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Abstract. Prohibiting configurations (≡ induced finite connect-
ed posets) in Priestley spaces and properties of the associated
classes of distributive lattices, and the related problem of con-
figurations in coproducts of Priestley spaces, have been brought
to satisfactory conclusions in case of configurations with a unique
maximal element. The general case is, however, far from settled.
After a short survey of known results we present the desired an-
swers for a large (although still not complete) class of configura-
tions without top.

Introduction

Priestley spaces are ordered compact topological spaces with a spe-
cific separation property (see 1.2 below). They can be viewed as a
description of the structure of prime ideals of distributive lattices,
which is the gist of the famous Priestley duality ([14], [15]; see [10]
for an introductory treatment). Thus, by studying the order structure
of Priestley spaces, and the appearance or non-appearance of various
configurations therein, we are in effect analyzing the inclusion struc-
tures possible among the prime ideals. Hence it is not surprising that
“geometrical” facts about (order) shapes in the spaces have algebraic
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connotations for the behaviour of distributive lattices. For instance,
the flatness of the space, i.e., the non-existence of a chain x0 < x1,
indicates that the corresponding lattice is Boolean; non-existence of a
chain x0 < x1 < x2 indicates the existence, for any a0, a1 in the lattice,
of c0, c1 such that a0∧ c0 = 0, a1∧ c1 ≤ a0∨ c0, a1∨ c1 = 1 ([1]; see also
2.1); non-existence of a V-shape indicates that the lattice is relatively
normal ([13]).

In general, prohibiting a configuration P in spaces determines a class
of distributive lattices, the properties of which have been the subject
of intensive study in recent years. In particular it has been shown
that if P is acyclic then the corresponding class is axiomatizable while,
on the other hand, if P is cyclic with top or bottom, the class is not
even first order definable. The situation of the cyclic configurations
without top or bottom is more entangled. Here the non-definability has
been established only for generic cycles, i.e., diamonds and k-crowns,
([6],[7]), while the general problem has resisted all efforts. The results
in this paper are also incomplete: we present the solution for the class
of all configurations containing diamonds, and for a large class of other
cyclic configurations as well, but not for all configurations.

Another problem discussed is that of the order stucture of coproducts
of Priestley spaces. By duality, since distributive lattices constitute a
complete category, the category of Priestley spaces is cocomplete. In
particular, there are coproducts of arbitrarily large collections. For
infinite collections, the compacness of the coproduct forces the aug-
mentation of the disjoint union by additional points; the question of
the order structure of the remainder is unavoidable. Although it may
not be apparent at first sight, this question is closely related to the
forbidden configuration problem above. And the facts and the gaps
are quite parallel: acyclic configurations cannot appear in a coproduct
without appearing in the summands, while the cyclic ones with top
(or bottom) can, and so also for the k-crowns. The partial solution of
the general problem mentioned above applies to the behaviour of con-
figurations in coproducts as well, which is to say that the P from the
class of cyclic configurations mentioned above can appear in coprod-
ucts without appearing in the summands. And here also the general
problem is still open.

In this context, another problem has appeared. When constructing
coproducts with configurations that were not in the summands, one has
always had cyclic summands. Can a cycle materialize in a coproduct
of acyclic spaces? Certainly not when the summands are acyclic with
top. But for the general case this may be an even harder problem than
that of the prohibited configurations.
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The paper is divided into six sections. The first contains the standard
preliminaries, and in the second we present a survey of the facts so far
established. Section 3 contains ground-clearing for the new results in
the following two sections. Section 4 deals with general configurations
containing diamonds, and in Section 5 we extend the facts to a fairly
large class of additional cyclic configurations. Finally, in Section 6 we
briefly discuss some further aspects of coproducts, and formulate the
problem of coproducts of acyclic spaces.

1. First preliminaries

1.1. If M is a subset of a poset (X,≤) we write ↓M for {x | x ≤
m ∈ M} and ↑M for {x | x ≥ m ∈ M}. If M =↓M (resp. M =↑M)
we say that M is a down-set (resp. up-set).

Immediate succession, that is, the fact that x < y and if x ≤ z ≤ y
then x = z or y = z, is indicated as

x ≺ y.

We refer to such a pair as a cover pair.

1.2. Recall that a Priestley space X = (X, τ,≤) is a compact ordered
space such that whenever x £ y there is a clopen down-set U ⊆ X such
that x /∈ U 3 y. Priestley maps are monotone continuous functions.
The resulting category will be denoted by PSp.

