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Abstract

We show that every bridgeless graph of maximum degree ∆ has a span-
ning d(∆ + 1)/2e-walk. The bound is optimal.

1 Introduction

Following Jackson and Wormald [6], we define a k-walk in a graph G to be a
closed spanning walk visiting each vertex at most k times, where k ≥ 1 is an
integer. Being an interesting variation on the notion of a Hamilton cycle, this
concept has received considerable attention (see, e.g., [2, 3, 5]).

Our aim in this note is to determine the least possible k = k(∆) such that
every graph of maximum degree ∆ admits a k-walk. For general graphs, this
problem is trivial since a tree of maximum degree ∆ has a ∆-walk [6], and it
clearly does not admit any k-walk with k < ∆. The situation changes if we
restrict ourselves to bridgeless (i.e., 2-edge-connected) graphs. We prove the
following result:

Theorem 1. Every bridgeless graph of maximum degree ∆ admits a d(∆+1)/2e-
walk.

Theorem 1 follows directly from a more general statement (Theorem 5) which
we prove in Section 2. In Section 3, we complement this result by showing that
the bound in Theorem 1 is best possible.
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2 The upper bound

All the graphs we consider are finite and loopless, multiple edges are allowed.
Throughout this section, G is a graph. Its vertex set and the edge set are denoted
by V (G) and E(G), respectively. If W is a walk in G, we let pW (x) denote the
number of times a vertex x ∈ V (G) is visited by W . An edge-cut in G is an
inclusionwise minimal set of edges whose removal disconnects G.

Let v be a vertex of G and e1, e2 be two distinct edges incident with v. Let vi

be the endvertex of ei distinct from v. We recall the operation of splitting e1 and
e2 off v. The resulting graph G(v, e1, e2) is defined to be G with an added vertex
v∗ and the edges e1, e2 replaced with e∗1, e

∗
2, where e∗i has ends v∗ and vi. The

following assertion is an easy consequence of Fleischner’s Splitting Lemma [4]
(see also [9, Theorem A.5.2]):

Lemma 2. Let v be a vertex of degree at least 4 in a bridgeless graph G. There
exist edges e1, e2 incident with v such that the graph G(v, e1, e2) is bridgeless.

Lemma 3. Let v be a vertex of a graph G, let e1, e2 be two edges incident with v,
and H = G(v, e1, e2). If W is a spanning closed walk in H such that pW (v∗) ≤ 2
(where v∗ is defined as above), then G admits a closed walk W̃ such that

(i) for all z ∈ V (G) \ {v}, pW̃ (z) ≤ pW (z), and

(ii) 1 ≤ pW̃ (v) ≤ pW (v) + 1.

Proof. Enumerate the vertices visited by W as

W = x0x1 . . . x`,

where x0 = x`. Any operations on the indices of the vertices in W are performed
modulo `. A subwalk of W is a walk of the form

[xi, xj] = xixi+1 . . . xj−1xj.

We write [xi, xj]
− for the reverse subwalk xixi−1 . . . xj+1xj.

If pW (v∗) = 1, then we may set W̃ = W . Thus, it may be assumed that
pW (v∗) = 2. Let the two occurences of v∗ in W be xi and xj, where i < j. We
use the symbols v1, v2 as introduced in the definition of splitting.

Suppose first that both neighbors of xi on W coincide with v1, i.e., [xi−1, xi+1] =
v1v

∗v1. Then we may set

W̃ = [x0, xi−1] [xi+2, xj−1] v [xj+1, x`]

(see Figure 1a). Note that we may indeed concatenate the subwalks [x0, xi−1]
and [xi+2, xj−1] since xi+2 is a neighbor of xi−1 = xi+1. It is easy to check that W̃
satisfies the conditions (i)–(ii). By symmetry, we may assume that the neighbors
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of xi on W are v1 and v2, and the same holds for xj. We now distinguish two
cases.

