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Abstract

We prove that a triangle-free graph drawn in the torus with all
faces bounded by even walks is 3-colorable if and only if it has no
subgraph isomorphic to the Cayley graph C(Z13; 1, 5). We also prove
that a non-bipartite quadrangulation of the Klein bottle is 3-colorable
if and only if it has no non-contractible separating cycle of length at
most four and no odd walk homotopic to a non-contractible two-sided
simple closed curve. These results settle a conjecture of Thomassen
and two conjectures of Archdeacon, Hutchinson, Nakamoto, Negami
and Ota.

1 Introduction

Our main motivation comes from the following classical theorem of Grötzsch [5].

Theorem 1. Every triangle-free planar graph is 3-colorable.
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Until the seminal work of Thomassen this has been regarded as a very
difficult theorem. However, Thomassen [12, 13] found two reasonably simple
proofs, and extended Theorem 1 to other surfaces. It is easy to see that a
minimal counterexample to Theorem 1 cannot have a face bounded a cycle of
length four. Furthermore, Theorem 1 can be strengthened to allow the pre-
coloring of a face of length at most five; then a minimal counterexample to the
stronger version has no 4-cycles at all. Thus the hard part of Theorem 1 is to
show that every planar graph of girth at least five is 3-colorable. This result
has been extended in two different directions. Thomassen proved that the
same conclusion holds for projective planar and toroidal graphs, and Thomas
and Walls [9] proved the same for graphs embeddable in the Klein bottle.
For a fixed general surface Σ Thomassen [14] showed that Σ includes only
finitely many 4-critical graphs of girth at least five. In the other direction
Thomassen [13] proved that every planar graph of girth at least five is 3-
choosable.

In this paper we are concerned with a somewhat different generalization
of Theorem 1. The statement of Theorem 1 cannot be extended to any sur-
face other than the sphere, because the graphs obtained from an odd cycle
by applying Mycielski’s construction [3, Section 8.5] embed in every non-
planar surface. Incidentally, it is an interesting open problem [4] whether
3-colorability of triangle-free graphs on a fixed surface Σ can be tested in
polynomial time. When Σ is the sphere this is, of course, trivial by The-
orem 1, and when Σ is the projective plane a polynomial-time algorithm
follows from Theorem 4 below. For all other surfaces the problem is cur-
rently open.

Thus we set a more modest goal: We restrict ourselves to triangle-free
quadrangulations of the torus or the Klein bottle, and, more generally, to
embeddings of graphs in the torus or the Klein bottle with all faces of even
size.

Let us be more precise now. Graphs may have parallel edges, but no loops.
By a surface we mean a compact 2-dimensional manifold with no boundary.
A drawing of a graph G in a surface Σ refers to an embedding of G in Σ
with no crossings, and a subdrawing is a restriction of the embedding to a
subgraph of G. We apply standard graph-theoretic terminology to drawings
and speak about cycles in drawings, colorings of drawings, etc. Two drawings
G1 and G2 are isomorphic if there exists an isomorphism between the graphs
of G1 and G2 that preserves face boundaries. (Please note that we do not
assume that G1 and G2 are drawings in the same surface.) A drawing G in
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a surface Σ is a quadrangulation if every face is bounded by a walk of length
four, and we say that a drawing G is even-faced if every face is bounded by
a walk of even length.

Thomassen [15] conjectured that every triangle-free quadrangulation of
the torus is 3-colorable. We prove that this conjecture holds, with the fol-
lowing exception: the quadrangulation Q13,5,1 depicted in Figure 5 is a coun-
terexample, as pointed out by Archdeacon, Hutchinson, Nakamoto, Negami
and Ota [2]. However, our first main result states that Q13,5,1 is essentially the
only counterexample, even for the more general class of even-faced drawings.

Theorem 2. A triangle-free even-faced drawing in the torus is 3-colorable if

and only if it has no subdrawing isomorphic to Q13,5,1.

The edge-width of a drawing is the length of the shortest non-contractible
cycle, or infinity if the drawing has no non-contractible cycle. The repre-

sentativity of a drawing G in a surface Σ is the maximum integer k such
that every non-contractible simple closed curve in Σ meets G at least k
times. Since Q13,5,1 has a non-contractible cycle of length five, the following
is an immediate corollary. It settles a conjecture of Archdeacon, Hutchinson,
Nakamoto, Negami and Ota [2], who proved the same result for drawings of
representativity at least 9. An earlier result of Hutchinson [6] proves this
with 6 replaced by 25.