In particular, finite posets with discrete topologies are Priestley spa-
ces and will be viewed as such. Monotone maps between them, and
more generally monotone maps from finite posets to general Priestley
spaces, are automatically Priestley maps.

1.3. Further recall (see, e.g., [14],[15],[10]) the Priestley duality be-
tween PSp and the category DLat of bounded distributive lattices and
01-lattice homomorphisms; the equivalence functors are usually given
as

P(L) = ({x | x is a prime ideal in L},⊆, τ), P(h)(x) = h−1(x)

D(X) = ({a | a is a clopen down-set in X},∩,∪), D(f)(a) = f−1(a).

P(L) is endowed with a suitable topology and ordered by inclusion.

An embedding f : X → Y is a Priestley map such that x ≤ y in
X iff f(x) ≤ f(y) in Y . The existence of such an embedding will be
indicated as X ↪→ Y and non-existence of such a map as X↪→| Y .

It is a well-known fact that
1.3.1. a Priestley map f : X → Y is an embedding if and only if its

Priestley dual D(f) : D(Y ) → D(X) is onto.
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As a consequence, since obviously products
∏

hi :
∏

Ai →
∏

Bi of
onto homomorphisms are onto, we have that

1.3.2. if fi : Xi ↪→ Yi are embeddings then the coproduct map
∐

fi :∐
Xi →

∐
Yi is an embedding as well.

1.4. A configuration is an order-connected finite poset. In our con-
text, the existence of top (≡ largest element) in a configuration makes
everything much simpler; we then speak of the topped case, as opposed
to the general one.

A cycle C in a configuration P is a sequence

x0 < · · · < xn1
> · · · >xn2

< · · · < xn3
> · · ·

· · · < xn2k−1
> · · · > xn2k

= x0

such that there are no comparabilities besides the indicated ones. In
such a cycle, the k is called the spike number, and cycles with spike
number k ≥ 2 are called k-crowns. We speak of a fine k-crown if all the
xi, xi+1 resp. xi+1, xi are cover pairs. On the other hands, the k-crowns
of the form

x0 < x1 > x2 < · · · < x3 > · · · · · · < x2k−1 > x2k = x0

are said to be simple. A 2-crown x0 < x1 > x2 < x3 > x0 is proper if
there is no y such that x0, x2 < y < x1, x3.

The case of spike number 1 has to be treated separately since x0 <
x1 > x0, x0 < · · · < xn1

> x0 or x0 < x1 > · · · > x2 = x0 do not behave
combinatorially as cycles. A diamond is a cycle x0 < · · · < xn1

> · · · >
xn2

= x0 such that n1 > 1 and n2 > n1 + 1. Again, we speak of a fine
diamond if all the xi, xi+1 resp. xi+1, xi are cover pairs while simple
diamonds will be the poset a < b < c > d > a with b incomparable to
d. The fact in common with the simple k-crowns is that they are the
minimal genuine cycles with the given spike number.

1.5. Cyclic and acyclic configurations. On a configuration P
consider the symmetric antireflexive relation

xÂ≺y ≡df x ≺ y or y ≺ x.

The facts in the sequel are heavily dependent on the properties of the
graph (P,Â≺).

A configuration (P,≤) is said to be a (combinatorial) tree, or to be
acyclic, if (P,Â≺) is a tree; otherwise we speak of a cyclic configuration.

In the topped case the notion of a tree coincides with the standard
use of the term describing special posets, and

a topped P is cyclic iff it contains no diamond.

The general case is more complex. Here
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• a configuration is cyclic iff it contains a diamond or a k-crown
with k ≥ 3 or a proper 2-crown.

Note that unlike in the topped case, an acyclic configuration can have
a cyclic subconfiguration (remove the y from the ({x0, x1, x2, x3, y},≤)
in the improper crown in 1.4).

The spike number of a cyclic configuration P , denoted sP , is 1 if
there is a diamond, or else the least k such that P contains a k-crown,
with the understanding that the crown is proper if k = 2.

1.6. Coproducts. By duality, since DLat is complete PSp is
cocomplete. In particular we will be interested in coproducts. They
are suitable compactifications of the disjoint unions

⋃disj

i∈J Xi, and can
themselves be organized as disjoint unions of closed subspaces (see [11])

∐

i∈J

Xi =

disj⋃

i∈βJ

Xu.

The index set βJ is the Čech-Stone compactification of J , viewed as
the set of all ultrafilters on J . In this setup

(1) Xi can be identified with the Xei for the corresponding centered

ultrafilter ĩ = {M | i ∈ M},
(2)

⋃
J Xi is dense in

∐
J Xi,

(3) the Xu are order independent,
(4) and for each u ∈ βJ , Xu is the Priestley dual of the ultraproduct∏

u D(Xi).

