) we define

ϕX(uv) =











1 if u ∈ X and v /∈ X

−1 if u /∈ X and v ∈ X

0 otherwise .

Any such ϕX is called elementary M -tension. It is easy to prove that elementary

M -tensions generate the M -tension module.

Remark that every M -tension is of form δp, where p : V (G) → M is any

mapping and (δp)(uv) = p(v) − p(u) (in words, tension is a difference of a

potential).
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For M -flows the situation is similar to M -tensions: all M -flows on G form

a module (the M -flow module of G) of dimension |E(G)| − |V (G)| + k(G);
it is generated by elementary flows (those with a circuit as a support) and it is

orthogonal to the M -tension module.

The above are the basic notions of algebraic graph theory. For a more thorough

introduction to the subject see [4]; we only mention two more basic observations:

A cycle can be characterized as a support of a Z2-flow and a cut as a support

of a Z2-tension. If G is a plane graph then each cycle in G corresponds to a cut in

its dual G∗; each flow on G corresponds to a tension on G∗.

2.2 Tension-continuous mappings

The following is the principal notion of this paper: Let M be a ring, let G, G′ be

graphs and let f : E(G) → E(G′) be a mapping between their edge sets. We

say f is an M -tension-continuous mapping (shortly TTM mapping) if for every

M -tension τ onG′, the composed mapping τf is anM -tension onG. The scheme

below illustrates this definition. It also shows that f “lifts tensions to tensions”,

thus suggesting the term TT mapping.

E(G)
f

- E(G′)

M

τ

?

τf

-

We write f : G
TTM−−−→ H if f is a TTM mapping from G to H (or, more precisely,

from E(G) to E(H)). In the important case M = Zn we write TTn instead

of TTZn
, when M is clear from the context we omit the subscript.

Of course if M = Z2 then the orientation of edges does not matter. Hence,

if G, H are undirected graphs and f : E(G) → E(H) any mapping, we say that

f is Z2-tension-continuous (TT2) if for some (equivalently, for every) orientation
−→
G of G and

−→
H of H , f is TT2 mapping from

−→
G to

−→
H . As cuts correspond to

Z2-tensions, with this provision TT2 mappings of undirected graphs are exactly

the cut-continuous mappings: mappings between edge sets of undirected graphs

such that preimage of every cut is a cut.

For general ring M , the orientation is important. Still, we define that a map-

ping f : E(G) → E(H) between undirected graphs G, H is TTM if for some
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orientation
−→
G of G and

−→
H of H , f is TTM mapping from

−→
G to

−→
H . This defini-

tion may seem a bit arbitrary, but in fact it is a natural one: clearly it is equivalent

to ask that for each
−→
H there is an

−→
G such that f is a TT2 mapping from

−→
G to

−→
H

(we just change orientation of edges of
−→
G according to change of orientation of

edges of
−→
H ). We will elaborate more on this in Proposition 1.

Convention. Unless specifically specified, our results hold for both the directed

and undirected case.

Recall that h : V (G) → V (G′) is called a homomorphism if for any uv ∈

E(G) we have f(u)f(v) ∈ E(G′); we shortly write h : G
hom
−−→ G′. We define a

quasiorder 4h on the class of all graphs by

G 4h G
′ ⇐⇒ there is a homomorphism h : G

hom
−−→ G′.

Homomorphisms generalize colorings: a k-coloring is exactly a homomorphism

G
hom
−−→ Kk, hence χ(G) ≤ k iff G 4h Kk. For an introduction to the theory of

homomorphisms see [8].

Motivated by the homomorphism order 4h, we define for a ring M an order

4M by

G 4M G′ ⇐⇒ there is a mapping f : G
TTM−−−→ G′.

This is indeed a quasiorder, see Lemma 1. We write G ≈M H iff G 4M H and

G <M H , and similarly we defineG ≈h H; we sayG andH are TTM -equivalent,

or hom-equivalent, respectively. Occasionally, we also write G
TTM−−−→ H (instead

of G 4M H) to denote the existence of some TTM mapping.

We define analogies of other notions used for study of homomorphisms: a

graph G is called TTM -rigid if there is no non-identical mapping G
TTM−−−→ G.

Graphs G, H are called TTM -incomparable if there is no mapping G
TTM−−−→ H ,

neither H
TTM−−−→ G.

If G is an undirected graph, its symmetric orientation
←→
G is a directed graph

with the same set of vertices and with each edge replaced by an oriented 2-cycle,

we will say these two edges are opposite. The following result clarifies the role of

orientations.

Proposition 1. Let G, H be undirected graphs, E(H) 6= ∅, let M be a ring. Then

the following are equivalent.

1. For some orientation
−→
G of G and

−→
H of H it holds that

−→
G

TTM−−−→
−→
H .
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2. For each orientation
−→
H of H exists

−→
G of G such that

−→
G

TTM−−−→
−→
H .

3. For symmetric orientations
←→
G ofG and

←→
H ofH it holds that

←→
G

TTM−−−→
←→
H .

Proof. If M = Z
k
2 then all statements are easily equivalent, so suppose M 6= Z

k
2.

Take a mapping f1 :
−→
G

TTM−−−→
−→
H . We may suppose that

−→
G ⊆

←→
G and

−→
H ⊆

←→
H .

Thus if e′, e′′ are opposite edges end e′ ∈ E(
−→
G), then we let f3(e

′) be f1(e
′) and

f3(e
′′) be the edge opposite to f1(e

′). As cycles of
−→
G together with the 2-cycles

consisting of opposite edges generate the cycle space of
←→
G , mapping f3 is TTM ,

hence 1 implies 3. Next take any
−→
H , suppose again

−→
H ⊆

←→
H , and let opposite

edges e′, e′′ of
←→
G correspond to e ∈ G. At least one of the edges f3(e

′), f3(e
′′)

connects the same vertices (in the same direction) as some edge ē of
−→
H ; we let

this one of e′, e′′ to be an edge of
−→
G and let f2 map it to ē. Clearly, f2 is a TTM

mapping; therefore 3 implies 2. Finally 2 implies 1 is trivial.

2.3 Basic properties

In this section we summarize some properties of TT mappings which will be

needed in the sequel.

Lemma 1. Let f : G
TTM−−−→ H and g : H

TTM−−−→ K be TTM mappings. Then the

composition g ◦ f is a TTM mapping.

Lemma 2. Let f : G
TTM−−−→ H , let H ′ be a subgraph of H that contains all edges

f(e) for e ∈ E(G). Then f : G→ H ′ is TTM as well.

Proof. Take any M -tension τ ′ on H ′. Let τ ′ = δp′ for p′ : V (H ′) → M . If

V (H) = V (H ′) let p = p′, otherwise extend p′ arbitrarily to get p. Now τ = δp
is an M -tension on H that agrees with τ ′ on V (H ′). Hence τ ′f = τf , and as τf
is an M -tension, τ ′f is an M -tension, too.

An easy corollary of these observations is the monomorphism-epimorpism

factorization of TTM mappings.

Corollary 1. Let f : G
TTM−−−→ H . Then there is a graph H ′ and TTM mappings

f1 : G
TTM−−−→ H ′, f2 : H ′ TTM−−−→ G such that f1 is surjective and f2 injective.
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Another easy (but useful) way to modify TTM mapping is by adding parallel

edges. The next result shows, that we may in many respects restrict ourselves

to bijective TTM mappings (this approach was taken by [13, 10]). A bijection

G
TTM−−−→ H may be viewed as an identification E(G) = E(H), therefore we in

fact study when the tension module of H is a submodule of tension module of G
(this language was used in [20]).

Lemma 3. Let f : G
TTM−−−→ H be a TTM mapping of (directed or undirected)

graphs. Then there is a graph H ′ and a mapping f ′ : E(G)→ E(H ′) such that

• f ′ is TTM ,

• f ′ is bijective,

• we can get H ′ by adding parallel edges and deleting edges from H .

• for each edge a ∈ E(G) the edge f ′(a) connects the same vertices as f(a).

Proof. For an edge e ∈ E(H) we let c(e) = |f−1(e)| be the number of edges

that map to e. We replace each edge of H by c(e) parallel edges in the same di-

rection (in case of directed graphs) as e and keep all vertices; we let H ′ denote

the resulting graph. We define f ′(a) to be any one of the parallel edges that re-

placed f(a), making sure that f ′ is injective (therefore bijective). Clearly, for any

p : V (H) = V (H ′) → M , if we consider the M -tensions τ = δp of H and

τ ′ = δp of H ′, then f ◦ τ = f ′ ◦ τ ′. Thus if f was a TTM mapping, f ′ is TTM as

well.

