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Abstract

We extend the notion of a minor from matroids to simplicial complexes.
We show that the class of matroids, as well as the class of independence
complexes, is characterized by a single forbidden minor. Inspired by a
recent result of Aharoni and Berger, we investigate possible ways to extend
the matroid intersection theorem to simplicial complexes.

1 Introduction

The concept of a minor plays a fundamental role in matroid theory. In this
paper, we introduce minors in the more general context of simplicial complexes.
The definition is both topologically natural and extends the matroid-theoretic
definition. The latter is a substantial difference from the case of hypergraph
minors (described, e.g., in [4, Section 2.2]).

Interestingly, it turns out that matroids (as a subclass of the class of sim-
plicial complexes) can be characterized by a simple forbidden minor. The same
holds for another natural class of simplicial complexes, the independence (or flag)
complexes.

Are there any significant results in matroid theory that generalize to other
classes of simplicial complexes without forbidden minors? One result we consider
is the celebrated matroid intersection theorem [5], dealing with the rank of the
intersection of two matroids. Its recent generalization that applies to a matroid
and a general simplicial complex [2] suggests the question whether a further
generalization to two arbitrary simplicial complexes is possible. Although this
is not the case (see Section 6), we show that the result does hold true for other
classes of simplicial complexes characterized by forbidden minors besides the class
of matroids.
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2 Complexes

A simplicial complex (or just complex ) K is a set system on a certain ground
set such that if B ∈ K and A ⊂ B, then A ∈ K. In the present paper, we are
interested in finite complexes (i.e., those on a finite ground set), and we allow
A = ∅ in the above definition. We recall the basic facts and definitions concerning
simplicial complexes, referring the reader to [3] for more background.

The sets in a complex K are referred to as its faces ; we use lowercase Greek
letters to denote them. The dimension dim σ of a face σ is |σ| − 1, and the
dimension of a complex K is the maximum dimension of a face in K. (Note that
the dimension of a non-empty complex is at least −1; we define the dimension of
the empty one to be −2.) A facet of K is any inclusionwise maximal face of K.
The d-skeleton of K is the complex consisting of all the faces of K of dimension
at most d. The d-skeleton of K is complete if every set X ⊆ V (K) of size d + 1
is a face of K.

Faces of dimension 0 are called vertices. We let V (K) denote the set of vertices
of K. In general, the ground set of K may contain elements that are not vertices
of K. These are inessential for our purposes, and we consider complexes differing
only in such elements as identical. Apart from this technical point, the notion of
isomorphism of complexes is defined in the obvious way. If x is a vertex of a face
σ of K, we write σ \ x for σ \ {x}.

Complexes have a well-known topological interpretation: for each (finite) com-
plex K, there is an associated topological space ‖K‖ called the space of K. This
is defined as follows. Assign to each vertex x of K a point p(x) in Rn, where
n = |V (K)|, in such a way that the set {p(x) : x ∈ V (K)} is affinely indepen-
dent. For each non-empty A ∈ K, let p(A) be the simplex whose vertices are
the points p(x) with x ∈ A. The space ‖K‖ is defined as the union of all the
simplices p(A) such that ∅ 6= A ∈ K, topologized as a subspace of Rn.

An important concept in combinatorial topology is connectivity. A topological
space X is k-connected (k ≥ 0) whenever for each d ≤ k, every continous mapping
from a d-dimensional sphere Sd to X can be extended to a continuous mapping
from the (d + 1)-dimensional ball Bd+1 to X. The connectivity of X, conn(X),
is the maximum k such that X is k-connected. For a complex K, we define

η(K) = conn(‖K‖) + 2

(the addition of the constant term makes the parameter more convenient to work
with). If ‖K‖ is k-connected for all k, we set η(K) = ∞. Following [2], we define
η̄(K) = min(η(K), dim(K) + 1).

The join K ∗ L of two complexes K, L is defined as

K ∗ L = {σ ∪ τ : σ ∈ K and τ ∈ L} .

