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Abstract. We present very short and simple proofs of such facts as co-frame

distributivity of sublocales, zero-dimensionality of the resulting co-frames, Is-

bell’s Density Theorem and characteristic properties of fit and subfit frames,

using sublocale sets.

Introduction

There are few new results, if any, in this paper. Its purpose, instead, is to

present new and very simple proofs of several known facts.

Viewing locales (frames) as generalized spaces we can choose among several

approaches in representing “subspaces”: sublocale maps (onto frame homomor-

phisms), congruences or nuclei. One that is largely neglected is that of sublocale

sets, appearing as an exercise in Johnstone’s “Stone spaces” [3] and not much

exploited even there (see 1.3 below - one can think of them as of “left ideals” if

we take the meet structure as the additive part and the Heyting operation as the

multiplicative part of the frame structure).

Unlike in the other representations, both the meet and join structure of the

system of sublocale sets is very simple (the meets are intersections and the joins

are what is to be expected as joins of ideals). What we want to emphasize, how-

ever, is that one can prove in a very simple way several facts on sublocales (using

just trivial Heyting identities, or Heyting identities that themselves require only

two-line proofs). Thus we have a very short proof of the co-frame distributiv-

ity in the sublocale lattice and of the behaviour of open and closed sublocales

(complementarity, generating of general sublocales by open and closed ones); the

structure of the closure is so transparent that the Isbell’s Density Theorem fol-

lows as an immediate observation. Furthermore, we present discussion of fitness
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and subfitness under this viewpoint; also here the proofs are very simple. In

the last section we formulate a problem connected with yet another sublocale

representation.

1. Preliminaries

1.1. Recall that a frame is a complete lattice L satisfying the distributivity law

a ∧
∨

B =
∨

{a ∧ b | b ∈ B} (Distr)

for any a ∈ L and B ⊆ L. Frame homomorphisms h : L → M preserve general

joins and finite meets.

For instance the lattice Ω(X) of all open sets in a topological space X is a

frame, and if f : X → Y is a continuous map then Ω(f) = (U 7→ f−1[U ]) :

Ω(Y ) → Ω(X) is a frame homomorphism. Furthermore, for a big class of spaces

(the sober spaces) such Ω(f) are precisely the homomorphisms Ω(Y ) → Ω(X) so

that we can think of the category of frames as a (contravariant) extension of (a

large subcategory of) the category of topological spaces.

One can make this extension covariant by considering the dual category of the

category of frames and frame homomorphisms, that is, the category of locales

and locale maps. Locales and frames are the same thing, but locale maps go in

the opposite direction.

For more information about frames and locales see e.g., [3] or [5].

1.1.1. The formula (Distr) can be interpreted as that the maps a∧ (−) : L → L

preserve all suprema. Hence they have right Galois adjoints and every frame is

automatically a Heyting algebra. The Heyting operation will be denoted by →

and we have the standard Heyting equivalence

a ∧ b ≤ c iff a ≤ b→c. (H)

1.2. Due to the contravariance of the extension of the category of spaces to that

of frames it is natural to represent (generalized) subspaces of L as the sublocale

maps, that is, the onto frame homomorphisms h : L → M (they are the extremal

epimorphisms in the category of frames and hence the extremal monomorphisms

in the category of locales).

Another representation of the same is provided by frame congruences (congru-

ences with respect to general joins and finite meets) the translation being given

by

h : L → M 7→ Eh = {(x, y) | h(x) = h(y)},

E 7→ hE = (x 7→ Ex) : L → L/E.
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A further one is constituted by the nuclei, which are maps ν : L → L satisfying

(1) a ≤ ν(a),

(2) a ≤ b ⇒ ν(a) ≤ ν(b),

(3) νν(a) = ν(a), and

(4) ν(a ∧ b) = ν(a) ∧ ν(b),

the translation being (say, between congruences and nuclei)

ν 7→ Eν = {(x, y) | ν(x) = ν(y)},

E 7→ νE = (x 7→
∨

Ex) : L → L.