Corollary 3. Every even-faced drawing in the torus of edge-width at least

six is 3-colorable.

Since every triangle-free even-faced drawing G in the torus is 4-colorable
by [2, Theorem 6], Theorem 2 gives a polynomial-time algorithm to compute
the chromatic number of G.

A characterization of 3-colorable quadrangulations of the torus and the
Klein bottle (including those that have triangles) in terms of “essential diag-
onal curves” was given by Archdeacon, Hutchinson, Nakamoto, Negami and
Ota [2]. It is not clear whether their theorem can used to design an efficient
algorithm, though.

What can we say about other orientable surfaces? Hutchinson [6] proved
that for every orientable surface Σ there exists an integer k such that every
even-faced drawing in Σ of edge-width at least k is 3-colorable. By analogy
with Theorem 2 and the results of [11, 14] one could speculate whether there
exist only finitely many 4-critical even-faced drawings on any fixed orientable
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surface Σ. Unfortunately that is not true, unless Σ is the sphere or the
torus. The graphs obtained from an odd cycle by means of the Mycielski’s
construction serve as counterexamples.

Let us turn to nonorientable surfaces now. From the vertex-coloring point
of view triangle-free drawings in the projective plane are completely under-
stood. First of all, Euler’s formula implies that they have a vertex of degree
at most three, and hence they are always 4-colorable. Youngs [16] discov-
ered the remarkable fact that no quadrangulation of the projective plane has
chromatic number exactly three, and Gimbel and Thomassen [4] extended
that result to a characterization of 3-colorable triangle-free drawings in the
projective plane:

Theorem 4. A drawing in the projective plane with no contractible cycles of

length three is 3-colorable if and only if it has no subdrawing isomorphic to

a non-bipartite quadrangulation of the projective plane.

Thus there are infinitely many triangle-free quadrangulations of the Klein
bottle: take two quadrangulations of the projective plane such that at least
one of them is not bipartite, in each of them select a facial cycle, and iden-
tify those cycles. The resulting quadrangulation of the Klein bottle is not
3-colorable, because it has a subdrawing isomorphic to a nonbipartite quad-
rangulation of the projective plane.

There is another fundamental reason why a quadrangulation of the Klein
bottle (and more generally, any non-orientable surface) may fail to be 3-
colorable. A closed walk or cycle in a drawing G in the Klein bottle is called
meridian if it is homotopic to a 2-sided simple closed curve that does not
separate the surface. The following is proved in [2] for odd meridian cycles,
but the proof extends to walks.

Theorem 5. Let G be a quadrangulation in the Klein bottle, and assume

that G contains an odd meridian walk. Then G is not 3-colorable.

We show in Section 3 that the above two constructions are the only ob-
structions to 3-colorability of quadrangulations of the Klein bottle. By an
equator in a drawing G in the Klein bottle we mean a non-contractible cycle
in G that separates the surface.

Theorem 6. A non-bipartite quadrangulation of the Klein bottle is 3-colorable
if and only if

(1) it has no equator of length at most four, and

(2) it has no odd meridian walk.
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Since every quadrangulation of the Klein bottle is 4-colorable by [2, The-
orem 5], the above theorem gives a polynomial-time algorithm to compute
the chromatic number of a given quadrangulation of the Klein bottle. For
even-faced drawings we have the following corollary. The proof is analogous
to the argument used at the end of Section 2, and is omitted.

Theorem 7. Let G be an even-faced drawing in the Klein bottle with no

equator of length at most four and no odd meridian walk. Then G is 3-
colorable.

The next immediate corollary settles another conjecture of Archdeacon,
Hutchinson, Nakamoto, Negami and Ota [2], who proved the same result for
drawings of representativity at least 7.

Corollary 8. Let G be an even-faced drawing in the Klein bottle with edge-

width at least five and no odd meridian walk. Then G is 3-colorable.

By Theorem 6 the bound of five is best possible. An earlier result of
Mohar and Seymour [7] implies that the above corollary holds for some bound
on edge-width. In fact, they prove an analogous statement for an arbitrary
non-orientable surface.

The paper is organized as follows. In the next section we prove Theorem 2,
in Section 3 we prove Theorem 6, and in Section 4 we comment on some of
the questions this paper leaves unresolved. We will need the following lemma,
a special case of [4, Theorem 5.3]. Our special case can be easily deduced
from first principles.