The connectivity of a join is easily computed [2, Lemma 2.1]:
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Lemma 1. For complexes K and L,

η(K ∗ L) = η(K) + η(L).

3 Minors

Let K be a complex on a ground set V . The induced subcomplex K|X on a set
X ⊆ V consists of all the faces of K contained in X. The link lk(σ) of a face
σ ∈ K is the complex

lk(σ) = {τ : σ ∩ τ = ∅ and σ ∪ τ ∈ K} .

The independent sets of any matroid form a complex. (See, e.g., [6, 8] for
an introduction to matroid theory.) In fact, one may define a matroid to be a
complex K such that for each X ⊆ V , all the maximal faces of K|X have the
same dimension (called the rank rankK(X) of X in K). This definition, used,
e.g., in [2], is equivalent to any of the standard definitions of matroids. Note that
the independent sets of a matroid M are the faces of M viewed as a complex.

In matroid theory, the operations of contraction and deletion and the associ-
ated notion of a minor, play an important role. We now extend them to arbitrary
complexes. If K is a complex and σ ∈ K, define

K \σ = K|(V (K) \ σ),

K / σ = lk(σ).

The first operation is the deletion of σ from K, the second one is the contraction
of σ in K. A complex L is said to be a minor of K if L can be obtained from K
by a succession of contractions and deletions of faces.

It is easy to see that if K is a matroid, then the above definitions of contraction
and deletion of an independent set σ coincide with the matroid-theoretical con-
traction and deletion (which is essentially observed in [2, Remark 3.1]). Since any
matroidal minor of K can be obtained by a series of contractions and deletions
of independent sets, it follows that the above definition of a minor specializes to
the matroidal one.

Observation 2. A matroid L is a minor of a matroid K in the sense of the
above definition if and only if L is a minor of K in the usual matroidal sense. In
particular, any minor of a matroid is a matroid.

Contraction and deletion in matroids are dual operations. This does not
seem to be the case for complexes, at least for the straightforward extension of
the matroidal duality.
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4 Matroids

We now show that the class of matroids, as a subclass of the class of complexes,
is characterized by a single forbidden minor. If F is a complex, then we say that
another complex K has no F -minor if K contains no minor isomorphic to F .

Let T1 be the complex on {1, 2, 3} whose facets are {1, 2} and {3} (see Fig-
ure 1a).

Theorem 3. A complex K is a matroid if and only if it does not contain a
T1-minor.

Proof. If K is a matroid, then by Observation 2, any minor of K is a matroid.
Since T1 is clearly not a matroid, it cannot be contained in K as a minor.

Conversely, assume that K is not a matroid. Suppose that K contains no
T1-minor and choose K such that |V (K)| is as small as possible. Let σ and τ be
two facets of K such that dim σ < dim τ . Note that K /(σ ∩ τ) is not a matroid,
since σ \ τ and τ \ σ are facets of K /(σ ∪ τ) of different dimensions. Since K
contains a T1 minor whenever K /(σ ∪ τ) does, the minimality of K implies that
the faces σ and τ are disjoint.

Let x ∈ σ. By the minimality of K, the complex K \ {x} is a matroid. It
follows that σ \ x is not a facet of K \ {x}, for

dim (σ \ x) < dim σ < dim τ (1)

and τ is a facet. Thus, there is a face σ′ ⊃ σ \ x of K \ {x} such that dim σ′ =
dim τ . By (1),

dim (σ′ ∩ τ) ≥ 1. (2)

Consider now the complex K ′ = K /(σ \ x). It contains x as an isolated vertex
(i.e., {x} is a facet) since σ is a facet of K. Furthermore, σ′ ∩ τ is a face of
K ′ of dimension at least 1. It follows that the induced subcomplex of K ′ on a
3-vertex set X containing x and two vertices from σ′∩ τ is T1. Since K ′|X is just
K ′ \(V (K ′) \X), T1 is a minor of K.