Case 1: [xi−1, xi+1] = [xj−1, xj+1] = v1v
∗v2. We set

W̃ = [x0, xi−1] [xj−2, xi+2]
− [xj+1, x`]

(see Figure 1b). Note that the conditions (i)–(ii) are satisfied. By symmetry, this
case also covers the possibility that [xi−1, xi+1] and [xj−1, xj+1] equal v2v

∗v1.
Case 2: [xi−1, xi+1] = [xj−1, xj+1]

− = v1v
∗v2. Since W is spanning, there is

k such that xk = v. We may assume that i < k < j since the other possibility
(k < i or k > j) is symmetric. The walk

W̃ = [x0, xi−1] v [xk−1, xi+2]
− [xj−1, xk+1]

− v [xj+1, x`]

(see Figure 1c for an illustration) meets the requirements.
Since we have covered, up to symmetry, all the possibilities, the proof is

complete.

Spanning closed walks correspond to edge weight functions in the following
straightforward way. Let w be a function assigning to each edge e ∈ E(G) a
non-negative integer w(e). For any set X ⊂ E(G), we define

w(X) =
∑
e∈X

w(e).

The function w is an Eulerian weight if for each edge-cut C in G, the value w(C)
is positive and even. Note that if w is an Eulerian weight, then each vertex v
must be incident with an edge of nonzero weight, since the set

∂v = {e : e is incident with v}

contains an edge-cut.

Lemma 4. Let G be a graph and k ≥ 1 a positive integer. The graph G has a
k-walk if and only if it admits an Eulerian weight w such that for each v ∈ V (G),

w(∂v) ≤ 2k. (1)

Proof. If G has a k-walk W , then the function assigning each edge the number
of times it is traversed by W (in any direction) is clearly an Eulerian weight
satisfying (1). Conversely, let w be such an Eulerian weight. Replacing each edge
e by w(e) parallel edges (or deleting it if w(e) = 0), we obtain a (connected)
Eulerian graph of maximum degree at most 2k. Any Euler trail in the new graph
determines a k-walk in G.

We now proceed to prove the main result of this paper.
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xi−1 = v1
xi = v∗ v1
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(a) W contains a subwalk v1v
∗v1.
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v2

xi = v∗

xi−1 = v1 xj+1 = v2
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v1

xj−2

x0 = x`

xi+2

v2

v

xi−1 = v1 xj+1 = v2

v

v1

xj−2

x0 = x`

(b) W contains two subwalks v1v
∗v2.

xi+2

v2

xi = v∗

xi−1 = v1 xj+1 = v1

xj = v∗

xj−1 = v2

x0 = x`

xk+1xk−1
xk = v

xi+2

v2

v

xi−1 = v1 xj+1 = v1

v

xj−1 = v2

x0 = x`

xk+1xk−1
xk = v

(c) W contains subwalks v1v
∗v2 and v2v

∗v1.

Figure 1: The possibilities considered in the proof of Lemma 3. Dashed lines
represent walks, edges are drawn solid. In each case, thick lines give the resulting
walk W̃ in G.
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Theorem 5. Every bridgeless graph admits a closed spanning walk W such that
for each vertex x,

pW (x) ≤
⌈deg(x) + 1

2

⌉
. (2)

Proof. By induction. We first establish the assertion for graphs with maximum
degree ∆ ≤ 3. Then, we prove that if ∆(G) ≥ 4, the assertion holds for G
whenever it holds for all bridgeless graphs that are smaller than G in a certain
sense.

Assume first that ∆(G) ≤ 3. Since the minimum degree is at least 2 and
the claim is clearly true if G is a circuit, we may assume that G is a subdivision
of a cubic bridgeless graph H. By the well-known Petersen theorem (see, e.g.,
[1, Corollary 2.2.2]), H has a 1-factor F . Let w : E(G) → {1, 2} be a function
whose value w(e) is 2 if the edge of H corresponding to e belongs to F , and 1
otherwise. It is easy to see that w is an Eulerian weight in G. By Lemma 4, G
admits a 2-walk.