If C is a circuit with a splitting (C+, C−), we say that C is M -balanced if

(|C+| − |C−|) · 1 = 0 (with 0, 1, and operations in M ). Otherwise, we say

C is M -unbalanced. Let gM(G) denote the length of the shortest M -unbalanced

circuit in G, if there is none we put gM(G) =∞. For the particular case M = Z2,

a circuit is M -balanced if it is even, hence gZ2
(G) is the odd-girth of G. We also

have G
TTM−−−→

−→
K 2 iff any constant mapping E(G) → M is an M -tension. This

clearly happens precisely when all circuits in G are M -balanced, equivalently,

if gM(G) = ∞. As a consequence of this, the function gM provides us with an

invariant for the existence of TTM mappings, as shown in the next two lemmas.

Lemma 4. Let M be a ring, let G, H be directed graphs, let f : G
TTM−−−→ H . If C

is an M -unbalanced circuit in G then f(C) contains an M -unbalanced circuit.
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Proof. The inclusion homomorphism C → G induces a TTM mapping, compo-

sition with f yields C
TTM−−−→ H . By Lemma 2 we get a mapping C

TTM−−−→ f(C).

If all circuits in f(C) are M -balanced, then f(C)
TTM−−−→

−→
K 2 and, by composition

we have C
TTM−−−→

−→
K 2. This contradicts the fact that C is M -unbalanced.

Lemma 5. Let G 4M H be directed graphs. Then gM(G) ≥ gM(H).

Proof. If gM(G)=∞, the conclusion holds. Otherwise, letC be anM -unbalanced

circuit of length gM(G) in G. By Lemma 4, f(C) contains an M -unbalanced

circuit. It is of size at least gM(H) and at most gM(G).

An alternative definition of tension-continuous mappings (proved in [3]) is

often useful. For mappings f : E(G) → E(H) and ϕ : E(G) → M we let ϕf

denote the algebraical image of ϕ: that is we define a mapping ϕf : E(H)→ M
by

ϕf (e
′) =

∑

e∈f−1(e′)

ϕ(e) .

Lemma 6. Let f : E(G)→ E(H) be a mapping. Then f isM -tension-continuous

if and only if for every M -flow ϕ on G, its algebraical image ϕf is an M -flow.

Moreover, it is enough to verify this property for the basis of the flow module

(elementary flows supported by an elementary cycle).

We formulate this explicitly for M = Z2. Mapping f is cut-continuous if and

only if for every cycle C in G, the set of edges of H , to which an odd number of

edges of C maps, is a cycle.

For a homomorphism (of directed or undirected graphs) h : V (G) → V (G′)
we let h] denote the induced mapping on edges, that is h]((u, v)) = (h(u), h(v)),
or h]({u, v}) = {h(u), h(v)}. If h is an antihomomorphism, that is for every edge

(u, v) ∈ E(G) we have (h(v), h(u)) ∈ E(G′) (h reverses every edge), we define

h[((u, v)) = (h(v), h(u)) and call it a mapping induced by antihomomorphism.

If G′ has parallel edges, then h] is not unique: we just ask that h] maps each of

the edges (u, v) to some of the edges (h(u), h(v)); similarly for homomorphisms

of undirected graphs and for antihomomorphisms. The following easy lemma is

the starting point of our investigation.

Lemma 7. Let G, H be (directed or undirected) graphs, M a ring. For every

(anti)homomorphism f from G to H the induced mapping f ] (f [, respectively)

from G to H is M -tension-continuous. Consequently, from G 4h H follows

G 4M H .
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Proof. It is enough to prove Lemma 7 for homomorphisms of directed graphs. So

let f : G → H be such homomorphism, ϕ : V (H) → M a tension. We may

assume that ϕ is an elementary tension corresponding to the cut δ(X). Then the

cut δ(f−1(X)) determines precisely the tension ϕ ◦ f .

The main theme of this paper is to find similarities and differences between or-

ders 4h and 4M . In particular we are interested in when the converse to Lemma 7

holds. Now, we present a more precise version of Question 1 stated in the intro-

duction.

Problem 1. Let f : E(G) → E(H). Find suitable conditions for f , G, H that

will guarantee that whenever f is TTM , then it is induced by a homomorphism (or

an antihomomorphism); i.e. that there is a homomorphism (or an antihomomor-

phism) g : V (G)→ V (H) such that f = g] (or f = g[).

Shortly, we say a mapping is induced if it is induced by a homomorphism or

an antihomomorphism. Problem 1 leads us to the following definitions.

Definition 1. We say a graph G is left M -homotens if for every loopless graph H
every TTM mapping from G to H is induced (that is induced by a homomorphism

or an antihomomorphism). For brevity we will often call left M -homotens graphs

just M -homotens graphs (following [19]).

On the other hand, H is a right M -homotens graph if for every graph G

statements G
hom
−−→ H and G

TTM−−−→ H are equivalent.

We should note here, that the precise analogy of left M -homotens graphs—

every TTM mapping is induced—is not interesting, as this is much too strong re-

quirement. For simplicity, suppose M = Z2. Let H be such graph, let ∆(H)

be as defined before Lemma 8. The mapping f : ∆(H)
TT2−−→ H given by

f({A,B}) = A∆B is induced by an (anti)homomorphism, say g. Now this

can happen only if for every A ∈ V (∆(H)) vertex g(A) is adjacent to every edge

e of H . (To see this, note that f({A,A∆ e}) = e, therefore g(A) is one of the end

vertices of e.) And this in turn can happen only if H is edgeless, or if H = K2.

Definition of left M -homotens makes sense for both directed and undirected

graphs. If M = Z
k
2 then there are only trivial directed M -homotens graphs

(namely an orientation of a matching). Thus, we restrict to study of undirected

homotens graphs in this case [19]. For other rings, Proposition 2 states that the

orientation does not play any role; this will be useful in Section 4 in our study of

directed M -homotens graphs.
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For M 6= Z
k
2 we might study undirected M -homotens graphs, too. The re-

lationship between these two notions (undirected graph is homotens versus some

its orientation is homotens) is not clear. For every M , the latter notion implies

the former one; however, somewhat surprisingly, both notions are equivalent for

many rings M (at least for such, in which the equation x+ x = 0 has no nonzero

solution). (For right homotens graphs, the above discussion applies, too.)

Proposition 2. Let G1, G2 be two directed graphs, such that we can get G2

from G1 by changing directions of edges, deleting and adding multiple edges. Let

M be a ring. Then G1 is left M -homotens if and only if G2 is left M -homotens.

Proof. SupposeG1 is not homotens, that is there is a graphH1 and a mapping f1 :

G1
TTM−−−→ H1 that is not induced. By Lemma 3 we may suppose that f1 is injective.

We modify f1 and H1, to get a non-induced mapping f2 : G2
TTM−−−→ H2. If we

change an orientation of an edge, we change an orientation of the corresponding

edge in H1. If we add an edge parallel to some edge e of G1 then we map it to a

new edge of H1, parallel to f1(e). It is clear, that we get a TTM mapping that is

not induced.

3 Examples

We illustrate the complex relationship of homomorphisms and TT mappings by

several examples presenting the similarities and (mainly) the differences in con-

crete independent settings. Towards the former, we provide an infinite chain and

antichain of 4
Z2

, thereby exhibiting a similar behaviour of homomorphisms and

TT mappings. On the other hand, we show that arbitrarily high connectivity of the

source and target graphs does not force TTZ mappings (much the less TTM map-

pings) and homomorphisms to coincide. Finally, we show that an equivalence

class of ≈Z2
can contain exponentially many equivalence classes of ≈h.

Proposition 3 appears already in [3], we include a proof for the convenience

of the reader. Note that this result will be strongly generalized by Theorems 3, 4,

and 6.

Proposition 3. Graphs K2t form a strictly increasing chain in 4
Z2

order, that is

K4 ≺Z2
K8 ≺Z2

K16 ≺Z2
· · · . There are graphs G1, G2, . . . that form an infinite

antichain: there is no mapping Gi
TT2−−→ Gj for i 6= j.
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Proof. By Proposition 6 of [3] (compare also Corollary 8 of this paper), for any

graph G

G
hom
−−→ K2k ⇐⇒ G

TT2−−→ K2k . (2)

This implies the first part. For the second part, let Gt be the Kneser graph K(n, k)
with k = t(2t−2) and n = 2k+2t−2. It is known that χ(Gt) = n−2k+2 = 2t.

This by equivalence (2) implies that Gi 6
TT2−−→ Gj for i > j. The remaining part

follows from Lemma 5: It is known that the shortest odd cycle in K(n, k) is the

smallest odd number greater or equal to n/(n− 2k), which means that gZ2
(Gt) =

2t+ 1.

The differences of TT mappings and homomorphisms are easy to find. For

example let {e1, e2, e3} be the edges of K3, and color the edges of K4 properly by

three colors. We send both edges of color i to ei. This mapping is easily checked

to be TT2, so we have K4
TT2−−→ K3 but obviously there is no homomorphism

K4 → K3. On the contrary, TTZ mappings are more restricted and, indeed, there

is no TTZ mapping from an orientation of K4 to an orientation of K3. A simple

example of TTZ mapping that is not induced by a homomorphism is a noncyclic

permutation of edges of an oriented circuit. E.g., let E(
−→
C 5) = {e0, e1, . . . , e4} in

this order, and define f(ei) = e2i mod 5. Then f is TTZ, on the other hand, f maps

adjacent edges to nonadjacent edges, hence is not induced by a homomorphism.