Note that by Observation 2, the characterization from Theorem 3 combines
well with classical forbidden minor characterizations of various classes of ma-
troids. For instance, Tutte’s characterization of binary matroids [7] implies that
a complex is a binary matroid if and only if it contains no minor from the set
{T1, U2,4}, where U2,4 is the uniform matroid of rank 2 on 4 elements.

5 Other classes characterized by forbidden mi-

nors

We turn to another naturally defined class of complexes. The independence com-
plex I(G) of a graph G is the complex whose ground set is the vertex set of G
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(a) (b) (c)

Figure 1: The complexes (a) T1, (b) T2 and (c) the uniform matroid U2,3 (pictured
as a complex).

and whose faces are all the independent sets in G. It turns out that the class of
independence complexes can also be characterized by a single forbidden minor,
namely the uniform matroid U2,3 shown in Figure 1c:

Lemma 4. Let K be a complex containing no U2,3-minor. A set σ ⊆ V (K) is a
face of K if and only if each pair of vertices in σ forms a face in K.

Proof. The ‘only if’ part is clear. Assume thus that each pair of vertices in σ is a
face of K, but σ itself is not, and that σ is minimal with respect to this property.
Thus, for each x ∈ σ, σ \ x is a face of K, and by the assumption, dim σ ≥ 2.
Let τ ⊂ σ be a set of dimension dim σ − 3. Clearly, the contraction in K of τ is
U2,3. Consequently, U2,3 is a minor of K.

Theorem 5. A complex K contains no U2,3-minor if and only if there is a graph
G such that K = I(G).

Proof. Assume that K contains no U2,3-minor. Let G be the graph whose vertices
are all the vertices of K, such that the vertices v, w form an edge in G if and
only if {v, w} is not a face of K. By Lemma 4, a set σ ⊆ V (G) is a face of K
if and only if each pair of vertices in σ is non-adjacent, which is the case if and
only if σ is a face of I(G). Thus, K = I(G).

For the converse, let x be a vertex of a graph G. Note that

I(G) \x = I(G− x),

I(G) / x = I(G \NG[x]),

where NG[x] is the closed neighborhood of x in G. It follows that every minor of
an independence complex is an independence complex again. Since U2,3 is clearly
not an independence complex, the statement follows.

We have seen that for K ∈ {T1, U2,3}, there is a natural characterization of
the complexes with no K-minor. We now derive a similar characterization for
K = T2, the complex in Figure 1b.
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Let f : 2V → N be a function assigning a nonnegative integer to each subset
of a set V . Let us call f decreasing if for each pair of subsets X ⊆ Y ⊆ V ,

f(X) ≥ min {f(Y ), |X|} . (3)

Any decreasing function f determines a complex K(f) on V whose faces are all
the sets σ ⊆ V with the property that f(σ) ≥ |σ|.

A function f : 2V → N is admissible if it is decreasing and for each X, Y ⊆ V ,

f(X ∪ Y ) ≥ min {f(X), f(Y ), |X ∩ Y |+ 1} . (4)

Every complex with no T2-minor determines an admissible function:

Lemma 6. Let K be a complex on a set V containing no T2-minor. The function
fK : 2V → N, defined by

fK(X) = max {d ≤ |X| : the (d− 1)-skeleton of K|X is complete}, (5)

is admissible. Furthermore, K = K(fK).

Proof. Clearly, fK is decreasing and K = K(fK). We prove that fK is admissible.
For the sake of contradiction, suppose that X, Y ⊆ V and

fK(X ∪ Y ) < min {fK(X), fK(Y ), |X ∩ Y |+ 1} . (6)

Thus, for d = fK(X ∪ Y ) + 1, there is a set Z ⊆ X ∪ Y of size d such that
Z /∈ K. It follows that Z 6⊆ X and Z 6⊆ Y , and we may choose vertices x ∈ X \Y
and y ∈ Y \ X. The intersection X ∩ Y ∩ Z contains at most d − 2 vertices.
By (6), |X ∩ Y | ≥ d− 1; we may therefore choose a vertex z ∈ (X ∩ Y ) \ Z. Set
σ = Z \ {x, y}.