Next, assume that ∆(G) ≥ 4 and (2) holds for all graphs G′ such that either
∆(G′) < ∆(G), or ∆(G′) = ∆(G) and G′ has fewer vertices of maximum degree.
We show that the assertion holds for G.

Let v be any vertex of degree ∆(G). Lemma 2 ensures that there are two
edges e1, e2 such that G(v, e1, e2) is bridgeless. Since the resulting graph has
fewer vertices of degree ∆(G), the induction hypothesis implies that G(v, e1, e2)
admits a closed spanning walk W0 satisfying (2). Using Lemma 3, we find a closed
spanning walk W̃0 in G such that for each vertex x ∈ V (G)\{v}, pW̃0

(x) ≤ pW0(x),
and

1 ≤ pW̃0
(v) ≤ pW0(v) + 1.

Clearly, the closed walk W̃0 in G is spanning, satisfies (2) at all vertices x 6= v,
and

pW̃0
(v) ≤ pW0(v) + 1 ≤

⌈(deg(v)− 2) + 1

2

⌉
+ 1 =

⌈deg(v) + 1

2

⌉
.

It follows that W = W̃0 satisfies (2) at all vertices of G.

3 The lower bound

Theorem 6. For every even ∆ ≥ 4, there is a 2-connected graph G with ∆(G) =
∆ and no (∆/2)-walk.

Proof. Let k = ∆−1. For i ∈ {1, . . . , 9}, take a copy Hi of the complete bipartite
graph K2,k, with the degree k vertices denoted by ai and bi.

The graph G is obtained from the disjoint union of the graphs H1, . . . , H9 by
adding new vertices a and b, together with edges

{aai : i ∈ {1, 4, 7}} ∪ {bbi : i ∈ {3, 6, 9}} ∪ {biai+1 : i ∈ {1, 2, 4, 5, 7, 8}}
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a1 b1 a2 b2 a3 b3

a b
a4 b4 a5 b5 a6 b6

a b

a7 b7 a8 b8 a9 b9

a b

Figure 2: A 2-connected graph with maximum degree 4 and no 2-walk.

(see Figure 2 for an illustration with k = 3). Note that the maximum degree of
G is k + 1 = ∆.

We now show that G has no (∆/2)-walk. Assume the contrary. By Lemma 4,
there is an Eulerian weight w satisfying

w(∂v) ≤ ∆ (3)

for each vertex v.
Since w(∂a) is even, there is an edge incident with a that receives an even

value. We may assume that w(aa1) is even. Since each pair of edges from the set

C = {aa1, b1a2, b2a3, b3b}

forms an edge-cut, at most one edge e ∈ C has w(e) = 0. Consequently, for some
i ∈ {1, 2, 3}, both edges in C that are incident with either ai or bi are assigned
a positive even value by w. Let Ci be the set consisting of these two edges. We
have

w(E(Hi)) = w(∂ai) + w(∂bi)− w(Ci) ≤ 2∆− 4 (4)

by (3).
For each vertex d of degree 2 in Hi, ∂d is an edge-cut, whence w(∂d) ≥ 2. It

follows that
w(E(Hi)) ≥ 2k = 2∆− 2,

contradicting (4). It follows that G does not admit any (∆/2)-walk.

Recall that a trail in a graph is a walk using each edge at most once. By
a well-known result of Jaeger [7, 8], every 4-edge-connected graph G admits a
spanning closed trail. It is easy to see that if the maximum degree of G is ∆,
then such a trail gives rise to a d∆/2e-walk in G. For even ∆, this improves on
the bound of Theorem 1 by one. Since the tightness example constructed in the
proof of Theorem 6 makes a heavy use of edge-cuts of size 2, one may wonder
whether such an improvement is possible even for 3-edge-connected graphs G.
We leave this as an open problem:
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Problem 7. Does every 3-edge-connected graph of maximum degree ∆ admit a
d∆/2e-walk?
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