By applying the arrow construction—that is by replacing each oriented edge by a

suitable graph (see [8] and also proof of Proposition 5 for more details) it is easy

to produce graphs G, H such that G
TTZ−−→ H but G 6

hom
−−→ H . No graphs G, H ob-

tained in this manner are 3-connected; Whitney’s theorem (two 3-regular graphs

with the same cycle matroid are isomorphic) seems to suggest, that this situa-

tion may not repeat for graphs with higher connectivity. Therefore, the following

lemma may be a bit surprising.

Proposition 4. For every k there are k-connected graphs G, H such that G
TTZ−−→

H but G 6
hom
−−→ H . Therefore, for each k exists a k-connected graph that is not

Z-homotens.

Proof. Fix a k, let G, H be graphs illustrated for k = 4 in Figure 1. 1 (The

construction is due to Shih [20].)

1If we wish to construct directed graphs, consider any orientation of them, such that corre-

sponding edges of G and of H are oriented in the same way.

12
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Figure 1: The left graph is an example of highly connected graph that is not Z-

homotens; the right one is a witness for the former not being Z-homotens.

Clearly both G and H are k-connected and there there is no homomorphism

between them. The natural bijection between G and H—we identify the left Kk’s

inG andH , the rightKk’s inG andH , and the edges ei as depicted in the Figure—

is easily checked to be TTZ.

Further examples of graphs with negative answer to Problem 1 are listed in [19],

here we only mention the perhaps most spectacular example: Petersen graph ad-

mits a TT2 mapping to C5. This mapping (and many others) may be obtained

using the following construction: Given an (undirected) graph G = (V,E) write

∆(G) for the graph (P(V ), E ′), where AB ∈ E ′ iff A∆B ∈ E (here P(V ) de-

notes the set of all subsets of V and A∆B the symmetric difference of sets A
and B).

Lemma 8. Let G, H be undirected graphs. Then G
TT2−−→ H iff G

hom
−−→ ∆(H).

We can formulate analogous construction and result for rings M 6= Z2; this is

done in Section 5.1. We conclude this section by a more quantitative example.

Proposition 5. There are 2cn undirected graphs with n vertices that form an an-

tichain in the homomorphism order, yet all of them are TT2-equivalent.

Proof. To simplify notation, we will construct
(

n
bn/2c

)

graphs with sn+1 vertices,

this clearly proves the proposition. We use the replacement operation of [8]. Let

H be a graph (we explain later how do we choose it), let a, b, x1, . . . , x5 be

pairwise distinct vertices of H . Next, we take an oriented path with n edges and

13
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Figure 2: Petersen graph and the prism of C5—two TT2-equivalent graphs used

in the proof of Proposition 5. Below is an example of the construction for n = 4,

t = (1, 0, 1, 1).

replace each of them by a copy of H . That is, we take H1, . . . , Hn—isomorphic

copies of H—and identify vertex b of Hi with a of Hi+1 (for every i = 1, . . . , n−
1). Let G be the resulting graph.

Finally, for each t ∈ {0, 1}n we present a graph Gt. We let Fi be a copy of the

Petersen graph P if ti = 1, and a copy of the prism of C5—graph R in Figure 3—

if ti = 0. We construct the graph Gt as a vertex-disjoint union of G, F1, . . . , Ft

plus some ‘connecting edges’: for every i = 1, . . . , n and j = 1, . . . , 5 we let xj
i

denote the copy of xj in Hi ⊂ G and uj
i the copy of uj in Fi; we let xj

iu
j
i be an

edge of Gt. Note that each Gt has (|V (P )|+ |V (H)| − 1)n+ 1 vertices.

Claim 1. H can be chosen so that the only homomorphism G → G is

the identity. Moreover the vertices xi can be chosen so that the

distance between any two of them is at least 4.
This follows immediately from techniques of [8], e.g. we can take H9 from

the Figure 4.9 of [8] as our graph H .

Claim 2. If Gt
hom
−−→ Gt′ then ti ≤ t′i holds for each i.

Take any homomorphism f : Gt
hom
−−→ Gt′ , fix an i, and let Fi (F ′

i ) be the copy

of P or R that constitute the i-th part of graph Gt (Gt′ respectively). By Claim 1,

f maps the vertices of G identically, in particular f(xj
i ) = xj

i . As the only path

of length 3 connecting vertices xj
i and xj mod 5+1

i is the one containing vertices uj
i

14



and uj mod 5+1
i , mapping f satisfies f(uj

i ) = uj
i as well. Consequently, f maps

vertices of Fi to vertices of F ′
i . To show ti ≤ t′i it remains to observe that there is

no homomorphism P
hom
−−→ R.

Claim 3. For every t, t′ we have Gt
TT2−−→ Gt′ .

We map every edge of G and every edge xj
iu

j
i and uj

iu
j mod 5+1
i identically

(we call such edges easy edges). We map edges of Fi in Gt to edges of the outer

pentagon of Fi in Gt′ by sending an edge to the outer edge with the same number

in Figure 3. To check that this is indeed a TT2 mapping we use Lemma 6: if C is

a cycle contained in some Fi then we easily check that algebraical image of C is a

cycle. If C contains only easy edges that it is mapped identically, so its algebraical

image is again a cycle. As every cycle can be written as a symmetric difference of

these two types, we conclude that we have constructed a TT2 mapping.

Now we are ready to finish the proof. Consider a set A containing all vertices

of {0, 1}n with bn/2c coordinates equal to 1. By Claim 2, graphs Gt, Gt′ are

homomorphically incomparable for distinct t, t′ ∈ A. On the other hand, by

Claim 3, all of the graphs are TT2-equivalent.

In this proof we can use other building blocks instead of Petersen graph and

the pentagonal prism. To be concrete, we can take graphs G, H from Proposi-

tion 4 and use graphs G ∪̇H and H ∪̇H . If we slightly modify the construction,

we can prove version of Proposition 5 for TTZ mappings, and therefore for TTM

mappings for arbitrary M . Moreover, by another small change of the construc-

tion, we can guarantee that all of the constructed graphs are k-connected (for any

given k).

It would be interesting to know if 2cn from Proposition 5 can be improved.

Note that in the homomorphism order 4h the maximal antichain has full cardinal-

ity [12], that is there are

1

n!

(

(

n
2

)

⌊

1
2

(

n
2

)⌋

)

(1− o(1))

homomorphically incomparable graphs with n-vertices. Proposition 5 claims that

at least 2cn of these graphs are contained in one equivalence class of ≈M .

4 Left homotens graphs

In this section we point out similarities between homomorphisms and TTM map-

pings by defining a class of graphs that force any TTM mapping from them to

15



be induced. We prove a surprising result that most graphs have this property. In

Section 4.2 we use these graphs to find an embedding of category of graphs and

homomorphism to the category of graphs and TTM mappings, simplifying and

generalizing a result of [19].

4.1 A sufficient condition

Recall (Definition 1) that a graph G is left M -homotens if every TTM mapping

fromG (to any graph) is induced. The characterization of leftM -homotens graphs

seems to be a difficult problem; in this section we obtain a general sufficient con-

dition in terms of nice graphs. This notion was introduced and proved to be a

sufficient condition in [19] but only for M = Z
k
2. Here, we prove it to be suffi-

cient for all rings different from Z
k
2. (Restricting to M 6= Z

k
2 enables us to slightly

weaken the sufficient condition.)

In Proposition 4 we saw that high connectivity does not imply homotens. In

Corollary 4 we will see that every vertex of a homotens graph is incident with a

triangle. In view of this, a sufficient condition for homotens has to be somewhat

restrictive.

Definition 2. We say that an undirected graph G is nice if the following holds

1. every edge of G is contained in some triangle

2. every triangle in G is contained in some copy of K4

3. every copy of K4 in G is contained in some copy of K5

4. for every K, K ′ that are copies of K4 in G there is a sequence of vertices

v1, v2, . . . , vt such that

• V (K) = {v1, v2, v3, v4},

• V (K ′) = {vt, vt−1, vt−2, vt−3},

• vivj or vjvi is an edge of G whenever 1 ≤ i < j ≤ t and j ≤ i+ 3.

We say that a graph is weakly nice if conditions 1, 2, and 4 in the list above are

satisfied. Finally, we say that a directed graph is (weakly) nice, if the underlying

undirected graph is (weakly) nice.

Before we prove Theorem 2, which we are aiming to, we restate here analo-

gous result that appears as Theorem 13 in [19].

16



Theorem 1. Let G, H be undirected graphs, let G be nice, and let f : G
TT2−−→

H . Then f is induced by a homomorphism of the underlying undirected graphs.