2. Summary of known results

2.1. The famous Stone duality fits into the more general Priestley
duality as the correspondence between the Priestley spaces with trivial
order and Boolean algebras. This can be expressed by stating that

a distributive lattice L is a Boolean algebra iff the chain {0 < 1}
cannot be embedded into P(L).

In [1] (1991) Adams and Beazer proved that, more generally,

the prohibition of the n-chain {0 < 1 < · · · < n} in P(L) char-
acterizes the distributive lattices L such that for any a0, . . . , an ∈
L there exist c0, . . . , cn ∈ L with a0∧c0 = 0, ak∧ck ≤ ak−1∨ck−1

for 0 < k ≤ n, and ak ∨ ck = 1.

Much earlier (1974) Monteiro proved in [13] that
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the prohibition of the V-configuration {0 < 1, 2} (1, 2 incom-
parable) in P(L) characterizes the relatively normal lattices L,
that is, those in which for any two a1, a2 there are c1, c2 such
that a1 ∨ c1 ≥ a2, a2 ∨ c2 ≥ a1 and c1 ∧ c2 = 0.

These facts give rise naturally to the following type of problems. For
a configuration P define

Forb(P ) = {L | P ↪→| P(L)}.

(1) Is every Forb(P ) axiomatizable?
(2) If not, is every Forb(P ) with P acyclic axiomatizable?
(3) Or at least, is every Forb(P ) with P topped and acyclic axioma-

tizable?
This will be discussed below. For the time being let us just say that

the first of the questions resolved was (3) in [3] (positively), then there
appeared a negative answer to (1) in [5], and later a positive answer
to (2) in [6]. In the positive cases the proof produces an algorithm to
construct the desired formulas.

2.2. The following problem may not seem on first sight to be closely
related to those in 2.1. Recall the coproduct of Priestley spaces from
1.6. Since the Xu in

∐

i∈J

Xi =

disj⋃

i∈βJ

Xu

are order independent, a configuration P can be embedded into
∐

Xi

only if it can be embedded into some of the Xu’s. But does it have to
be embedded into some of the Xi, i ∈ J? That is, does the implication

(copr P) P ↪→
∐

J

Xi ⇒ ∃i ∈ J, P ↪→ Xi

hold?

Let us call a configuration coproductive if it does. Now: which con-
figurations are coproductive?

2.3. We have the complete answers to the above problems in the
topped case.

Theorem. ([3],[5]) Let P be a configuration with top. Then the
following statements are equivalent.

(1) P is acyclic.
(2) P is coproductive.
(3) Forb(P ) is closed under products.
(4) Forb(P ) can be characterized by first order formulas.
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(5) Forb(P ) is axiomatizable.

Restricting Priestley duality to Heyting algebras and the correspond-
ing spaces and maps we can proceed with

. . .
(6) Forb(P ) is a quasivariety.
(7) Forb(P ) is a variety.

2.4. In the general case we have

2.4.1. Theorem. ([6]) If P is acyclic then P is coproductive and
Forb(P ) is axiomatizable.

As first steps to the converse we have, for the critical cyclic configu-
rations (recall 1.5)

2.4.2. Theorem. ([6],[7]) Diamonds and k-crowns are not copro-
ductive and the corresponding Forb(P ) cannot be characterized by first
order formulas.

We conjecture that this can be extended to all cyclic configurations
and that the general facts are in a complete agreement with the topped
case. In this article we prove it, at least, for a large class of cyclic
configurations.

3. Second preliminaries

In this section we will extend the construction from [6] and [7] to
systems of exceptional cover pairs instead of just one cover pair.

3.1. Set k̃ = {1, 2, . . . , k}. Let R be an antireflexive binary relation

on k̃. A subset J ⊆ k̃ is independent if (J ×J)∩R = ∅. The chromatic

number of a subset A ⊆ k̃, denoted χR(A), is the least cardinality of a
covering of A by independent sets. Obviously χR(A) ≤ |A| (since each
{x} is independent) and

(3.1.1) χR(A ∪ B) ≤ χR(A) + χR(B).

An increasingly colorful sequence (briefly, i.c.s.) of relations is a system

(k̃n, Rn) such that k1 < k2 < . . . , and

χRn
(k̃n) → ∞.