Note that if ν is a nucleus then the set ν[L] is a frame, with the same meets as

in L but generally with different joins.

1.3. We will be concerned with yet another representation, based on Exercise

II.2.3 in [3] (from now on we will automatically use the Heyting operation as

in 1.1.1 above). Define a sublocale set (briefly, a sublocale) S in a frame L as a

subset S ⊆ L such that

(S1) for every A ⊆ S,
∧

A is in S, and

(S2) for every s ∈ S and every x ∈ L, x → s is in S.

An easy but important fact (the subject of the exercise in question) is that the

sublocales (sublocale sets) are in a natural one-to-one correspondence with the

nuclei given by

ν 7→ Sν = ν[L],

S 7→ νS, νS(x) =
∧

{s ∈ S | x ≤ s}.

Hence in particular

1.3.1. Each sublocale S (= νS[L]) is a frame with the same meets as in L, and

since the Heyting operation→ depends on the meet structure only, with the same

Heyting operation.

The following well-known Heyting formulas will be used. Note that the proofs

are extremely easy; we include them to avoid the impression that the gist of

the very simple proofs presented later might be hidden in something deep in the

computation.

1.4. Proposition. The following hold for any frame:

(1) a ≤ b→a.

(2) a→b = 1 iff a ≤ b.

(3) a→b = a→(a ∧ b).

(4) a ∧ (a→b) ≤ b.
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(5) 1→a = a.

(6) (a ∧ b)→c = a→(b→c) = b→(a→c).

(7) a ≤ b→c iff b ≤ a→c.

(8) a→
∧

i∈J
bi =

∧
i∈J

(a→bi).

(9) (
∨

i∈J
ai)→b =

∧
i∈J

(ai→b).

(10) a ∧ (a→b) = a ∧ b.

(11) a ∧ b = a ∧ c iff a→b = a→c.

(12) x = (x ∨ a) ∧ (a→x).

Proof. (1) till (5) immediately follow from the basic Galois equivalence (H) (as

for (2), 1 = a→b iff 1 ≤ a→b, in the last x ≤ 1→a iff x = x ∧ 1 ≤ a).

(6) is obtained by associativity of ∧ confronting x ≤ (a ∧ b)→ c with x ≤ a→

(b→c) and x ≤ b→(a→c).

(7) follows from (6) and (2); (8) resp. (9) are then immediate consequences of

(H) and (7).

(10) : By (1) and (4), a ∧ b ≤ a ∧ (a→b) ≤ a ∧ b.

(11) is an immediate consequence of (3) and (10).

(12) : By (1), x ≤ (x∨a)∧ (a→x) and (x∨a)∧ (a→x) = (x∧ (a→x))∨a∧ (a→

x) ≤ x by (3). �

Note. Of course, (4) is included in (10). However, we have formulated it extra

as one of the most immediate facts (the reader has certainly recognized it as the

well-known Modus Ponens); also, it is useful to have it prepared for the half-line

proof of (10).

1.4.1. We will often use the following simple

Lemma. Let S ⊆ L be a sublocale, s ∈ S. Then for any x ∈ L, x→s = νS(x)→

s.

Proof. By 1.4(7), (S2) and 1.4(7) again we have y ≤ x → s iff x ≤ y → s iff

ν(x) ≤ y→s iff y ≤ ν(x)→s. �

1.4.2. Note that (−)→
∧

S is the pseudocomplement in S: since 0S =
∧

S is

the bottom of S, we have, for x, y ∈ S,

x ∧ y = 0s iff x ≤ y→
∧

S.

2. The coframe of sublocales

2.1. Obviously, arbitrary intersections of sublocales (sublocale sets) are sublo-

cales. Thus, the sublocales of L constitute a complete lattice; it will be denoted

by

Sls(L).
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Obviously, the least element in Sls(L) is O = {1} and the largest one is L.