Shortly, every undirected nice graph is Z2-homotens.

Theorem 2. Let G, H be (directed or undirected) graphs, let G be weakly nice,

let M 6= (Z2)
r any ring. Suppose f : G

TTM−−−→ H . Then f is induced by a

homomorphism or an antihomomorphism. Shortly, every weakly nice graph is

M -homotens.

We take time out for a technical lemma.

Lemma 9. Let M be a ring that is not isomorphic to a power of Z2. Let f :
−→
K 4

TTM−−−→ H , where H is any loopless graph and
−→
K 4 any orientation of K4. Then

f is induced by an injective homomorphism or antihomomorphism. Moreover,

this (anti)homomorphism is uniquely determined.

Proof. Suppose first that f(
−→
K 4) is a three-colorable graph, i.e., that there is a

homomorphism h : f(
−→
K 4) →

←→
K 3, where

←→
K 3 is the directed graph with three

vertices and all six oriented edges among them. A composition of TTM mapping

f :
−→
K 4

TTM−−−→ f(
−→
K 4) with h] gives g :

−→
K 4

TTM−−−→
←→
K 3. Consider the three cuts

of size 4 in
←→
K 3: X1, X2, X3. As M is not a power of Z2, 1 + 1 6= 0; let ϕi

be M -tension that attains value ±1 on Xi and 0 elsewhere. We can choose ϕi

so, that for every e ∈ E(
←→
K 3) we have {ϕ1(e), ϕ2(e), ϕ3(e)} = {0,±1}. As g

is TTM , mappings ψi = ϕig are M -tensions and for every e ∈ E(
−→
K 4) we have

{ψ1(e), ψ2(e), ψ3(e)} = {0,±1}. (*)

Call an M -tension simple if it attains only values 0 and±1. We will show that

three simple M -tensions ψ1, ψ2, ψ3 on
−→
K 4 with property (*) do not exist.

To this end, we will characterize sets Kerψ = {e ∈ E(
−→
K 4), ψ(e) = 0} for

simple M -tensions ψ. Let ψ be such tension. Pick v ∈ V (
−→
K 4) and let e1, e2, e3

be adjacent to v. Note that ψ is determined by its values on e1, e2, e3. We may

suppose that each ei is going out of v; otherwise we change orientation of some

edges and the sign of ψ on them. Further, we may suppose that |{i, ψ(ei) = 1}| ≥
|{i, ψ(ei) = −1}|; otherwise we consider−ψ. Thus, we distinguish the following

cases (see Figure 3).

• ψ(ei) ∈ {0, 1} for each i.
Let z be the number of ei such that ψ(ei) = 0. Then ψ is generated by a cut

with z + 1 vertices on one side of the cut. Therefore, the set Kerψ is either

the edge set of a
−→
K 4, of a triangle, or it is a pair of disjoint edges.
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Figure 3: Illustration of proof of Lemma 9.

• ψ(e1) = 1, ψ(e2) = 0, ψ(e3) = −1.

In this case Kerψ is a single edge. Note, that this case (and the next one)

may happen only if 1 + 1 + 1 = 0.

• ψ(e1) = ψ(e2) = 1, ψ(e3) = −1.

In this case too, Kerψ is a single edge.

Hence, E(
−→
K 4) is partitioned into three sets, whose sizes are in {1, 2, 3, 6}.

Therefore, there are two possibilities:

• 6 = 3 + 2 + 1: The complement of a triangle is a star of three edges, there

are no two disjoint edges in it.

• 6 = 2+2+2: In this case, all three ψi’s are generated by a cut. Suppose
−→
K 4

is oriented as in Figure 3, the values of ψ1 are indicated. It is not possible

to fulfill the condition (*) on both edges from Kerψ1.

So far we have proved, that the chromatic number of f(
−→
K 4) is at least four. As

f(
−→
K 4) has at most 6 edges, its chromatic number is exactly four. Let V1, . . . , V4

be the color classes. There is exactly one edge between two distinct color classes

(otherwise the graph is three-colorable). Thus, f is a bijection. Next, |Vi| = 1 for

every i (as otherwise, we can split one color-class to several pieces and join these

to the other classes; again, the graph would be three-colorable). Consequently,

f(
−→
K 4) is some orientation of K4.
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We call star a set of edges sharing a vertex. If we let ϕ be a simple M -tension

on f(
−→
K 4) corresponding to a cut which is a star, then ϕf is a simple tension

that is nonzero exactly on three edges (f is a bijection). By the characterization

of zero sets of simple tensions we see that preimage of each star is a star. As

f is a bijection and preimage of every star is a star, also image of every star is

a star. This allows us to define a vertex bijection g : V (
−→
K 4) → V (f(

−→
K 4)) by

letting g(u) = u′ iff the f -image of the star with u as the central vertex is the

star centered at u′. Stars sharing an edge map to stars sharing an edge, hence f is

induced by g, which is either a homomorphism or an antihomomorphism.

Proof (Theorem 2). It is convenient to suppose that G contains no parallel edges

(Proposition 2). Let K be a copy of K4 in G (by this we mean here that K is

some orientation of K4). By Lemma 9 the restriction of f to K is induced by an

(anti)homomorphism, let it be denoted by hK . That is, we assume f |E(K) = h]
K

(or f |E(K) = h[
K).

As every edge is contained in some copy ofK4, it is enough to prove that there

is a common extension of all mappings {hK | K ⊆ G, K ' K4} (we may define

it arbitrarily on isolated vertices of G).

We say that hK and hK′ agree if for any v ∈ V (K)∩V (K ′) we have hK(v) =
hK′(v) and either both hK , hK′ are homomorphisms or both are antihomomor-

phisms. Thus, we need to show that any two mappings hK , hK′ agree.

First, let K, K ′ be copies of K4 that intersect in a triangle. Then hK and hK′

agree (note that this does not necessarily hold if the intersection is just an edge,

see Figure 3).

Now suppose K, K ′ are copies of K4 that have a common vertex v. Since

the graph G is weakly nice, we find v1, v2, . . . , vt as in Definition 2. Let Gi =
G[{vi, vi+1, vi+2, vi+3}]: every Gi is a copy of K4, G1 = K and Gt−3 = K ′.

Suppose v = vl = vr, where l ∈ {1, 2, 3, 4}, r ∈ {t− 3, t− 2, t− 1, t}. Consider

a closed walk W = vl, vl+1, . . . , vr−1, vr. Let v′i = hGi
(vi) for l ≤ i ≤ r − 3

and v′i = hGr−3
(vi) for r − 3 ≤ i ≤ r. Mappings hGi

and hGi+1
agree, hence

v′iv
′
i+1 = f(vivi+1) is an edge of H . So W ′ = v′l, v

′
l+1, . . . , v

′
r−1, v

′
r is a walk in H .

Let ϕ be ‘a ±1-flow around W ’, formally

ϕ(e) =
∑

l≤i≤r−1

e=(vi,vi+1)

1−
∑

l≤i≤r−1

e=(vi+1,vi)

1 .

Clearly ϕ is an M -flow. Similarly, define ϕ′(e) from W ′. We have ϕ′ = ϕf ,
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hence ϕ′ is a flow (Lemma 6). This can happen only if W ′ is a closed walk, that

is v′l = v′r.

By definition, v′r = hK′(v). As mappings hGi
and hGi+1

agree, we have that

hGi
(vi+j) = hGi+j

(vi+j) for j ≤ 3. Consequently, v′l = hK(v), which finishes the

proof.

Combining Theorems 1 and 2 we obtain a corollary.

Corollary 2. An undirected nice graph is left M -homotens for every ring M . A

(directed or undirected) weakly nice graph is leftM -homotens for every ringM 6=
Z

k
2 .

Extending our conditions that guarantee that a graph is M -homotens, we pre-

sent the following lemma, which will be used in Section 4.2. Note that the as-

sumption about spanning subgraphs is needed.

Lemma 10. SupposeH contains a connected spanningM -homotens graph. Then

H is M -homotens.

Proof. Let f : H
TTM−−−→ K, let G be the connected spanning M -homotens sub-

graph of H . Restriction of f to E(G) is TTM , hence f(e) = g](e) for each

e ∈ E(G) and some (anti)homomorphism g. Let e = uv ∈ E(H) \ E(G). We

have to prove f(e) = (g(u), g(v)). Let P be a path from u to v in G. By treating

the closed walk P ∪{uv} asW in the end of the proof of Theorem 2, we conclude

the proof.

4.2 Applications

In this section we provide several applications of nice graphs (that is of Theo-

rem 2 and Corollary 2). Particularly, we prove that ‘almost all’ graphs are left

M -homotens for every ring M and construct an embedding of category Ghom into

GTTM
. This result was proved (for M = Z2) in [19] by an ad-hoc construction.

Here we follow a more systematic approach—we employ a modification of an

edge-based replacement operation (see [8]). As a warm-up we prove an easy, but

perhaps surprising result.

