Reversal Distance for Strings with
Duplicates: Linear Time
Approximation using Hitting Set

Petr Kolman* Tomasz Walen
Charles University in Prague Warsaw University
Faculty of Mathematics and Physics Faculty of Mathematics, Informatics
Department of Applied Mathematics and Mechanics
kolman@kam.mff.cuni.cz walen@mimuw.edu.pl

July 26, 2006

Abstract

In the last decade there has been an ongoing interest in string
comparison problems; to a large extend the interest was stimulated
by genome rearrangement problems in computational biology but re-
lated problems appear in many other areas of computer science. Par-
ticular attention has been given to the problem of sorting by rever-
sals (SBR): given two strings, A and B, find the minimum number
of reversals that transform the string A into the string B (a rever-
sal p(i,7), i < j, transforms a string A = aj...a, into a string
A/ =ar...a;—10545-1 ...0;A5471 - .. an).

Primarily the problem has been studied for strings in which every
symbol appears exactly once (that is, for permutations) and only re-
cently attention has been given to the general case where duplicates
of the symbols are allowed. In this paper we consider the problem
k-SBR, a version of SBR in which each symbol is allowed to appear
up to k times in each string, for some k > 1. The main result of the
paper is a O(k)-approximation algorithm for k-SBR running in time
O(n); compared to the previously known algorithm for k-SBR, this is
an improvement by a factor of ©(k) in the approximation ratio, and
by a factor of ©(k) in the running time. Crucial ingredients of our

*Supported by project 1M0021620808 of MSMT CR.



algorithm are the suffix tree data structure a linear time algorithm for
a special case of a disjoint set union problem.

Key words. Approximation algorithms, String comparison, Sorting by re-
versals, Minimum common string partition, Suffix trees.

1 Introduction

In the last decade there has been an ongoing interest in string compari-
son problems. To a large extend the interest was stimulated by genome
rearrangement problems in computational biology but related problems ap-
pear in many other areas of computer science, in data compression or text
processing to name a few. One of the important problems is to measure
the similarity of two strings. Particular attention has been given to the
problem of sorting by reversals (SBR): given two strings, A and B, find
the reversal distance of A and B, which is the minimum number of rever-
sals that transform the string A into the string B where a reversal p(i, j),
1 <i < j < n,is an operation that transforms a string A = a;...a,, into
a string A’ =ay...a;_1a;a;_1...a;a511 . ..a, (that is, the reversal p(i, ) re-
verses the order of symbols in the substring a;...a; of A). In the case of
signed strings, each symbol is given a sign + or —, and the reversal operation
also flips the sign of each symbol in the reversed substring.

Primarily the problem has been studied for strings in which every symbol
appears exactly once (that is, for permutations); even in this setting the prob-
lem is NP-hard for unsigned permutations [2] and, surprisingly, the problem
is in P for signed permutations [10]. Only recently attention has been given
also to the general case where duplicates of the symbols are allowed. We de-
note by k-SBR the version of SBR in which each symbol is allowed to appear
up to k times in each string, for some k£ > 1. Christie and Irving [4] prove
that unsigned SBR is NP-hard for binary strings and Chen et al. [3] show
that 2-SBR is NP-hard. The best approximation ratio for the general signed
SBR is O(lognlog®n) (following from the work of Cormode and Muthukr-
ishnan [6]); there are O(1)-approximation algorithms for signed 2-SBR and
3-SBR [3, 5, 9]. Kolman [11] describes a greedy-like O(k?)-approximation
algorithm for £-SBR running in O(kn) time. Most of the above mentioned
algorithms exploit the close relation between the minimum common string
partition problem (see below for definition) and the problem of sorting by
reversals: they find an approximation for the static problem MCSP and turn
it into a solution for SBR; this is also the approach that we take in this pa-
per. For an overview of other related results and for more details about the



relation between MCSP and SBR, we refer to the paper [11].