2.2. Proposition. The joins in Sls(L) are given by the formula
∨

i∈J

Si = {
∧

A | A ⊆
⋃

i∈J

Si};

in particular, S1 ∨ S2 = {a1 ∧ a2 | ai ∈ Si, i = 1, 2}.

Proof. Obviously {
∧

A | A ⊆
⋃

Si} is closed under meets, and for a general

x ∈ L we have, by 1.4(8), x→
∧

A =
∧

a∈A
(x→ a) ∈ {

∧
A | A ⊆

⋃
Si}; on the

other hand, if Si ⊆ T ∈ Sls(L) for all i then trivially {
∧

A | A ⊆
⋃

Si} ⊆ T . �

2.3. Proposition. Sls(L) is a coframe, that is, it satisfies the distributivity law

A ∨ (
⋂

i∈J

Bi) =
⋂

i∈J

(A ∨ Bi).

Proof. If x ∈
⋂

i∈J
(A ∨ Bi) we have, for each i, an ai ∈ A and a bi ∈ Bi such

that x = ai ∧ bi. Set a =
∧

i∈J
ai so that x = a ∧ (

∧
i∈J

bi) ≤ a ∧ bi ≤ ai ∧ bi = x

and x = a ∧ bi for all i. By 1.4(11), then, a→ bi does not depend on i; denote

the common value by b. Thus, by 1.4(10), x = a ∧ bi = a ∧ (a→bi) = a ∧ b with

a ∈ A and b ∈
⋂

i∈J
Bi (as, for each i, b = a→ bi ∈ Bi). Hence

⋂
i∈J

(A ∨ Bi) ⊆

A ∨ (
⋂

i∈J
Bi), and the other inclusion is trivial. �

2.4. Proposition. A sublocale of a sublocale is a sublocale.

Proof. Let T ⊆ S resp. S ⊆ L be sublocales (of S resp. L). Then T obviously

satisfies (S1) in L. Let t ∈ T and let x ∈ L be general. Set y = νS(x). By Lemma

1.4.1 x→ t = y→ t and as y ∈ S, y→ t is in T . �

3. Open and closed sublocales

3.1. For every a,

o(a) = {a→x | x ∈ L} = {x | a→x = x}

is a sublocale: it is closed under meets by 1.4(9) and if y ∈ L then y → (a →

x) = a → (y → x) by 1.4(6) (the second formula follows from 1.4(6) as well:

a→(a→x) = (a ∧ a)→x). It will be referred to as an open sublocale of L

Further define closed sublocales as

c(a) =↑a

(for the second sublocale property recall 1.4(1)).

3.2. Proposition. c(a) and o(a) are complements to each other in Sls(L).
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Proof. If x ∈ c(a) ∩ o(a) then a ≤ x = a→ y. Thus a ≤ a→ y, that is, a ≤ y,

and x = a→y = 1. Hence c(a) ∩ o(a) = O.

On the other hand, for any x ∈ L, x = (x ∨ a) ∧ (a → x) ∈ c(a) ∨ o(a), by

1.4(12). �

3.3. Proposition. Let S be a sublocale. Then

S =
⋂

{c(x) ∨ o(y) | ν(x) = ν(y)}.

Proof. Let a ∈ S and let ν(x) = ν(y). Then, by 1.4.1 x→a = ν(x)→a = ν(y)→

a = y → a and hence, by 1.4(12), a = (a ∨ x) ∧ (x→ a) = (a ∨ x) ∧ (y → a) ∈

c(x) ∨ o(y).

Conversely, let a be in
⋂
{c(x) ∨ o(y) | ν(x) = ν(y)}. Then in particular

a ∈ c(ν(a)) ∨ o(a). Hence, a = y ∧ (a→ z) for some y ≥ ν(a) (≥ a) and z ∈ L.

Then 1 = a→a = a→(y∧(a→z)) = (a→y)∧(a→(a→z)) = 1∧(a→z) = a→z

by 1.4(8), (2) and (6), and hence a = y∧(a→z) = y ≥ ν(a). Thus, a = ν(a) ∈ S.