Corollary 3. For every graph G there is a graph G′ containing G as an induced

subgraph such that for every ring M every TTM mapping from G′ to arbitrary

graph is induced by a homomorphism (i.e., G′ is M -homotens).
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Proof. We take as G′ the (complete) join of G and K5; that is, we let V (G′) =
V (G)∪{v1, v2, . . . , v5}, andE(G′) = E(G)∪{all edges containing some vi}. By

Theorem 2 it is enough to show thatG′ is nice. Every copy ofKt (t < 5) inG′ can

be extended to K5 by adding some vertices vi. One can also show routinely that

any two copies of K4 in G′ are ‘K4-connected’—condition 4 in Definition 2.

The following theorem was our main motivation for introducing (weakly) nice

graphs. Note that ‘a.a.s.’ means, as usual, ‘asymptotically almost surely’, that is

‘with probability tending to 1’.

Theorem 3. Let M be a ring.

1. Complete graphKk isM -homotens for k ≥ 5 (and for k ≥ 4 ifM 6= (Z2)
t).

2. The random graph G(n, 1/2) is M -homotens a.a.s.

3. The random k-partite graph is M -homotens a.a.s. for k ≥ 5 (and for k ≥ 4
if M 6= (Z2)

t). Explicitly,

lim
n→∞

Pr[G = G(n, 1/2) is M -homotens | G is k-partite] = 1 .

4. The random Kk-free graph is M -homotens a.a.s. for k ≥ 6 (and for k ≥ 5
if M 6= (Z2)

t).

If M 6= Z2, then in each of the statement, any orientation of the considered graph

is M -homotens, too.

Proof. As Kt is nice (weakly nice for t = 4), 1 follows by Corollary 2. In [19]

we proved that the random graph is a.a.s. nice, so again, Corollary 2 implies 2.

By [11], a random Kk-free graph is a.a.s. (k − 1)-partite, hence 3 implies 4. The

proof of 3 is similar to the proof that the random graph is a.a.s. nice, we sketch it

for convenience.

Let A1, . . . , Ak be the parts of the random k-partite graph. By standard ar-

guments, all Ai’s are a.a.s. approximately of the same size, in particular all are

non-empty. It is a routine to verify parts 1, 2, and (in case k ≥ 5) 3 of Defini-

tion 2. For part 4, let V (K) = {v1, . . . , v4}, V (K ′) = {v9, . . . , v12}. We pick i1,

. . . , i4 so that vt 6∈ Aik , except possibly if t = k or t = k + 8. We attempt to pick

v5 ∈ Ai1 , . . . , v8 ∈ Ai4 to satisfy the condition 4. The probability that a particular

4-tuple fails is at most
(

1−2−18
)n/2k

. Hence, the probability that some copies K,

K ′ of K4 are ‘bad’ is at most n8cn (for some c < 1).
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Figure 4: The graph I used in triangle-based replacement (proof of Theorem 4).

We proceed by another application of Corollary 2 — we show that the structure

of TTM mappings is at least as rich as that of homomorphisms.

Theorem 4. There is a mapping F that assigns graphs to graphs, such that for

any ring M and for any graphs G, H (we stress that we consider loopless graphs

only) holds

G 4h H ⇐⇒ F (G) 4M F (H) .

Moreover F can be extended to a 1-1 correspondence for mappings between

graphs: if f : G → H is a homomorphism, then F (f) : F (G) → F (H) is a

TTM mapping and any TTM mapping between F (G) and F (H) is equal to F (f)

for some homomorphism f : G
hom
−−→ H . (In category-theory terms, F is an em-

bedding of the category of all graphs and their homomorphisms into the category

of all graphs and all TTM -mappings between them.)

Proof. We will use a modification of edge-based replacement (see [8]). Let I be

the graph in Figure 4 with arbitrary (but fixed) orientation. To construct F (G),
we will replace each of the vertices of G by a triangle and each of the edges

of G by a copy of I , gluing different copies on triangles. More precisely, let

U = V (G) × {0, 1, 2}, for every edge e ∈ E(G) let Ie be a separate copy of I .

If e = (u, v) then we identify vertex ui (i ∈ {0, 1, 2}) with (u, i) in U , and

vertex vi with (v, i) in U . Let F (G) be the resulting graph; we write shortly

F (G) = G ∗ I . If f : V (G) → V (H) is a homomorphism then we define

F (f) : E(F (G))→ E(F (H)) as follows: let e = (u, v) be an edge of G and a an

edge of E(Ie). Let e′ be the image of e under f . In the isomorphism between Ie

and I ′e the edge a gets mapped to some a′. We put F (f)(a) = a′. It is easily seen

that F (f) is a TTZ (thus TTM ) mapping that is induced by a homomorphism, we

let ϕ(f) denote this homomorphism. Now, we turn to the more difficult step of
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proving that every TTM mapping from G to H is F (f) for some f : G
hom
−−→ H .

We will need several auxiliary claims.

Claim 1. I is critically 6-chromatic.

Take any K5 in I , color in by 5 colors. There is a unique way how to extend

it, which fails, so χ(I) ≥ 6. Clearly 6 colors suffice. Moreover, if we delete

any vertex of I then it is possible to color the remaining vertices consecutively

1, 2, 3, 4, 5, 1, 2, . . . , 5.

Claim 2. I is rigid.

That is, the only homomorphism f : I → I is the identity. By Claim 1, f
cannot map I to its subgraph, hence f is an automorphism. There is a unique

vertex x of degree 9, so f fixes it. There is a unique hamiltonian cycle x =
x1, . . . , x? such that xixj is an edge whenever |i− j| ≤ 4, therefore this cycle has

to be fixed by f too. This leaves two possibilities, but only one of them maps the

edge x1x? properly.

Claim 3. I is K5-connected.

That is, for every two vertices a, b of I there is a path a = a1, a2, . . . , ak = b
such that aiaj is an edge whenever |i− j| ≤ 4.

Claim 4. Whenever H is a graph and g : I
hom
−−→ H ∗ I a homomorphism,

there is an edge e ∈ E(H) such that g is an isomorphism between I and Ie.

If g maps all vertices of I to one of the Ie’s, then we are done by Claim 2.

If not, let a, b be vertices of I such that g(a) is a vertex of Ie (for some edge

e = uv ∈ E(H)) and g(b) is not. Choose a path a = a1, a2, . . . , ak = b as in

Claim 3. Let ai be the last vertex on this path that is a vertex of Ie. Not all three

vertices ai−1, ai−2, ai−3 can be in the ‘connecting triangle’ {v}× {0, 1, 2}, on the

other hand each of them is connected to ai+1, a contradiction.

Claim 5. For every graph H the graph H ∗ I is nice.

This is an easy consequence of Lemma 10.

To finish the proof, let h : F (G)
TT
−−→ F (H) be a TTM mapping. As graph

G ∗ I is nice, it is M -homotens by Corollary 2. Therefore h is induced by a

homomorphism, say g : F (G)
hom
−−→ F (H). By Claim 4, g maps an Ie to an Ie′ ,

therefore there is a homomorphism f : V (G) → V (H) such that g = ϕ(f) and

h = F (f), as claimed.
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4.3 A necessary condition

In this section we present a necessary condition for a graph to be Z-homotens.2

As mentioned earlier, odd circuits are the simplest examples of graphs that are

not Z-homotens. Similarly, no graph with a vertex of degree 2 is Z-homotens,

except of a triangle. This way of thinking can be further strengthened and gen-

eralized, yielding Theorem 5. To state our result in a compact way, we introduce

a definition from [5]. We say that a graph G is chromatically k-connected if for

every U ⊆ V (G) such that G − U is disconnected the induced graph G[U ] has

chromatic number at least k. Equivalently [5], G is chromatically k-connected, iff

every homomorphic image of G is k-connected.

Theorem 5. Let M be a ring. If a graph is connected and M -homotens then it is

chromatically 3-connected.

Proof. Suppose G is a counterexample to the theorem. Hence, vertices of G can

be partitioned into sets A, B, U , L, such that A ∪ B separates U from L; that

is there is no edge from U to L, moreover A, B are independent sets. We may

suppose A ∪ B is a minimal set that separates U from L. We are going to prove

that G is not Z-homotens, therefore by Lemma 16 not M -homotens as well.

We identify all vertices of A to a single vertex a, and all vertices of B to

a vertex b. Let F be the resulting graph, and f : G → F be the identifying

homomorphism. We define a TTZ mapping g from F as follows. For u ∈ U we

map edge (u, a) (if it exists) to (b, u), (a, u) to (u, b), (u, b) to (a, u), and (b, u)
to (u, a). For u, v ∈ U we map edge (u, v) (if it exists) to (v, u). Every other edge

is mapped to itself. We let F ′ denote the resulting graph (it has the same set of

vertices as F ). It is straightforward to use Lemma 6 to verify that g is indeed TTZ.