Since σ∪{x, z} is a subset of X of size d, it is a face of K. Similarly, σ∪{y, z}
is a face of K. However, σ ∪ {x, y} = Z is not, so

(K|(Z ∪ {z})) / σ ∼= T2.

Thus, K has a T2-minor, a contradiction.

Theorem 7. A complex K on a set V has no T2-minor if and only if there is an
admissible function f : 2V → N such that K = K(f).

Proof. The ‘only if’ part follows directly from Lemma 6. To prove the ‘if’ part,
let z ∈ V (K) and define functions f1, f2 : 2V \z → N by

f1(X) = f(X),

f2(X) = f(X ∪ {z})− 1

and observe that they are admissible. Furthermore, K(f1) coincides with K \ z,
while K(f2) is K /z.

It follows that it suffices to prove that T2 is not of the form K(g) for any
admissible g. Assume the contrary. Let the facets of T2 be {a, b} and {b, c}. By
the definition, the value of g on each of {a, b} and {b, c} is at least 2. By (4),
g({a, b, c}) ≥ 2. Inequality (3) implies that g({a, c}) ≥ 2, whence {a, c} is a face
of T2. This is a contradiction.
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6 Intersection of complexes

The following result of Edmonds[5] is known as the matroid intersection theorem:

Theorem 8. Let K and L be matroids on a common ground set V . K and L
have a common independent set of size n if and only if for each X ⊆ V ,

rankK(X) + rankL(V \X) ≥ n. (7)

Recently, Aharoni and Berger [2] proved an extension of (the nontrivial di-
rection of) this theorem to a situation where one of the matroids is replaced by
an arbitrary complex. In view of the following lemma [3], a natural replacement
for the rank function is the parameter η or η̄ defined in Section 2. (Recall that a
coloop in a matroid is an element contained in every independent set.)

Lemma 9. Let M be a matroid on a ground set V and X ⊆ V . Then

η(M |X) =

{
∞ if M contains a coloop,

rankM(X) otherwise.

In Aharoni and Berger’s result, the ‘if and only if’ type condition of Theorem 8
is replaced by a sufficient condition:

Theorem 10. Let K be a matroid on a ground set V and let L be a complex on
V . If, for each X ⊆ V ,

rankK(X) + η(L|(V \X)) ≥ n,

then K has an n-element independent set belonging to L.

One may ask whether both of the matroids in Theorem 8 can be replaced
by arbitrary complexes. It has been observed [1] that the straightforward gen-
eralization does not work, but we are not aware of any specific example in the
literature.

In generalizing Theorem 8 to complexes, it seems more natural to replace
the rank function by the parameter η̄, rather than η. Consider, for example,
complexes K and L, each of which is a simplex of large dimension, such that K
and L intersect in one vertex. Then the sum

η(K|X) + η(L|(V \X))

is infinite for each X, but the dimension of K ∩ L is 0.
The extension of Theorem 8 involving η̄ also fails to work in general, but for

less trivial reasons:
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Theorem 11. For any n ≥ 1, there are complexes K and L on a set V of 5n
vertices such that for each X ⊆ V ,

η̄(K|X) + η̄(L|(V \X)) ≥ 2n, (8)

but dim(K ∩ L) = n− 1.

Proof. Let the graphs G1, . . . , Gn be disjoint copies of the circuit of length 5, and
let V be the union of their vertex sets Vi = V (Gi). Define complexes K and L
on V by

K = I(G1) ∗ · · · ∗ I(Gn),

L = I(G1) ∗ · · · ∗ I(Gn),

where Gi is the complement of Gi (thus also a circuit of length 5). Note that
dim(K ∩L) = n− 1. To establish (8), we show that each Gi contributes at least
2 to the sum on the left-hand side of (8).