Lemma 9. Let G be an even-faced drawing in the sphere, let C be an induced

facial cycle of G of length at most six, and let c : V (C) → {1, 2, 3} be a 3-
coloring of C such that if C has length six, then c(u) 6= c(v) for some pair

of diagonally opposite vertices u, v ∈ V (C). Then c can be extended to a

3-coloring of G.

2 Quadrangulations of the Torus

In this section we prove Theorem 2. The hardest part is to prove it for
quadrangulations; the extension to even-faced drawings is straightforward.
We begin by eliminating non-contractible cycles of length two or four.
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Lemma 10. Let G be a triangle-free even-faced drawing on the torus. If G
contains a non-contractible cycle of length two or four, then G is 3-colorable.

Proof. Let C be a non-contractible cycle of G of length two or four. We
cut the torus open along C and obtain a planar graph G′ with facial cycles
v1v2 . . . vk and v′

1v
′

2 . . . v′

k such that G is obtained from G′ by identifying vi

and v′

i for i = 1, 2, . . . , k. Since the sizes of all the faces of G′ are even, G′

is bipartite. We aim to find a 3-coloring of the vertices of G′ such that the
corresponding vertices vi and v′

i are assigned the same color.
Let us color the vertices of G′ black and white. We may assume without

loss of generality that the vertices vi with odd i are colored white and those
with even i are colored black. If the vertices v′

i with odd i are colored white,
then the graph G is bipartite and 2-colorable. We may therefore assume
that the vertices v′

i with odd i are colored black and those with even i are
white. Let us recolor the vertices vi and v′

i with i = 2, 4 by the grey color,
the vertices v′

1 and v′

3 white and all the neighbors of v′

1 or v′

3 in G′ by the
grey color. Note that all the pairs of the vertices vi and v′

i with the same
index i now have the same color.

We verify that the coloring thus obtained is a proper 3-coloring of G′.
If it is not a proper coloring, then there is a neighbor w of v ′

j, j ∈ {1, 3},
in G′ colored grey that is also a neighbor of vi, i ∈ {2, 4}. However, the
vertices viwvj form a 3-cycle in the original graph G. This contradicts our
assumption that G is triangle-free. Hence, the coloring of G′ we constructed
gives rise to a proper 3-coloring of G, as desired.

We will need the following operation, which we call face contraction: if
abcd is a face of a quadrangulation G, a 6= c, and a and c are not adjacent,
then G.ac is the quadrangulation obtained from G by adding an edge ac,
contracting it and deleting one edge from each facial cycle of length two that
results. We say that G.ac is obtained from G by a face contraction of the
vertices a and c. A triangle-free quadrangulation G of the torus is triangle-

prone if for every face abcd with a 6= c there is a path in G of length three with
ends a and c (in which case the face contraction G.ac produces a triangle).

Lemma 11. Let G be a triangle-prone quadrangulation of the torus with

every face bounded by a cycle. Then G has no vertices of degree three.

Proof. Suppose for a contradiction that G is a triangle-prone quadrangula-
tion of the torus with every face bounded by a cycle, and let v be a vertex
of G of degree three.
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Figure 1: The notation used in the proof of Lemma 11.
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Figure 2: The unique embedding of the subgraph of G formed by the vertices
v, a, b, c, d, e, f , wad, wbe and wcf on the torus and the contractible 9-cycle
awaddcwcffewbeb (drawn bold).

Let a, c and e be the three neighbors of v and let abcv, cdev and efav be
the three faces incident with v (see Figure 1). Since G is triangle-prone, the
vertices v and b are joined by a path of length three, say vxyb. If the vertex
x were a or c, then the original graph would have contained a triangle xyb.
Hence, x = e. The vertex y is neither d nor f (otherwise, G would contain a
triangle abf or acd). We conclude that G contains a vertex y = wbe that is a
common neighbor of b and e and is different from all the vertices v, a, b, c,
d, e and f . Similarly, there is such a common neighbor wad of the vertices a
and d and a common neighbor wcf of the vertices c and f . In addition, the
three vertices wad, wbe and wcf are pairwise distinct: if, e.g., wad = wbe, then
G contains a triangle comprised of the vertices a, b and wad = wbe. It also
follows that the vertices a, b, c, d, e, f are pairwise distinct.
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Figure 3: Z
2/L for the lattice L generated by (4, 0) and (−1, 3) with one of

the sets of identified vertices marked. The corresponding graph Q4,3,1 and
its embedding on the torus is depicted in the right part of the figure.