Hence gf ] is a TTZ mapping; we need to show that it is not induced. At least

one ofA, B is non-empty. Suppose it isA and pick x ∈ A. AsA∪B\{x} is not a

separating set (A∪B is a minimal one), there are vertices u ∈ U and l ∈ L that are

adjacent to x, without loss of generality (x, u), (x, l) are edges ofG. By definition

of g we have gf ]((x, l)) = (x, l) and gf ]((x, u)) = (u, y). Therefore gf ] maps

two adjacent edges to two nonadjacent edges, hence it is not induced.

The following corollary deduces a simpler necessary condition, though a weak-

er one: We can prove that the graph of icosahedron is not Z-homotens by using

2As any TTZ mapping is TTM for every ring M (Lemma 16), each M -homotens graph is

also Z-homotens. Therefore, the presented condition is necessary for a graph to be M -homotens,

too. To illustrate that Z2-homotens is indeed stronger condition than Z-homotens, we note that no

4-chromatic graph is Z2-homotens—it admits a TT2 mapping to K3.
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Theorem 5 (the neighborhood of an edge is a C6), but not using Corollary 4.

Corollary 4. Let G be a connected graph with at least four vertices. Suppose

the neighbourhood of some v ∈ V (G) induces a bipartite graph. Then G is not

M -homotens for any ring M .

Consequently, every vertex of a homotens graph is incident with an odd wheel

(in particular with a triangle), except if it is contained in a component of size at

most three.

Proof. Let A, B be the color-classes of neighborhood of v. If there is a vertex

nonadjacent to v, then we can use Theorem 5. So suppose v is connected to every

vertex of G. Then every other vertex has a bipartite neighborhood. The only case

that stops us from using Theorem 5 is when |A|, |B| ≤ 1, that is when G has at

most three vertices.

A somewhat surprising consequence of Corollary 4 is that no triangle-free

graph is homotens. This immediately answers a question of [19]. It also implies,

that a connected cubic graph is M -homotens only if it is a K4 and M is not a

power of Z2. More generally, we have the following result (compare Theorem 3).

Corollary 5. Let r ≥ 3 be integer, M ring. The probability that a random r-
regular graph is M -homotens is bounded by a constant less than 1, if size of the

graph is large enough.

Proof. It is known [22] that the probability that random r-regular graph is triangle-

free tends to a nonzero limit, hence we can apply Theorem 4.

Corollary 4 also indicates that complete graphs involved in the definition of

nice graphs are necessary, at least to some extent. However, the condition of

Corollary 4 (or Theorem 5) is far from being sufficient: for example the graph

from Proposition 4 is chromatically k-connected and not Z-homotens. In par-

ticular, we do not know whether there are K4-free homotens graphs. By [11],

a random K4-free graph is a.a.s. 3-partite, hence not chromatically 3-connected,

hence by Theorem 5 not Z-homotens. Still, it is possible thatK4-free Z-homotens

graphs exist, promising candidates are Kneser graphs K(4n − 1, n), which are

chromatically 3-connected for large n [5].

Question 2. Is the Kneser graph K(4n− 1, n) Z-homotens, if n is large enough?
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5 Right homotens graphs

In this section we complement Section 4 by study of graphs which, when used

as target graphs, make existence of TT mappings and of homomorphisms co-

incide. Recall that a graph H is called right M -homotens if the existence of a

TTM mapping from an arbitrary graph to H implies the existence of a homomor-

phism. Right homotens graphs (in comparison with left homotens ones) provide

more structure; in this section we characterize them by means of special Cayley

graphs and state a question aiming to find a better characterization.

5.1 Free Cayley graphs

Free Cayley graphs were introduced by Naserasr and Tardif [14] (see also thesis

of Lei Chu [1]) in order to study chromatic number of Cayley graphs. They will

serve us as a tool to study TT mappings, in particular we will use them to study

right homotens graphs and to prove density in Section 6.

Let M be a ring, let H be a graph. For a vertex v ∈ V (H) we let ev :
V (H) → M be the indicator function, that is ev(u) = 1 if v = u and ev(u) = 0
otherwise. We define graph3 ∆M(H) with verticesMV (H), where (f, g) is an edge

iff g − f = ev − eu for some edge (u, v) ∈ E(H). We can see that ∆M(H) is a

Cayley graph, it is called the free Cayley graph of H . We begin our study of free

Cayley graphs with a simple observation and with a useful lemma, which is due

to Naserasr and Tardif (for a proof, see [1]).

Proposition 6. Graph ∆M(H) contains H as an induced subgraph.

Proof. Take functions {ev | v ∈ V (H)} ⊆ V (∆M(H)).

Lemma 11. Let M be a ring, H a Cayley graph on M k (for some integer k) and

G an arbitrary graph. Then any homomorphism G
hom
−−→ H can be (uniquely)

extended to a mapping ∆M(G)→ H that is both graph and ring homomorphism.

The following easy lemma appears in [3] (although without explicit mention

of graphs ∆M ).

3More precisely, we define ∆M (H) to be a directed graph. However, if
←→
H is a symmetric

orientation of an undirected graph H , then ∆M (
←→
H ) is a symmetric orientation of some undirected

graph H ′, we may let ∆M (H) = H ′. The whole Section 5.1 may be modified for undirected

graphs by similar changes.
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Lemma 12. G
TTM−−−→ H is equivalent with G

hom
−−→ ∆M(H).

Note that Lemma 8 is a special case of Lemma 12, as graphs ∆(G) defined

in Section 3 are isomorphic to ∆Z2
(G). Lemmas 11 and 12 have as immediate

corollary an embedding result that nicely complements Theorem 4. In contrary

with Theorem 4 though, our embedding is not functorial, it is just embedding of

quasiorder (G,4M) in (G,4h).

Corollary 6. G
TTM−−−→ H is equivalent with ∆M(G)

hom
−−→ ∆M(H).

Proof. If G
TTM−−−→ H then by Lemma 12 we have G

hom
−−→ ∆M(H) and by

Lemma 11 the result follows. For the other implication, by Proposition 6 graph G

maps homomorphically to ∆M(H), and application of Lemma 12 yields G
TTM−−−→

H .

We remark that Corollary 6 provides an embedding of category of TTM map-

pings to category of Cayley graphs with mappings that are both ring and graphs

homomorphisms.

5.2 Right homotens graphs

We start with two simple observations concerning right homotens graphs. The

first one is a characterization of right homotens graphs by means of ∆M . It does

not, however, give an efficient method (polynomial algorithm) to verify if a given

graph is right homotens, neither a good understanding of right homotens graphs.

Hence, we will seek better characterizations (compare with Corollary 7 and Ques-

tion 3).

Proposition 7. A graph H is right M -homotens if and only if ∆M(H)
hom
−−→ H .

Proof. For the ‘only if’ part it is enough to observe that ∆M(H)
TTM−−−→ H for

every graph H: clearly ∆M(H)
hom
−−→ ∆M(H) and we use Lemma 12. For the

other direction, if G
TTM−−−→ H then by Lemma 12 we have G

hom
−−→ ∆M(H) and by

composition (Lemma 1) we have G
hom
−−→ H .

Lemma 13. Assume H
hom
−−→ H ′ and H ′ TTM−−−→ H . If H is right M -homotens then

H ′ is right M -homotens as well.
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Proof. If H is right M -homotens, then ∆M(H)
hom
−−→ H . By Corollary 6 from

H ′ TTM−−−→ H we deduce that ∆M(H ′)
hom
−−→ ∆M(H). By composition,

∆M(H ′)
hom
−−→ ∆M(H)

hom
−−→ H

hom
−−→ H ′ ,

hence H ′ is right M -homotens.

Corollary 7. Let H , H ′ be homomorphically equivalent graphs (that is H
hom
−−→

H ′ and H ′ hom
−−→ H). Then H is right M -homotens if and only if H ′ is right

M -homotens.

Note that TTM -equivalence is not sufficient in Corollary 7: each graph H is

TTM -equivalent with ∆M(H) and the latter is always a right M -homotens graph

(for each M ), as we will see from the next proposition. Also note that the analogy

of Corollary 7 does not hold for left homotens graphs.

Next, we consider a class of right M -homotens graphs that is central to this

topic. We will say that H is an M -graph if it is a Cayley graph on some power

of M (Z2-graphs are also called cube-like graphs; they have been introduced by

Lovász [7] as an example of graphs, for which every eigenvalue is an integer).

Proposition 8. Any M -graph is right M -homotens.

Proof. Let H be an M -graph. As H
hom
−−→ H , by Lemma 11 we conclude that

∆M(H)
hom
−−→ H .

In analogy with the chromatic number we define the TTM number χTTM
(G) to

be the minimum n for which there is a graph H with n vertices such that G
TTM−−−→

H . As any homomorphism induces a TTM mapping, we see that χTTM
(G) ≤

χ(G) for every graph G. Continuing our project of finding similarities between

TTM mappings and homomorphisms, we prove that for finiteM the TTM number

cannot be much smaller than the chromatic number.