�

3.4. The closure S of a sublocale S ⊆ L, that is, the smallest closed sublocale

containing S is obviously given by the formula

S =↑
∧

S.

We have:

Proposition.

(1) O = O, S ⊆ S and S = S.

(2) S ∨ T = S ∨ T .

Proof. (1) is trivial.

(2) Trivially S ∨ T ⊆ S ∨ T . On the other hand,
∧

(S ∨ T ) =
∧

S ∨
∧

T ∈ S ∨ T

and hence S ∨ T =↑
∧

(S ∨ T ) ⊆ S ∨ T . �

4. Isbell’s density theorem. Boolean sublocales

4.1. By 3.4, a sublocale S is dense in L, that is, S = L, if and only if 0 ∈ S.

Taking into account that b(0) = {x → 0 | x ∈ L} is a sublocale (it is closed

under meets by 1.4(9), and y→ (x→ 0) = (x ∧ y)→ 0 by 1.4(6)) and that it is,

by (S2), the smallest sublocale containing 0, we immediately obtain

Proposition. (Isbell’s Density Theorem) Each frame has a smallest dense sublo-

cale, namely b(0).
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4.2. For the same reasons as above

b(c) = {x → c | x ∈ L}

is a sublocale and we obtain

Proposition. Let c ∈ L. Then b(c) is the smallest sublocale of L containing c.

For any sublocale S ⊆ L, b(
∧

S) is the smallest sublocale dense in S (that is,

such that its closure contains S).

4.3. Here is another feature of the sublocales b(c).

Proposition. A sublocale S ⊆ L is a Boolean algebra iff S = b(c) for some

c ∈ L.

Proof. First, observe that, by 1.4(9) (and (5)),
∧

b(c) = (
∨

L)→ c = 1→ c = c.

Thus,

c is the bottom of the frame b(c).

To show that b(c) is Boolean we will show that for any x ∈ b(c), x→ c is its

complement in b(c). First, by 1.4(10), x ∧ (x → c) = x ∧ c = c. Second, let

y = z → c ∈ b(c) and let x ≤ y and x → c ≤ y. By the former and 1.4(7),

z ≤ x→c and combining this with the latter, z ≤ z→c, hence z = z ∧ z ≤ c and

by 1.4(2) y = 1.

Now let S be Boolean. Set c =
∧

S. Then by 1.4.2, (−)→c is the pseudocom-

plement in S and since pseudocomplements in Boolean algebras are complements,

we have for any x ∈ S, x = (x→ c)→ c ∈ b(c). On the other hand b(c) ⊆ S by

4.2 since c =
∧

S ∈ S. �

5. Fitness

5.1. A frame L is said to be fit if

a � b ⇒ ∃c, a ∨ c = 1 and c→b 6= b (Fit)

(see [2], 2.2 – this definition was presented there as an equivalent characterization,

the original definition of this property is what we will have as (4) in 5.2 below).

5.2. For a sublocale S of a general L define

S ′ =↓(S r {1}) (= {x ∈ L | νS(x) 6= 1}).

5.3. Lemma. For any sublocale S and any c ∈ L, S ⊆ o(c) iff νS(c) = 1.

Proof. If νS(c) = 1 then for s ∈ S, by 1.4.1 and 1.4(5), c→s = νS(c)→s = 1→

s = s. If s = νS(c) 6= 1 then c ≤ s and c→s = 1 6= s, by 1.4(2). �
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5.4. Proposition The following statements about a frame L are equivalent:

(1) L is fit.

(2) For any sublocales S and T of L, S ′ = T ′ ⇒ S = T .

(3) Congruences in L coincide iff the respective classes of the top element do.

(4) For each sublocale S,

S =
⋂

{o(x) | νS(x) = 1}.

(5) Each sublocale is an intersection of open sublocales.

(6) Each closed sublocale is an intersection of open sublocales.