However, the subdrawing of G formed by the vertices v, a, b, c, d, e, f ,
wad, wbe and wcf is unique up to isomorphism of drawings (because none of
the 5-cycles vawaddc, vbwbeed and vawcffe is contractible). This drawing is
depicted in Figure 2. Note that the 9-cycle awaddcwcffewbeb is contractible.
This contradicts the fact that G is a quadrangulation of the torus and each
of its contractible cycles is even.

Dealing with vertices of degree two or less in triangle-prone quadrangula-
tions is easy, and so we now turn our attention to 4-regular quadrangulation
of the torus. Those were completely described by Altshuler [1]. Let us state
his theorem. By a lattice we mean the set of all integral linear combinations
of two linearly independent vectors u,v ∈ Z

2. We say that the lattice is
generated by u and v. We wish to consider the infinite planar square grid:
its vertex-set is the Cartesian product Z×Z and two vertices (i, j) and (i′, j′)
are adjacent if and only if |i − i′| + |j − j ′| = 1. If L is a lattice, then Z

2/L
stands for the quotient graph obtained by identifying vertices u and v when-
ever u− v ∈ L and identifying the corresponding edges. The natural planar
embedding of the grid defines a drawing of Z

2/L in the torus; this drawing
is a quadrangulation of the torus (see Figure 3). Conversely, the following
theorem of Altshuler [1] states that every 4-regular quadrangulation of the
torus arises this way.

Theorem 12. Let G be a 4-regular quadrangulation of the torus. Then G is

isomorphic to Z
2/L for some lattice L.
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Figure 4: Face contractions in Lemma 13.

Let x, y ≥ 1 and r ≥ 0 be integers. We define Qx,y,r to be the toroidal
quadrangulation Z

2/L, where L is generated by the vectors (x, 0) and (r, y).
Theorem 12 may be used to describe all triangle-prone quadrangulations of
the torus. However, for our purposes it suffices to find those that do not have
a non-contractible cycle of length at most four.

Lemma 13. Every 4-regular triangle-prone quadrangulation of the torus with

no non-contractible cycles of length at most four is isomorphic to Q13,5,1,

Q14,4,1, or Q17,4,1.

Proof. Let G be a 4-regular triangle-prone quadrangulation of the torus. By
Theorem 12, G is isomorphic to Z

2/L for some lattice L. Let vij denote the
vertex of G corresponding to the vertex (i, j) of the infinite grid. Consider
the face v11v21v22v12 of G. See Figure 4.

Since G is triangle-prone, the face contraction of v11 and v22 yields a
triangle in G. Hence, one of the vertices v01 and v10 is identified with one of
the vertices v24, v33 and v42. Hence, the lattice L contains at least one of the
following four vectors: (4, 1), (3, 2), (2, 3), and (1, 4). Since interchanging the
coordinates does not change the (isomorphism type of the) quadrangulation
Z

2/L, we may assume that L contains the vector (4, 1) or (3, 2). If we consider
the face contraction of the vertices v12 and v21, we obtain that L includes
one of the vectors (4,−1), (3,−2), (2,−3), or (1,−4).

If (4, 1) ∈ L and (3,−2) ∈ L, then (1, 3) = (4, 1)− (3,−2) ∈ L. Hence, G
contains a non-contractible 4-cycle which is impossible. Similarly, L cannot
include any of the following vectors: (3, 2)−(3,−2) = (0, 4), (4, 1)−(4,−1) =
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Figure 5: The drawing Q13,5,1 in the torus.

(0, 2) and (3, 2) − (4,−1) = (−1, 3). Hence, L includes neither the vector
(4,−1) nor the vector (3,−2), and therefore it includes (2,−3) or (1,−4).

Assume now that (4, 1) ∈ L and (2,−3) ∈ L. Let L′ be the lattice
generated by (4, 1) and (2,−3). Note that (14, 0) = 3(4, 1) + (2,−3) ∈ L′. If
L is a proper subset of L′, then, since (4, 1) ∈ L, (2, 0) ∈ L or (7, 0) ∈ L. In
the former case, G has a non-contractible cycle of length two. In the latter
case (3,−1) = (7, 0)− (4, 1) ∈ L which implies that G has a non-contractible
cycle of length four. Both cases are impossible. Hence, L = L′ and G is
isomorphic to the graph Q14,4,1.