For instance take 1 < 2 < 3 < . . . with

(3.1.2) R′

n = {(x, y) | x 6= y}, or R′′

n = {(x, y) | x < y}.
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Obviously, only one-point sets are independent. An important feature
of these relations is that

3.1.1. the poset

(k̃n × {0, 1}, {((x, 0), (y, 1)) | xRy})

contains in the former case no k-crown with k ≥ 4, and in the latter
case no 3-crown.
(See [5], but this is very easy to verify.)

In [7], based on a deep result of Alon ([2]), there is constructed a

much more involved i.c.s. of relations (k̃n, R
′′′

n ) such that
3.1.2. the poset

(k̃n × {0, 1}, {((x, 0), (y, 1)) | xR′′′

n y})

contains no 2-crown.

3.2. Consider an i.c.s. of relations (k̃n, Rn)n (in the constructions in
3.4 below it will be specified). On the set

I = {(n, j) | n ∈ N, j ∈ k̃n}

choose a free ultrafilter u and set (χn stands for χRn
)

F = {J ⊆ I | ∃m, {n | χn({j | (n, j) /∈ J}) ≤ m} ∈ u}.

Obviously I ∈ F as χn(∅) = 0 ≤ m, and ∅ /∈ F since {j | (n, j) ∈

I} = k̃n and χn(k̃n) ≤ m only for finitely many n. Since J1, J2 ∈ F ⇒
J1 ∩ J2 ∈ F by (3.1.1), F is a proper filter and hence we can choose an
ultrafilter

v ⊇ F.

3.2.1. Lemma. For J ⊆ I set

f(J) = {(n, j) | ∃i, (n, i) ∈ J and iRnj}.

Then j ∈ v ⇒ f(J) ∈ v.
Proof. Suppose J ∈ v and f(J) /∈ v so that I \ f(J) ∈ v and

K = J ∩ (I \ f(J)) ∈ v. Now K ∩ f(K) = ∅ and hence, for any n,
the set {j | (n, j) ∈ K} is independent, and χn({j | (n, j) /∈ I \K}) =
χn({j | (n, j) ∈ K}) = 1. Thus, I \ K ∈ F ⊆ v and K /∈ v. ¤

3.3. Let Q be a configuration. A non-void set A of pairs (a ≺ b) ∈ Q
is said to be an independent system of covers (briefly, ISOC) if

for any p < q in Q there is at most one (a ≺ b) ∈ A such that
p ≤ a ≺ b ≤ q.
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For pairs α = (a1 ≺ a2), β = (b1 ≺ b2) define the distance dist(α, β) as
the minimum number of turning points in a path connecting some ai

to some bj. An ISOC A is said to be well-distanced (in Q) if for any
two distinct α, β ∈ A, dist(α, β) > sQ.

3.4. In the following construction, the i.c.s. of relations (k̃n, Rn)n

will be chosen according to the spike numbers of the configuration Q
as follows. In the notation of 3.1,

for sQ = 1 or sQ ≥ 4 we choose Rn = R′

n,

for sQ = 3 we choose Rn = R′′

n, and

for sQ = 2 we choose Rn = R′′′

n .

Let A be an ISOC in Q. Define

Q(A, n) = (Q × k̃n,≤)

by the following rules. (We write pi for (p, i) ∈ Q × k̃n, and [p, q] for
the interval {x | p ≤ x ≤ q}.)

(r1) If p ≤ a ≺ b ≤ q in Q for some (a ≺ b) ∈ A then
(r11) if [p, q] = [p, a] ∪ [b, q] then pi < qj exactly when iRnj,
(r12) if [p, q] 6= [p, a] ∪ [b, q] then pi < qj exactly when iRnj or

i = j.
(r2) If [p, q] contains no pair from A then pi < qj exactly when p < q

and i = j.

3.4.1. Proposition. Q(A, n) is a poset and pi ≺ qj in Q(A, n) iff
either (p, q) = (a, b) ∈ A and iRnj, or (p ≺ q) /∈ A and i = j. In other
words,

pi ≺ qj iff p ≺ q in Q and pi < qj in Q(A, n).

Proof. To verify the transitivity suppose pi < qj < rl. Since A is an
ISOC and [p, q] is an interval, rule (r1) cannot apply to both pi < qj
and qj < rl. Next, if (r2) applies to both the pairs, we have p < q < r
and i = j = l and pi < rl (by (r2) or by (r12)). Now suppose that
pi < qj by (r11) with p ≤ a ≺ b ≤ q, and q < r and j = l. Then (r1)
applies to pi < rl, whether as (r11) or (r12). Secondly, if pi < qj by
(ri2) then there is a c ∈ [p, q] with c £ a and c ¤ b, and iRnj or i = j.
Then pi < rl as j = l and c ∈ [p, q] remains incomparable with a and
b. Similarly in the remaining cases.