Corollary 8. Let G be arbitrary graph. If M is a finite ring of characteristic p
then χ(G)/χTTM

(G) < p.

Moreover, χ(G)/χTT
Z
(G) < 2.

Proof. First we prove that χ(G) < m · χTTM
(G) for any finite ring M of size m.

To this end, consider a Cayley graph on M k with the generating set M k \ {~0}—
that is a complete graph Kmk with every edge in both orientations. This is an

M -graph, hence by Proposition 8 it is right M -homotens.
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Now, choose k so that mk−1 < χTTM
(G) ≤ mk. It follows that G

TTM−−−→ Kmk ,

and as Kmk is right M -homotens, G
hom
−−→ Kmk . Therefore, χ(G) ≤ mk <

m · χTTM
(G).

Next, if p is the characteristic of M , this means that M contains Zp as a sub-

ring. This by Lemma 16 implies that any TTM mapping is TTZp
, thus χTTM

(G) ≥
χTT

Zp
(G), and the result follows. For the second part we use Lemma 16 again to

infer that any TTZ mapping is TTZ2
.

How good is the bound given by Corollary 8 is an interesting and difficult

question. Even in the simplest case M = Z2 this is widely open; perhaps surpris-

ingly this is related with the quest for optimal error correcting codes. For details,

see [19, 18] Another corollary of Proposition 8 is a characterization of right ho-

motens graphs.

Corollary 9. A graph is right M -homotens if and only if it is homomorphically

equivalent to an M -graph.

Proof. The ‘if’ part follows from Lemma 7 and Statement 8. For the ‘only if’ part,

notice that ∆M(H) is a M -graph, H ⊆ ∆M(H), and if H is right M -homotens

then ∆M(H)
hom
−−→ H .

Corollary 9 is not very satisfactory, as it does not provide any useful algorithm

to verify if a given graph is right homotens. Indeed, it is more a characterization

of graphs that are hom-equivalent to some M -graph, than the other way around:

Suppose we are to test if a given graph is hom-equivalent to some (arbitrarily

large) M -graph. It is not obvious if there is a finite process that decides this;

however Corollary 9 reduces this task to decide if ∆M(H)
hom
−−→ H . The latter

condition is easily checked by an obvious brute-force algorithm.

We hope that a more helpful characterization of right homotens graphs will

result from considering the core of a given graph. As a core of a graph H is

hom-equivalent with H , it is right homotens if and only if H is. Therefore, we

attempt to characterize right homotens cores, leading to an easy proposition and

an adventurous question. We note that one part of the proof of the proposition

is basically the folklore fact that the core of a vertex-transitive graph is vertex-

transitive, while the other part is a generalization of an argument used by [6] to

prove that Kn is right Z2-homotens if and only if n is a power of 2. However, we

include the proof for the sake of completeness.

Proposition 9. Let H be a right M -homotens graph that is a core. Then
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• |V (H)| is a power of |M |, and

• H is vertex transitive. If M = Z2, then for every two vertices of H , there is

an automorphism exchanging them.

Proof. For a function g ∈ MV (H) we let Hg denote the subgraph of ∆M(H) in-

duced by the vertex set {g + ev; v ∈ V (H)}. Observe that each Hg is isomorphic

with H . Let f : ∆M(H) → H be a homomorphism and for each u ∈ V (H),
define Vu = {v ∈ V (∆M(H)); f(v) = u}. Now f restricted to Hg is a homo-

morphism from Hg to H . As H is a core, every homomorphism from H to H is

a bijection. Consequently, for every g the graph Hg contains precisely one vertex

from each Vu. By considering all graphs Hg we see that all sets Vu are of the same

size |M ||V (H)|/|V (H)|. Therefore, |V (H)| is a power of |M |.

For the second part let u, v be distinct vertices of H . We know ∆M(H)
hom
−−→

H . As H ' H~0 (~0 being the identical zero), we have a homomorphism f :

∆M(H)
hom
−−→ H~0. As H is a core, we know that f restricted to H~0 is an au-

tomorphism of H~0. By composition with the inverse automorphism, we may

suppose that f restricted to H~0 is an identity. Next, consider the isomorphism

ϕ : ∆M(H)
hom
−−→ ∆M(H) given by g 7→ g+ ev− eu. A composed mapping f ◦ϕ

is a homomorphism H~0

hom
−−→ H~0 (therefore an automorphism) that maps u to v.

Moreover, if M = Z2 then f ◦ ϕ maps v to u as well.

The previous proposition suggests that a stronger result might be true, and that

this may be a way to a characterization of right homotens graphs. In particular,

we ask the following.

Question 3. 1. Suppose H is a right M -homotens graph and a core. Is H an

M -graph?

2. Is the core of each M -graph an M -graph?

We note that even the (perhaps easier to understand) case M = Z2 is open.

But one can see easily that 1 and 2 in Question 3 are equivalent: If H is a right

M -homotens core, then H is the core of the M -graph ∆(H); hence 2 implies 1.

Conversely, let K be an M -graph and H its core. By Proposition 8, K is right

M -homotens, therefore by Corollary 7 H is right M -homotens. If 1 is true, then

H is an M -graph, as claimed.
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6 Density

In this section we compare homomorphisms and tension-continuous mappings

from a different perspective: we prove that partial orders defined by existence

of a homomorphism (a TTM mapping respectively) share an important property,

namely the density. To recall, we say that a partial order < is dense, if for every

A, B satisfying A < B there is an element C for which A < C < B.

It is known [8, 16] that the homomorphism order (with all hom-equivalence

classes of finite graphs as elements and with the relation ≺h) is dense, if we do

not consider graphs without edges. The parallel result for the order defined by

TTM mappings is given by the following theorem. In fact we prove a stronger

property (proved in [8] for homomorphisms) that every finite antichain in a given

interval can be extended; density is the special case t = 0.

Theorem 6. Let M be a ring, let t ≥ 0 be an integer. Let G, H be graphs such

that G ≺M H and E(G) 6= ∅. Let G1, G2, . . . , Gt be pairwise incomparable (in

≺M ) graphs satisfying G ≺M Gi ≺M H for every i. Then there is a graph K
such that

1. G ≺M K ≺M H ,

2. K and Gi are TTM -incomparable for every i = 1, . . . , t.

If in addition G 4h H then we have even G ≺h K ≺h H . If we consider

undirected graphs, then we get undirected graph K.

This theorem was proved in a previous paper [19] by the authors, here we

present a much shorter proof. The key of the proof is the use of graphs ∆M(G)
for a new proof of Lemma 14. From this, Theorem 6 follows directly.

Proof (Theorem 6—sketch). We use the next lemma for graphs G, G1, . . . , Gt.

and we let G′ be the graph, that this lemma ensures. Put K = G+G′. For details,

see [19].

Lemma 14 (Sparse incomparability lemma for TTM ). LetM be an abelian group

(not necessarily a finitely generated one), let l, t ≥ 1 be integers. Let G1, G2, . . . ,

Gt, H be (finite directed non-empty4) graphs such that H 6
TTM−−−→ Gi for every i.

Then there is a graph G such that

4that is with non-empty edge set
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1. g(G) > l (that is G contains no circuit of size at most l),

2. G ≺h H ,

3. G 6
TTM−−−→ Gi for every i = 1, . . . , t.

(For undirected graphs we get undirected graph G.)

In the proof we will use a variant of Sparse incomparability lemma for homo-

morphisms in the following form (it has been proved for undirected graphs in [17],

the version we present here follows by the same proof).

Lemma 15 (Sparse incomparability lemma for homomorphisms). Let l, t ≥ 1
be integers, let H , G1, . . . , Gt be (finite directed non-empty) graphs such that

H 6
hom
−−→ Gi for every i. Let c be an integer. Then there is a (directed) graph G

such that

• g(G) > l (that is G contains no circuit of size at most l),

• G ≺h H , and

• G 6
hom
−−→ Gi for every i.

(For undirected graphs we get undirected graph G.)

Before we start the proof, we summarize necessary results about influence of

ring M on the existence of TTM mappings. The following summarizes results

that appear as Theorem 4.4 in [3], and as Lemma 14 and 17 in [19].

Lemma 16. Let G, H be graphs, f : E(G)→ E(H) any mapping.

1. If f is TTZ then it is TTM for any group M .

2. Let M be a subring of N . If f is TTN then it is TTM .

3. Let G, H be finite graphs. Then G 4n H holds either for finitely many n or

for every n. In the latter case G 4
Z
H holds.

Proof (Lemma 14). First, suppose that M is a finite ring; by Lemma 12 we know

that H 6
hom
−−→ ∆M(Gi) for every i. Therefore, we may use Lemma 15 to obtain

G′ of girth greater than l such that G′ 4h H and G′ 64h ∆M(Gi). Consequently

G′ 6
TT
−−→M Gi for every i.