If (4, 1) ∈ L and (1,−4) ∈ L, then (17, 0) = 4(4, 1) + (1,−4) ∈ L. This
implies that G is isomorphic to Q17,4,1. If (3, 2) ∈ L and (2,−3) ∈ L, then
(13, 0) = 3(3, 2) + 2(2,−3) ∈ L. Since (5,−1) = (3, 2) + (2,−3) is also
contained in L, the graph G is isomorphic to Q13,5,1. Finally, if (3, 2) ∈ L
and (1,−4) ∈ L, then (−1, 4) ∈ L, and using the transformation (x, y) 7→
(y,−x) we see that this leads to the same outcome as the case considered
at the beginning of the previous paragraph. This completes the proof of the
lemma.

We are now ready to prove Theorem 2. For convenience we first prove
the nontrivial implication for quadrangulations.

Theorem 14. Every triangle-free quadrangulation of the torus with no sub-

drawing isomorphic to Q13,5,1 is 3-colorable.
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Figure 6: The graphs of the drawings Q14,4,1 and Q17,4,1 and their 3-colorings.

Proof. We proceed by induction on |V (G)|. Since there is no quadrangulation
of the torus with at most one vertex we may assume that G is a non-3-
colorable triangle-free quadrangulation of the torus, and that the theorem
holds for all quadrangulations on strictly fewer than |V (G)| vertices.

The minimality of G implies that G is 2-connected. This and Lemma 10
imply that G has no cycles of length two, and hence every face of G is
bounded by a cycle. The minimality of G and Lemma 9 further imply that
every contractible 4-cycle in G bounds a face.

We claim that G is triangle-prone. To prove this claim we may assume
for a contradiction that G has a face abcd such that the drawing H := G.ac
is triangle-free. Since a 3-coloring of H can be converted to a 3-coloring
of G, we deduce that H is not 3-colorable, and hence, by the induction
hypothesis, H has a subdrawing isomorphic to Q13,5,1. Since Q13,5,1 is not a
subdrawing of G, we deduce that G has a subdrawing G′ isomorphic to one
of the drawings depicted in Figure 7. The figure also shows 3-colorings of
these drawings. Please note that each color class of G′ forms an independent
set in G, because every contractible cycle in G is even and every contractible
4-cycle of G bounds a face of G. By Lemma 9 the 3-colorings pictured in
Figure 7 extend to 3-colorings of G, a contradiction. This proves our claim
that G is triangle-prone.

If G has a vertex v of degree at most two, then by the induction hypothesis
applied to the drawing G\v we deduce that G is 3-colorable, a contradiction.
Thus G has minimum degree at least three, and by Lemma 11 it has minimum
degree at least four. It follows easily from Euler’s formula that G is 4-regular.
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Figure 7: Four drawings used in the proof of Theorem 14.

Using Lemmas 10 and 13 we conclude that G is isomorphic to Q13,5,1, because
Q14,4,1 and Q17,4,1 are 3-colorable, as shown in Figure 6. Thus G satisfies the
theorem.

We are now ready to prove Theorem 2 in full.

Proof of Theorem 2. The “only if” part is clear, because Q13,5,1 is not 3-
colorable, as is easily verified. To prove the “if” part let G be a triangle-free
even-faced drawing in the torus with no subdrawing isomorphic to Q13,5,1.
By deleting selected parallel edges we may assume that G has no faces of size
two. We proceed by induction on the number of faces of size at least six. If
there is no such face, then G is a quadrangulation, and the theorem follows
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Figure 8: Replacement of the interior a face of length 10 in the proof of
Theorem 2.

from Theorem 14. Otherwise we select a face bounded by a walk v1v2 . . . vk,
where k ≥ 6. Note that k is even. We add to this face two concentric cycles
v′

1v
′

2 . . . v′

k and v′′

1v
′′

2 . . . v′′

k together with the paths viv
′

iv
′′

i for i = 1, 2, . . . , k.
In addition, we add the edges v′′

i+1v
′′

k−i for i = 1, 2, . . . , k/2− 2. Let H be the
resulting drawing. The construction is illustrated in Figure 8.

The drawing H is triangle-free, and has no subdrawing isomorphic to
Q13,5,1, because every edge of Q13,5,1 belongs to a cycle of length five. Thus
H is 3-colorable by the induction hypothesis, and hence so is G, as desired.
This completes the proof of Theorem 2.