Now let pi ≺ qj in Q(A, n). If this is so because of (r2) then p ≺ q
and i = j. If this is because of (r1) it must be because of (r11) since
(r12) is not applicable to p ≺ q, and we have p = a and q = b. ¤
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3.5. Recall the functors D and P from 1.3. Consider

An = D(Q(A, kn)),

the bounded distributive lattice of all down-sets of Q(A, kn). Set A =∏
∞

n=2 An so that

P(A) =
∞∐

n=2

Q(A, kn).

Define

m : Q → P(A)

by setting

m(p) = {α = (αn)n ∈ A | {(n, j) | pj /∈ αn} ∈ v}

where v is the ultrafilter from 3.2.

3.5.1. Lemma. For each p ∈ Q, m(p) is indeed a proper prime
ideal of A.

Proof. Obviously m(p) is a down-set, and A /∈ m(p). Further, for
α, β ∈ m(p),

{(m, j) | pi /∈ (α∨β)n = αn∪βn} = {(m, j) | pi /∈ αn}∩{(m, j) | pi /∈ βn}

is in v, veryfying that α ∨ β ∈ m(p). If α ∧ β ∈ m(p) then v contains

{(m, j) | pi /∈ (α∧β)n = αn∩βn} = {(m, j) | pi /∈ αn}∪{(m, j) | pi /∈ βn}

and the primeness of v forces one of the sets displayed on the right to
be contained in v, and hence α or β is in m(p). ¤

3.5.2. Proposition. m is an embedding.
Proof. To show that m preserves order consider, first, p < q by virtue

of rule (r2). If α ∈ m(p) then {(n, j) | pj /∈ αn} ⊆ {(n, j) | qj /∈ αn} ∈ v
meaning α ∈ m(q).

Next consider p ≤ a ≺ b ≤ q with (a ≺ b) ∈ A. Since there cannot
be a (c ≺ d) ∈ A with p ≤ c ≺ d ≤ a or b ≤ c ≺ d ≤ q and
because m(p) ≤ m(a) and m(b) ⊆ m(q) have been already established,
it suffices to prove that m(a) ⊆ m(b). For that purpose consider α ∈
m(a) so that {(n, i) | ai /∈ αn} ∈ v. Since αn is a down-set, if ai /∈ αn

and iRnj then bj /∈ αn. Therefore (recall 3.2.1)

{(n, j) | bj /∈ αn} ⊇ f({(n, i) | ai /∈ αn}) ∈ v

and {(n, j) | bj /∈ αn} ∈ v and α ∈ m(b).
Finally suppose that p £ q. Define αp by setting

αp
n = {rj | r ¤ p} for all n.
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Then
{(n, j) | pj /∈ αp

n} = {(n, j) | p ≥ p} = I ∈ v, and

{(n, j) | qj /∈ αp
n} = {(n, j) | q ≥ p} = ∅ /∈ v.

Thus, αp ∈ m(p) \ m(q). ¤

4. Diamonds in the general case

In this section we will deal with the general (not necessarily topped)
configurations containing diamonds. A direct analogue of the proce-
dure used in [5] does not seem to be applicable in general; the situation
appears considerably more complex.

4.1. Lemma. Let A1 and A2 be disjoint ISOCs in a configuration
Q. Then the system

A2 ∗ k̃ = {ai ≺ bi | (a ≺ b) ∈ A2, i ∈ k̃}

is an ISOC in Q(A1, k).

Proof. By 3.4.1 and by the disjointness of A1 and A2, A2 ∗ k̃ is a set

of cover pairs. Now let a1i1 ≺ a1i1 and a2i2 ≺ b2i2 distinct in A2 ∗ k̃
be such that pk ≤ a1i1, a2i2 and b1i1, b2i2 ≤ ql. Then p ≤ ai ≺ bi ≤ q
in Q and hence a1 = a2 = a, b1 = b2 = b and ii 6= i2. We thus have

pk ≤ aij ≺ bij ≤ ql for j = 1, 2.