Proof. (1)⇒(2): Let S ′ = T ′ and let b ∈ T , b 6= 1. Set a = νS(b).

Suppose a∨c = 1 and b∨c ≤ a1 ∈ S. Then a1 ≥ a∨c = 1 so that b∨c /∈ S ′ = T ′.

By 1.4(12), however, (b ∨ c) ∧ (c→ b) ≤ b and hence b ∨ c ≤ (c→ b)→ b ∈ T so

that (c→ b)→ b = 1 and c→ b = b by 1.4(1) and (2). Therefore, by (Fit), a ≤ b

and hence b = νS(b) ∈ S.

(2)⇔(3): S ′ = L r ν−1

S
(1) so that S ′ = T ′ iff ν−1

S
(1) = ν−1

T
(1) and since xESy ≡

νS(x) = νS(y) this happens iff ES1 = ET 1. Now recall that S 7→ ES is a one-one

correspondence between sublocales and congruences.

(2)⇒(4): The inclusion ⊆ follows from 5.3. On the other hand, if a ∈ T =⋂
{o(x) | νS(x) = 1} we have x→a = a whenever νS(x) = 1. Thus, if νS(a) = 1

we have a = a→a = 1. Hence T r {1} ⊆ S ′, consequently T ′ ⊆ S ′ ⊆ T ′, and by

(2), S = T .

(4)⇒(5)⇒(6) is trivial.

(6)⇒(1): By 5.3, if ↑a is an intersection of some open sublocales then it is the

intersection of all open sublocales o(c) with ν↑a(c) = 1. As ν↑a(c) =
∧
{s | a ≤

s, c ≤ s} = a∨ c, we have c(a) =↑a =
⋂
{o(c) | a∨ c = 1} and hence, if c→b = b

for all c such that a ∨ c = 1 then a ≤ b. �

6. Subfitness

6.1. A frame L is said to be subfit (conjunctive in [10]) if

a � b ⇒ ∃c, a ∨ c = 1 6= b ∨ c. (Sfit)

6.2. Lemma. c(b) ⊆ o(a) iff a ∨ b = 1.

Proof. If a ∨ b = 1 and x ≥ b then by 1.4(5), (9) and (2) x = (a ∨ b) → x =

(a→x) ∧ (b→x) = a→x and x ∈ o(a). If c(b) = o(a) we have a ∨ b =
∧
{x ∈

c(b) | a ≤ x} ≥
∧
{x ∈ o(a) | a ≤ x} = 1 since if a ≤ a→y then 1∧a = a∧a ≤ y

and hence 1 ≤ a→y. �

6.3. Proposition. The following statements about a frame L are equivalent:
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(1) L is subfit.

(2) For a sublocale S ⊆ L, S r {1} is cofinal in L r {1} only if S = L.

(3) Any congruence E on L such that E1 = {1} is trivial.

(4) If S 6= L for a sublocale S ⊆ L then there is a closed c(x) 6= O such that

S ∩ c(x) = O.

(5) For each open sublocale o(a),

o(a) =
∨

{c(x) | x ∨ a = 1}.

(6) Each open sublocale is a join of closed sublocales.

Proof. (1)⇒(2): Let b ∈ L and a = νS(b). If a∨c = 1 we have νS(b∨c) ≥ a∨c = 1

and hence b ∨ c = 1. Thus, a ≤ b, that is, b ∈ S.

(2)⇔(3): S r {1} is cofinal in L r {1} iff ν−1

S
({1}) = {1} which can be rewritten

into the congruence condition (3) analogously as in (2)⇔(3) of Proposition 5.4.

(2)⇔(4): (4) is just an immediate reformulation of (2).

(5)⇔(6) follows immediately from Lemma 6.2.

(4)⇒(5): Set S =
∨
{c(x) | x ∨ a = 1} and suppose c(y) ∩ (c(a) ∨ S) = O.