32



Next, let M be an infinite, finitely generated group, that is a ring. Then M '
Z

α ×
∏k

i=1 Z
βi
ni

, for some integers k, ni, βi, α. As M is infinite, we have α > 0,

thereforeM ≥ Z. By Lemma 16 we conclude that for any mapping it is equivalent

to be TTM and to be TTZ, hence we may suppose M = Z. By Lemma 16, there

is only finitely many integers n for which holds H
TTn−−→ Gi for some i or H

TTn−−→
−→
K 2. Pick some n for which neither of this holds. By the previous paragraph for

ring Zn we find a graph G′ such that G′ 6
TTn−−→ Gi for every i = 1, . . . , t. It follows

from Lemma 16 that also G′ 6
TTM−−−→ Gi.

Finally, let M be a general abelian group. For each mapping f : E(H) → X
(where X ∈ {G1, . . . , Gt}) there is an M -tension ϕX on X which certifies that

f is not a TTM mapping. Let A =
{

ϕX(e) | e ∈ E(X), X ∈ {G1, . . . , Gt}
}

be the set of all elements of M that are used for these certificates. Let M ′ be the

subgroup of M generated by A; by the choice of A we have H 6
TTM′

−−−→ Gi. By the

previous paragraph there is a graphG′ that meets conditions 1, 2, andG′ 6
TTM′

−−−→ Gi

for every i. Consequently,G′ 6
TTM−−−→ Gi for every i, which concludes the proof.

Let us add a remark that partially explains the way we conducted the above

density proof. Standard proofs of density of the homomorphism order rely on

the fact, that the category of graphs and homomorphisms has products. We prove

next, that this is not true for TTM mappings; therefore another approach is needed.

In [19] we developed a new structural Ramsey-type theorem to overcome the non-

existence of products; here we used the construction ∆M for much shorter proof.

Proposition 10. Category GTTM
of (directed or undirected) graphs and TTM

mappings does not have products for any ring M .

Proof. We will formulate the proof for the undirected version, although for the

directed version the same proof goes through. We show that there is no product

C3 × C3. Suppose, to the contrary, that P is the product C3 × C3. Let π1, π2 :

P
TT
−−→ C3 be the projections, let E(C3) = {e1, e2, e3}.

We look first at mappings fi :
−→
K 2 → C3 sending the only edge of

−→
K 2 to ei.

If we consider mapping fi to the first copy of C3 and fj to the second one, by

definition of the product there is exactly one edge e ∈ E(P ) such that π1(e) = ei

and π2(e) = ej . We let ei,j denote this e. So, E(P ) consists of nine edges ei,j , for

1 ≤ i, j ≤ 3.

As π1, π2 are TT mappings, by Lemma 6 there are no loops in P . There are

no parallel edges either: suppose e, f are parallel edges in P . Then without loss

of generality π1(e) 6= π1(f), hence we get a contradiction by Lemma 6.
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Finally, for a ρ ∈ S3 let fρ : C3 → C3 send ei to eρ(i). Using the definition of

product for mapping fid and fρ, Lemma 6, and the fact that there are no parallel

edges in P we find that Eρ = {e1,ρ(1), e2,ρ(2), e3,ρ(3)} are edges of a cycle. Consid-

ering ρ = id and ρ = (1, 3, 2) we find that part of P looks as in the Figure 5 (in

the directed case, the orientation may be arbitrary, if M = Z
k
2).

e3,3

e2,2

e3,2

e2,3 e1,1

e3,3

e2,2

e2,3

e3,2 e1,1

Figure 5: Proof of Proposition 10.

Consider the first case. AsEρ is a cycle for ρ = (2, 3, 1), the edges e1,2 and e2,3

are adjacent. By taking ρ = (2, 1, 3), we find that e1,2 and e2,3 are adjacent. As

there are no parallel edges in P , we have e1,2 = xy or e1,2 = yx. Hence, e1,2,

e2,3, e2,2 forms a cycle. As π1 is TT mapping, we obtain a contradiction by

Lemma 6. In the second case we proceed in the same way with edge e2,1, we

prove that it is adjacent with e3,2 and e3,3 and yield a contradiction with π2 being

a TT mapping.

7 Remarks

7.1 Broader context (Jaeger’s project)

Tension-continuous mappings were defined in [3, 19] in a broader context of three

related types of mappings: FF (lifts flows to flows), FT (lifts tensions to flows),

and TF (lifts flows to tensions). In [3, 18] these mappings are studied in more

detail, in particular their connections to several classical conjectures (Cycle Dou-

ble Cover conjecture, Tutte’s 5-flow conjecture, and Berge-Fulkerson matching

conjecture) are explained.

The universality and density of TT mappings shows that the Jaeger’s project

of characterizing “atoms” of a partial order defined by flow-continuous mappings

has no dual analogue (for TT mappings). It follows from Theorem 6 that each of

the quasiorders 4M is everywhere dense for the class of directed graphs. Graphs
−→
K 2 and the loop graph are the minimal and the maximal element of these orders.
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Particularly, there cannot be any atom (the contrary is conjectured for the flow-

continuous order in [3, 9]). This is also in sharp contrast with the homomorphism

order of oriented graphs where the homomorphism order 4h contains many gaps

of a complicated structure. (These gaps are characterized by [16].) Another conse-

quence of Theorem 6 is that each of the orders 4M contains an infinite antichain,

a property which is presently open forM -flow-continuous mappings for everyM ,

in particular for cycle-continuous mappings; see [3].

7.2 TT-perfect graphs

For every graph G, its chromatic number χ(G) is at least as big as the size of its

largest clique, ω(G). Recall, that a graph G is called perfect if χ(G′) = ω(G′)
holds for every induced subgraph G′ of G. A graph is called Berge if for no odd

l ≥ 5 does G contain Cl or C l as an induced subgraph. It is easy to see that being

perfect implies being Berge; the so-called Strong Perfect Graph Conjecture (due

to Claude Berge) claims that the opposite is true, too. Perfect graphs have been a

topic of intensive research that recently lead to a proof [2] of the Strong Perfect

Graph Conjecture.

As a humble parallel to this development we define a graph G to be TT -

perfect5 if for every induced subgraph G′ of G we have χTT2
(G′) ≤ ω(G′) (def-

inition of χTT2
(G′) appears before Corollary 8). Equivalently, G is TT -perfect if

each of its induced subgraphs G′ admits a TT2 mapping to its maximal clique.

Note that we cannot ask for χTT(G
′) = ω(G′) since K4

TT
−−→ K3, and therefore

χTT(K4) = 3, while ωTT (K4) = 4.

As any homomorphism induces a TT mapping (see Lemma 7), χTT(G
′) ≤

χ(G′) holds for every graph G′. Consequently, every perfect graph is TT perfect.

The converse, however, is false. For example, let G = C7. Graph G itself is

not perfect. On the other hand χTT(G) = 3 and every induced subgraph of G
is Berge, hence perfect, hence TT -perfect. Let us study TT -perfect graphs in a

similar manner as Strong Perfect Graph Theorem does for perfect graphs. To this

end, we define a graph G to be critical if G is not TT -perfect, but each induced

subgraph of G is. We start our approach by a technical lemma.

Lemma 17. Let l ≥ 3 be odd. CycleCl is not TT -perfect. GraphC l is TT -perfect

if and only if l = 7.

5more precisely, TT2-perfect, but we will not consider M 6= Z2 in this section
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Figure 6: Several critical graphs that are not cycles neither complements of cycles.

The dashed lines denote precisely the non-edges of the graph.

Proof. Clearly χTT(Cl) = 3 > ω(Cl). Graph C7 was discussed above, C5 is

isomorphic to C5. As χ(C9) = 5 and as K4 is right Z2-homotens, being a Z2-

graph, we have χTT(C9) = 5 > ω(C9). It is easy to verify that graphs C l for

l ≥ 13 are nice. Thus they are homotens and not TT -perfect, since they are not

perfect. The only remaining case is the graph C11. This is not nice, on the other

hand, every edge is contained it a K5 and all K5’s are ‘connected’—there is a

chain of all 11 copies of K5 such that neighboring copies intersect in a K4. It

follows that C11 is homotens, in particular C11 6
TT
−−→ K5.

Corollary 10. For every odd l > 3 graph Cl is critical; if l 6= 7 then C l is critical,

too. Moreover graphs G1, G2, and G3 in Figure 6 are critical.

Proof. We sketch the proof ofG1 being critical. We have χ(G1) = 1+χ(C7) = 5,

therefore Corollary 8 implies χTT (G1) = 5 > ω(G1) and G1 is not TT -perfect.

Let G′ be an induced subgraph of G1. If G′ = C7 then G′ is TT -perfect; oth-

erwise, it is a routine to verify that G′ is Berge, consequently perfect and TT -

perfect.

We do not know how many other critical graphs there are, not even if there is

an infinite number of them.
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