Let, say, k 6= i1 so that to have pk < ai1 in Q(A1, k) we have to have
a (c ≺ d) ∈ A1 such that p ≤ c ≺ d ≤ a. Similarly, however, there
must be a (c′ ≺ d′) ∈ A1 with b ≤ c′ ≺ d′ ≤ q contradicting the ISOC
property of A1. Thus, in an interval of Q(A1, k) there is at most one

element of A2 ∗ k̃. ¤

4.2. Let A be an ISOC and let C be a set of cycles C in Q that pass
through none of the (a ≺ b) ∈ A. Set

C ∗ k̃ = {C ∗ i | C ∈ C}

with {x1, . . . , xn} ∗ i = {x1i, . . . , xni}.

Lemma. Let C be the set of all fine diamonds in Q and let A be an
ISOC in Q. Set

C1 = {C ∈ C | none of the pairs (a ≺ b) ∈ A occurs in C}.

Then C1 ∗ k̃ is the set of all fine diamonds in Q(A, k).
Proof. First, all the C ∗ i are fine diamonds in Q(A, k) since only the

clause (r2) from 3.4 applies.
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For the converse suppose that

C : p1i1 ≺ · · · ≺ ptit Â · · · Â pmim = p1i1

is a fine diamond in Q(A, k). The interval [p1, pt] contains at most
one member of A. If there is none, i1 = i2 = · · · = i and C is in

C1 ∗ k̃. Now an (a ≺ b) ∈ A cannot occur in just one of the paths
p1i1 ≺ · · · ≺ ptit or ptit Â · · · Â pmim = p1i1 since this would yield
i1 = it 6= i1. Thus there remains the case of j < t and l ≥ t such that
(a, b) = (pj, pj+1) = (pl+1, pl). Now since C is a fine diamond we can
have pj+1 = b = pl only if j + 1 = t = l (since ij+1 = it = il) and for
the same reason pj = a = pl+1 yields j = 1 and l + 1 = m. But this
results in C being ai < bj > ai which is not a diamond. ¤

4.3. Construction. Let C 6= ∅ be the collection of all fine diamonds
of a configuration P . This collection will be decomposed as follows.

First, choose any C ∈ C and a cover pair a1 ≺ b1 participating in C.
Set

C1 = {C ∈ C | a1 ≺ b1 participates in C}.

If C1, . . . , Cj together with cover pairs ai ≺ bi, i ≤ j, have already been
defined so that each ai ≺ bi occurs exactly once in each of the C ∈ Ci,
and if

⋃
{Ci | i ≤ j} 6= C, choose arbitrarily C ∈ C \

⋃
{Ci | i ≤ j} and

a cover pair aj+1 ≺ bj+1 in C. Then set

Cj+1 = {C ∈ C \
⋃

{Ci | i ≤ j} | aj+1 ≺ bj+1 participates in C}.

Continuing as long as possible we obtain a disjoint union

C = C1 ∪ · · · ∪ Cm

and distinct cover pairs ai ≺ bi, i ≤ m, associated with the classes Ci.
Now (using the relation Rn = {(i, j) | i 6= j} – recall 3.4) set, first,

A1 = {(a1 ≺ b1)}, Pn1
= P (A1, n1).

By 4.1, A2(n1) = {(a2 ≺ b2)} ∗ ñ1 is an ISOC in Pn1
and we can define

Pn1n2
= Pn1

(A2(n1), n2).

Assume that for j ≤ t we have already defined Pn1...nj
so that

Pn1...nj
= Pn1...nj−1

(Aj(n1, . . . , nj−1), nj)

where

Aj(n1, . . . , nj−1) = (. . . ({(aj ≺ bj)} ∗ ñ1) . . . ) ∗ ñj−1.

Then

Bj(n1, . . . , nj−1) = (. . . ({(aj+1 ≺ bj+1)} ∗ ñ1) . . . ) ∗ ñj−1
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is disjoint with Aj(n1, . . . , nj−1) and hence, by 4.1, At+1(n1, . . . , nt) =
Bt(n1, . . . , nt−1) ∗ ñt is an ISOC in Pn1...nt

and we can set

Pn1...nt+1
= Pn1...nt

(At+1(n1, . . . , nt), nt+1).

4.4. Proposition. None of the posets Pn1...nm
from 4.3 contains a

diamond.
Proof. Starting with the decomposition

C0
1 ∪ · · · ∪ C0

m = C1 ∪ · · · ∪ Cm

define inductively

(∗) Cj
j+1(n1, . . . , nj) ∪ · · · ∪ Cj

m(n1, . . . , nj)

by setting Cj
i = Cj−1

i ∗ j̃. By Lemma 4.2 and by the choice of the
Aj(n1, . . . , nj−1) the system (∗) contains all the fine diamonds of Pn1...nj

,
and ultimately there is no diamond in Pn1...nm

. ¤

4.5. Theorem. No configuration P containing a diamond is copro-
ductive.

Proof. By 3.5.2 we have embeddings

P ↪→
∐

n1

Pn1
and Pn1...nj−1

↪→
∐

nj

Pn1...nj−1nj
.