3 Quadrangulations of the Klein bottle

In this section we prove Theorem 6. We begin by disposing of quadrangula-
tions that have an equator of length six.

Lemma 15. Let G be a quadrangulation of the Klein bottle with no odd

meridian walk. If the length of the shortest equator in G is six, then G is

3-colorable.

Proof. Let C be an equator in G of length six. Cut the surface open along
the cycle C; let G1 and G2 be the two resulting drawings, each a drawing in
the projective plane with a facial cycle C. Since G has no odd meridian walk
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it follows that G1, G2 are either both bipartite, or both non-bipartite. If they
are bipartite, then so is G, and the lemma holds. Thus we may assume that
both G1 and G2 are non-bipartite.

If G1 has a subdrawing H that is a quadrangulation of the projective
plane, then the boundary of the face of H that includes the face of G1

bounded by C is an equator in G of length four, contrary to hypothesis.
Thus G1 has no such subdrawing, and hence is 3-colorable by Theorem 4.
Similarly, G2 is 3-colorable. Fix a 3-coloring c1 of G1 and a 3-coloring c2 of
G2.

Let u, v be two diagonally opposite vertices of C. If c(u) 6= c(v), then c1

is a 3-coloring of the non-bipartite quadrangulation of the projective plane
obtained from G1 by adding the edge uv inside the face bounded by C,
contrary to Theorem 4. Thus c1(u) = c1(v) for every pair of diagonally
opposite vertices of C, and by symmetry the same holds for c2. It follows
that the colorings c1 and c2 may be combined to produce a 3-coloring of G,
as desired.

Next we eliminate triangles.

Lemma 16. Let G be a quadrangulation of the Klein bottle with no equator

of length at most four and no odd meridian walk. If G has a triangle, then

it is 3-colorable.

Proof. Let C be a triangle in G. Since G is even-faced and has no odd
meridian walk it follows that C is one-sided. By cutting open along C we
obtain a drawing G′ in the projective plane with a face bounded by a cycle
C ′ of length six in such a way that G is obtained from G′ by identifying
diagonally opposite vertices of C ′. We claim that G′ is not bipartite. For let
u, v be two diagonally opposite vertices on C ′, and let W be a closed non-
contractible walk in G′ passing through u. (Such a walk exists, because G has
no equator of length four.) Then W can be extended along C ′ to an odd walk
in G′ from u to v; the latter walk becomes a meridian walk in G, and hence
W is odd, proving that G′ is not bipartite. If G′ has a subdrawing J that is
a quadrangulation of the projective plane, then the boundary D of the face
of J that includes the face bounded by C ′ is an equator in G of length four,
a contradiction. (Notice that the identifications that produce G from G′ do
not identify distinct vertices of D, because G is a quadrangulation and has
no loops.) By Theorem 4 the drawing G′ has a 3-coloring c. Let u, v be two
diagonally opposite vertices of C ′. If c(u) 6= c(v), then c is a 3-coloring of the
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non-bipartite quadrangulation of the projective plane obtained from G′ by
adding the edge uv inside the face bounded by C ′, contrary to Theorem 4.
Thus c(u) = c(v) for every pair of diagonally opposite vertices of C ′, and
hence c gives rise to a 3-coloring of G, as desired.

Our third lemma is an analogue of Lemma 10.

Lemma 17. Let G be a triangle-free even-faced drawing in the Klein bottle

with no equator of length two and no odd meridian walk. If G has a non-

contractible cycle of length two, then G is 3-colorable.

Proof. Let C be a non-contractible cycle in G of length two. We may assume
that G is not bipartite, for otherwise the lemma holds. We claim that C is
a meridian cycle. To prove this claim suppose for a contradiction that it is
not. Since C is not an equator by hypothesis, it is one-sided. By cutting
open along C we obtain a drawing G′ in the projective plane with a face
bounded by a cycle C ′ of length four in such a way that G is obtained from
G′ by identifying diagonally opposite vertices of C ′. Since G is not bipartite,
neither is G′, and hence G′ has an odd walk W joining a pair of diagonally
opposite vertices of C ′. But W gives rise to an odd meridian walk in G, a
contradiction. This proves our claim that C is a meridian cycle. The rest of
the argument is identical to the proof of Lemma 10.