Then, c(y) ∩ c(a) = O and, by complementarity, c(y) ⊆ o(a). Therefore, by 6.2,

y∨a = 1, and we conclude that c(y) ⊆ S and finally c(y) = c(y)∩ (c(a)∨S) = O.

Thus by (4), c(a) ∨ S = L and by complementarity again o(a) ⊆ S (⊆ o(a) by

6.2).

(5)⇒(1): If a � b we have c(b) * c(a) (as b ∈ c(b) r c(a)) and hence o(a) * o(b).

Thus there is a c such that c ∨ a = 1 and c(c) * o(b), that is, c ∨ b 6= 1. �

6.4. Proposition. Each complemented sublocale of a subfit locale is subfit.

Proof. Let T be the complement of a sublocale S ⊆ L and let S0 ⊂ S be a

sublocale of S. Thus S0 ∨T 6= L (else S0 ⊇ S) and hence, by 6.3.(4), (S0 ∨T )∩ ↑

x = O for some x 6= 1. Thus, S0∩ ↑x = O and as also T∩ ↑x = O, ↑x ⊆ S, which

means that ↑x 6= O is a closed sublocale of S that does not intersect S0. �

7. A problem: What do the open and closed sublocales have in

common?

7.1. Yet another representation of sublocales can be obtained from the Priestley

duality ([6], [7]). In this duality, distributive lattices are put to a dual correspon-

dence with Priestley spaces, that is, compact ordered topological spaces (X, τ,≤)

such that incomparable elements can be separated by clopen down-sets. The

counterparts of frames have the extra property that the closures of open up-sets

are open ([8]).
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7.2. The sublocale maps (onto frame homomorphism) are dually represented as

embeddings of special subspaces. Namely, they appear as closed subsets Y ⊆

(X, τ,≤) such that

for every open down-set U, Y ∩ U = Y ∩ U

(see [9]). Thus for instance each clopen subset represents a sublocale, and, more-

over, a complemented one. In particular.

• open sublocales are represented as clopen up-sets, and

• closed sublocales are represented as clopen down-sets.

Indeed one has

Fact. Clopen subsets Y of a Priestley space (X, τ,≤) (corresponding to a frame)

represent precisely the subspaces obtained from finitely many closed and open ones

by taking unions and intersections.

Proof. The system of clopen up-sets and down-sets constitutes a subbasis of the

topology τ . Since Y is open, it can be written as
⋃

i∈J
(Ui ∩ Vi) with Ui clopen

up-sets and Vi clopen down-sets. Since Y is closed and hence compact, this cover

contains a finite subcover. �

7.3. Here is a problem, somewhat vaguely formulated: Is there a naturally

defined class of sublocale sets in the sense of 1.3 that would contain the open and

closed sublocales in a similar way as the system of clopen subsets contains the

clopen up-sets and down-sets in the Priestley representation?

References

[1] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Second Edition, Cam-

bridge University Press, 2001.

[2] J.R. Isbell, Atomless parts of spaces, Math. Scand. 31 (1972), 5-32.

[3] P.T. Johnstone, Stone Spaces, Cambridge Sudies in Advanced Math. no 3, Cambridge

University Press, 1983.

[4] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New York,

1971.

[5] J. Picado, A. Pultr and A. Tozzi, Locales, in: M.C. Pedicchio and W. Tholen (Eds.),

Categorical Foundations - Special Topics in Order, Topology, Algebra and Sheaf Theory,

Encyclopedia of Mathematics and its Applications, Vol. 97, Cambridge University Press,

2003, pp. 49-101.

[6] H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces,

Bull. London Math. Soc. 2 (1970), 186–190.

[7] H.A. Priestley, Ordered topological spaces and the representation of distributive lattices,

Proc. London Math. Soc. 324 (1972), 507–530.



SUBLOCALE SETS AND SUBLOCALE LATTICES 11

[8] A. Pultr and J. Sichler, Frames in Priestley duality, Cahiers de Top. et Géom. Diff. Cat.
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