If η(K|X) is finite, then by Lemma 1,

η̄(K|X) =
n∑

i=1

η(K|(X ∩ Vi)).

Note that the contribution of Gi to this sum is at least 1 whenever X ∩ Vi is
nonempty.

If, on the other hand, η(K|X) is infinite, then

η̄(K|X) =
n∑

i=1

(dim(K|(X ∩ Vi)) + 1),

and again, Gi contributes at least 1 whenever X ∩ Vi is nonempty.
By symmetry, the only case where the contribution of Gi to the left hand side

of (8) could be less than 2, is when either X ∩ Vi = ∅ or Vi ⊆ X. However, since

η(K|Vi) = η(L|Vi) = 2

and
dim(K|Vi) + 1 = dim(L|Vi) + 1 = 2,

the contribution is at least 2 in this case as well.

However, forbidding a minor (other than T1) may ensure that an analogue of
Theorem 8 holds. As a simple illustration, we consider T2 as a forbidden minor.
First, we need a lemma concerning the parameter η̄.

Lemma 12. Let K be a complex on a set V containing no T2-minor. Then

η̄(K) = fK(V (K)),

where fK : 2V → N is defined as in Lemma 6.
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Proof. Set d = fK(V (K)). We claim that K is (d − 2)-connected. It is well
known that this is the case if and only if the (d−1)-skeleton is (d−2)-connected.
The (d− 1)-skeleton of K, being complete, coincides with the (d− 1)-skeleton of
a simplex Σ on V (K). Since Σ is k-connected for all k, the claim follows.

By (5), the dimension of K is at least d− 1. In combination with the above,

η̄(K) ≥ d.

It remains to show that η̄(K) ≤ d. If dim K = d− 1, then this holds trivially,
so assume that dim K ≥ d. Let X ⊂ V (K) be maximal such that fK(X) ≥ d+1.
Since, clearly, X 6= V (K), we may choose a vertex z /∈ X of K. Let σ be a
d-element subset of X.

We claim that for any x ∈ σ, the set (σ \x)∪{z} is not contained in any face
τ with |τ | = d + 1. Assume the contrary. By the admissibility of fK ,

fK(X ∪ τ) ≥ min {fK(X), fK(τ), |X ∩ τ |+ 1} ≥ d + 1, (9)

contradicting the maximality of X.
Let K ′ = K|(σ ∪ {z}). Since the (d−1)-skeleton of K ′ is complete, it consists

of all the proper faces of a d-dimensional simplex on σ ∪ {z}, and thus the space
of K ′ is homeomorphic with the (d − 1)-dimensional sphere Sd−1. Since, by the
above, K ′ has faces that are not contained in any d-dimensional face of K, this
homeomorphism clearly cannot be extended to a mapping from the d-dimensional
ball Bd to K. We conclude that K is not (d − 1)-connected and η̄(K) = d as
claimed.

We use Lemma 12 to prove the following stronger analogue of Theorem 8:

Theorem 13. Let K and L be complexes on a ground set V without a T2-minor.
The dimension of K ∩ L is

dim(K ∩ L) + 1 ≥ min
X⊆V

(η̄(K|X) + η̄(L|(V \X))). (10)

In fact, the inequality holds even if the minimum is restricted to X ∈ {V (K), V (L)}.
Proof. Set I = V (K) ∩ V (L) and note that for X = V (L),

η̄(K|I) = η̄(K|X) + η̄(L|(V \X)).

An analogous expression for η̄(L|I) is obtained by putting X = V (K). Thus, to
prove (10), it suffices to prove

dim(K ∩ L) + 1 ≥ min {η̄(K|I), η̄(L|I)} . (11)

Let d denote the right hand side of (11). As we know from Lemma 12, the
(d− 1)-skeleton of both K|I and L|I is nonempty and complete. Consequently,
K and L have a common face of dimension d− 1.

It would be interesting to determine other sets of forbidden minors for which
an analogue of Theorem 8 is true.
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