Proof of Theorem 6. Let G be a non-bipartite quadrangulation of the Klein
bottle. If G has an odd meridian walk, then G is not 3-colorable by Theo-
rem 5. If G has an equator C of length two or four, then C divides G into
two quadrangulations G1 and G2 of the projective plane. (If C has length
two, then we need to delete a parallel edge from G1 and G2 to turn them into
quadrangulations.) Since G is not bipartite, one of G1, G2 is not bipartite,
and hence is not 3-colorable by Theorem 4. Thus G is not 3-colorable.

To prove the converse let G satisfy (1) and (2). We proceed by induction
on |V (G)|. We may assume that G is 2-connected, for otherwise the lemma
follows by induction. By Lemma 16 we may assume that G has no triangles,
and by Lemma 17 we may assume that G has no non-contractible cycle of
length two. Since G is 2-connected the latter implies that every face of G
is bounded by a cycle. Let G′ be obtained from G by a face contraction
of an arbitrary pair of vertices. The drawing G′ well-defined, because G is
triangle-free and every face is bounded by a cycle. Since G has no equator
of length at most six, the drawing G′ has no equator of length at most four
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(using the fact that G is triangle-free and has no parallel edges), and hence
is 3-colorable by the induction hypothesis. But every 3-coloring of G′ gives
rise to a 3-coloring of G, as desired.

4 Concluding Remarks

In this section we comment on some of the problems left unresolved. Unlike
in Theorem 6, the two hypotheses of Theorem 7 are not necessary. The first
two remarks address the possibility of characterizing 3-colorable even-faced
drawings in the Klein bottle.

Even-faced drawings in the Klein bottle with an equator of length

four. Let C be an equator of length four in an even-faced drawing G in
the Klein bottle. Then C divides G into two even-faced drawings in the
projective plane, and hence in order to understand the 3-colorability of G
we need to study the following two coloring extension problems. Let H be
an even-faced drawing in the projective plane, and let x, y be two diagonally
opposite vertices on a face of H. When is it the case that no 3-coloring of
H gives x and y the same color, and when is it the case that no 3-coloring
of H gives x and y different colors? Of course, if x and y have the former
property, then the other two vertices on the same face with x and y have the
latter property.

Let us describe several obstructions to the coloring extension problems of
the previous paragraph. We say that an even-faced drawing H in a surface
is a near-quadrangulation if H has a face f such that every face other than
f is bounded by a walk of length four. If f is bounded by a cycle C of
length at least six, then we say that H is a near-triangulation with hole C.
Now let H be a non-bipartite near-triangulation of the projective plane with
hole C. If C has length six, and x and y are at distance two on C, then
no 3-coloring of H gives x and y the same color. Similarly, the same holds
if C has length eight, and x and y are diagonally opposite on C. On the
other hand, if C has length six, and x and y are diagonally opposite on C,
then in every 3-coloring of H the vertices x and y receive the same color.
Finally, the same holds in the following more complicated scenario. Let C ′

be a contractible cycle in H of length six such that C belongs to the disk
bounded by C ′, let z ∈ V (C) ∩ V (C ′), let x be diagonally opposite to z on
C, and let y be diagonally opposite to z on C ′.
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Figure 9: An example of a non-3-colorable near-quadrangulation of the Klein
bottle.

Even-faced drawings in the Klein bottle with an odd meridian walk.

Let G be an even-faced drawing in the Klein bottle with no equator of length
at most four. By analogy with Theorem 4 one could ask whether G is not
3-colorable if and only if it has a subdrawing that is quadrangulation of the
Klein bottle with an odd meridian walk, but that is not true. There is another
obstruction to 3-colorability, the following. Let G be a near-quadrangulation
of the Klein bottle with a hole C of length six and with an odd meridian walk,
and let C ′ be an equator in G of length six dividing G into two even-faced
projective planar drawings G1 and G2. Since G has an odd meridian walk we
may assume that G1 is bipartite and G2 is not. Let the cycle C belong to G1.
Then in every 3-coloring of G the diagonally opposite vertices of both C and
C ′ must receive the same color. However, there could be edges between C
and C ′ joining vertices that must receive the same color. A simple example
may be found in Figure 9.

Triangle-free drawings. It would be nice to say something about (not
necessarily even-faced) triangle-free drawings in a fixed surface Σ. Can their
3-colorability be tested in polynomial time? The authors of [9] asked whether
it is true that for every orientable surface Σ there exists an integer k such
that every triangle-free drawing in Σ of edge-width at least k is 3-colorable.
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