By 1.3.2 we have, hence, embeddings
∐

n1,...,nj−1

Pn1...nj−1
↪→

∐

n1,...,nj−1

∐

nj

Pn1...nj−1nj
↪→

∐

n1,...,nj

Pn1...nj

and therefore

P ↪→
∐

n1

Pn1
↪→

∐

n1n2

Pn1n2
↪→ · · · ↪→

∐

n1,...,nm−1

Pn1...nm−1
↪→

∐

n1,...,nm

Pn1...nm

where the summands in the last coproducts contain, by 4.4, no dia-
mond, and hence cannot contain P . ¤

5. Another class of non-coproductive configurations

5.1. Let P be a configuration and let A be an ISOC on P . The
subposets of P (A, n) carried by P × {i}, 1 ≤ i ≤ n, will be called
pages.

In this section, P will be a cyclic configuration with sP ≥ 2, that is,
without diamonds.
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5.2. On the set C of sP -crowns of P consider the equivalence E
obtained by transitivity from C ∼ C ′ ≡ C ∩ C ′ 6= ∅.

A cloud in P is a union of an E-class viewed as the induced subposet.
It is said to be critical if it cannot be embedded into a non-isomorphic
cloud in P .

The following condition on the configuration P will play a crucial
role.

(WD) There exists a complete isomorphism class X1, . . . , Xk of critical
clouds, and ai ≺ bi contained in suitable cycles Ci participating
in Xi such that A = {ai ≺ bi | i = 1, . . . , k} is a well-distanced
ISOC.

5.3. Lemma. Let P satisfy (WD). Then every sP -crown in P (A, n)
is contained in a page.

Proof. Let
C : p0i0, p1i1, . . . , pkik

be an sp-crown. By the assumption on the distance of the individual
ai ≺ bi in A we cannot have two distinct a1 ≺ bi in positions between
some pr, pr+1 and ps, ps+1. Let there be one, say a ≺ b. To analyze the
situation we have to write the cycle in more detail:

p0i0 < p1i1 < · · · < pn1
in1

> · · · > pn2
in2

< · · · <

· · · < pn2s−1
in2s−1

< · · · > p0i0.

We cannot have the a ≺ b in every interval between the turning points
(in view of the choices of Rn in 3.4 this would contradict 3.1.1 and
3.1.2). Therefore the longest path pr, . . . , pr+j with pr ≥ b and avoiding
a ≺ b (and hence keeping the same i) contains more than one turning
point, and the comparabilities b ≤ pr, pr+j ≤ a < b show that the path
is a crown. By the minimality of sP , prir, . . . , pr+jir+j have to cover C
and hence there is only one occurence of a ≺ b. Then, however, there
is only one switch of the ij’s, and C is not a cycle at all. Thus, there is
no (a ≺ b) ∈ A inserted into the intervals of C and all the ij’s coincide.
¤

5.3.1. Corollary. Let P satisfy (WD), let C be a cloud of P and
let it be embedded into P (A, n). Then the image is contained in a page.

5.4. Theorem. A cyclic configuration P satisfying (WD), in par-
ticular any P such that there is among the critical clouds one that is
not isomorphic to any other, is not coproductive.

Proof. By 3.5.2, P can be embedded into
∐

∞

n=2 P (A, n). By 5.3.1,
however, there is no copy of P in any of the P (A, n) with n ≥ 2.
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Indeed, each of the critical clouds would have to be represented in a
single page. However, according to the choice of A (see the formulation
of (WD)) all the critical clouds from the isomorphism class X1, . . . , Xk

are broken in P (A, n) by the ai ≺ bi and there is no subposet of P (A, n)
isomorphic to the Xi. ¤

5.5. Note. Variants of Theorem 5.4 can be based on any easily
identifiable class of minimal cycles.

For instance, for a cycle C ∈ C define d(C) as the length of a longest
chain y0 ≺ y1 ≺ · · · ≺ yd for which yd is one of the minimal elements
of C. Set

d0 = max{d(C) | C ∈ C}, C ′ = {C ∈ C | d(C) = d0}.

Now, thus defined, d0 does not increase in any of the P (A, n) and hence
a C ∈ C ′ has to be represented in a page again with the same charac-
teristics. Thus, if we restrict ourselves to forming clouds in C ′ only and
defining critical clouds accordingly, we can repeat the procedure.

Note that 5.4 does not include the statement just made, and on the
other hand this statement does not include Theorem 5.4.

5.6. Summary. The non-coproductivity has been proved, besides
all the configurations with diamonds, also for quite large classes of con-
figurations without them: in fact, constructing a cyclic configuration
that does not belong would require considerable effort. We conjec-

ture, of course, that

no cyclic configuration is coproductive.

This general statement remains an open problem.

6. Remarks on coproducts and another problem

6.1. The simplest case of infinite coproducts of Priestley spaces is
that of a co-power of a finite P .

Fact. For a finite poset P , the co-power JP is P ×βJ with the order
given by (x, u) ≤ (y, v) iff u = v and x ≤ y in P .

(That is, all the Xu from 1.6 above are isomorphic to P .) This follows
immediately by algebraic reasoning from [11], but a direct proof is also
very easy (see [4]).

6.2. The first case next in simplicity is that of acquiring infinite
chains from finite ones.
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Proposition. Let Xn be the chain {0 < 1 < · · · < n}. Then the
coproduct

∐
∞

n=1 Xn contains an infinite chain.
Proof. Note that D(Xn) = Xn+1 viewed as a lattice. Thus, we have

∞∐

n=1

Xn
∼= P(

∞∏

n=2

Xn).

Take the elements pn = (1, 2, . . . , n−1, n, n, n, ...) in the product
∏

Xn.
Choose a free ultrafilter u on N and set

J(n) = {X | {i | xi ≤ pn
i } ∈ u}.

Obviously J(n) is a down-set and (i)i∈N /∈ J(n). Since {i | (x ∨ y)i ≤
pn

i } = {i | xi ≤ pn
i } ∩ {i | yi ≤ pn

i } it is a proper ideal, and since
{i | (x∧y)i ≤ pn

i } = {i | xi ≤ pn
i }∪{i | yi ≤ pn

i } and u is an ultrafilter,
J(n) is prime. Finally, obviously m ≤ n ⇒ J(m) ⊆ J(n), and
pn+1 /∈ J(n) 3 pn so that J(1) < J(2) < · · · < J(n) < · · · is an infinite
chain. ¤

6.3. The example in 6.2 is not surprising. The more substantial
question was, of course, whether there were finite shapes (configura-
tions) appearing in coproducts without having appeared in the indi-
vidual summands. The cyclic configurations (all the topped ones and
– so far – these of sections 4 and 5 above) are an answer to that.

6.4. For a system (Xi)i∈J of Priestley spaces take the embedding

ι :
⋃disj

J Xi ↪→
∐

J Xi from 1.6 and the standard compactification em-
bedding κ :

⋃
Xi → β(

⋃
Xi) (ignoring the order). Then there is the

unique continuous

ι̃ : β(
⋃

Xi) →
∐

Xi

such that ι̃κ = ι. This ι̃ is onto but not necessarily one-one. By ([11],
3.7) one has

Proposition. The mapping ι̃ is a homeomorphism iff there is a
finite n such that the lengths of all but finitely many of the Xi are
bounded by n.

In all the constructions of embeddings witnessing the non-copro-
ductivity of acyclic configurations mentioned in preceding sections, the
summands have been bounded in length. Thus, whatever happened
with the order, the topology of the coproduct was that of the standard
Čech-Stone compactification of

⋃
Xi. From this point of view, the

topology of the easy example in 6.2 is more exotic.
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6.5. As we have seen in 2.3 (just taken with the opposite order, which
does not change the facts – see [3]), in particular the configuration

V = ({0, 1, 2}, {(i, i), (0, 1), (0, 2)})

(already mentioned in connection with the Monteiro’s result on relative
normality) is coproductive. Now one has V ↪→| X iff X is a forest, that
is, iff all its finite connected subposets are topped trees. Thus,

arbitrary coproducts of forests are forests again.

Hence, further, in the topped case a new cyclic configuration in a co-
product can appear only as a result of other cycles in the summands,
never from acyclic ones.

6.6. This observation can be easily extended to co-forests, and fur-
ther trivially to coproducts of forests and coforests. This of course does
not say anything about the acyclic configurations that have neither top
nor bottom. There are, however, also other indications that encourage
us to venture a Conjecture that

a coproduct of acyclic Priestley spaces is acyclic.

Note that this is not closely connected with the results (and the open
problem) concerning coproductivity of configurations. The fact that
forests are characterized by the prohibition of a co-tree has no coun-
terpart in general acyclic spaces.
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