The main results of this paper are ©(k)-approximation algorithms for k-
MCSP and £-SBR running in time O(n); compared to the previously known
algorithms for k-MCSP and k-SBR, this is an improvement by a factor of
O(k) in the approximation ratio, and by a factor of ©(k) in the running
time.

On a high level, the algorithm works as follows: given the strings A
and B, the algorithm turns them into an instance of the minimum hitting
set problem and, exploiting special properties of the instance, it computes
an approximation of the minimum hitting set which is in turn transformed
into an approximate solution for k-MCSP; a solution for k-SBR is obtained
from a solution of the relevant k-MCSP problem by the standard technique
mentioned above. Crucial ingredients of the algorithm are a linear time
procedure for construction of a suffix tree [7] and a linear time algorithm for
a special case of a disjoint set union problem [§].

1.1 Notation

We stick to the notation used in the previous paper on k-SBR [11]. For a
(signed or unsigned) string P = a; ...a,, we denote by —P the result of
reversal p(1,n) of P (e.g., for P = +a+b—d, we have —P = +d — b — a; for
P = abd, we have —P = dba). We say that two (signed or unsigned) strings
A=aay...a, and B = biby...b, are identical, A = B, if a; = b; for each
i€1,...,n (in the case of signed strings, a; = b; involves also the equality of
the signs), and they are congruent, A =~ B, if A= B or A = —B (note that
for the sake of notational simplicity we overload the sign = so that it has a
slightly different meaning for signed and unsigned strings).

Throughout the paper we assume that the symbols are represented by
integers from the set X = {1,2,...,n}. We also assume that each symbol
appears the same number of times in A and B (for the signed version, we
count together the occurrences of a symbol with positive and negative signs).
Clearly, this is a necessary and sufficient condition for A and B to have a
finite reversal distance. We call such strings related.

The length of a string A is denoted by |A|. A duo is a string of length two.
A partition of a string A is a sequence P = (Py, P, ..., P,,) of strings whose
concatenation is equal to A, that is, PP, ... P, = A. The strings P, are
called the blocks of P and their number is the size of the partition. Given a
partition P = (P, P,,..., Py),if | = Y\, |P| for some i € {1,2,...,m—1},
we say that the pair [, [+ 1 is a break of the partition P and a;a;1 is a broken
duo of the partition P.

For two strings A and B, we say that S is a common substring with respect



to the relation = if S is a substring of A and a substring of B; we say that S
is a common substring with respect to the relation =, if S is a substring of A
and there exists a substring R of B such that S = R, or S is a substring of
B and there exists a substring R of A such that S = R. When not necessary,
we will often avoid specifying the relation and will talk only about a common
substring.

To cut a duo a;a;+1 of a block P = a; ...a; of a partition of A, for some
J < ¢ < k, means to replace the block P in the partition by two blocks

Py =a;...a; and P, = a;41 ...a;. For a string C' = ¢y, ..., c,, we denote by
duos(C) the set of duos of the string C, that is, duos(C) = {c;ciy1 | 1 < i <
n—1}.

SBR is closely related to the minimum common string partition problem.
Given a partition P of a string A and a partition Q of a string B, we say
that the pair 7 = (P, Q) is a common partition of A and B with respect to
the relation Rel € {=, 2}, if there exists a permutation ¢ on 1,...,m such
that for each 7 € 1,...,m, (P;,Qsq)) € Rel. The minimum common string
partition problem (MCSP) is to find a common partition of A, B with the
minimum size, denoted by MCSP(A, B). The restricted version of MCSP,
where each letter occurs at most £ times in each input string, is denoted by
kE-MCSP. Similarly as for SBR, there is a signed and an unsigned variant
of the problem; another variant, important for the unsigned SBR, is called
reversed MCSP. Chen et al. [3] observed that for any two related signed
strings A and B, the sizes of the optimal solutions of MCSP and SBR differ
only by a constant multiplicative factor. An analogous observation applies
for related unsigned strings and the problems reversed MCSP and SBR; we
refer to the paper [11] for further details.

The rest of the paper is organized as follows. Section 2 is devoted to
a simple algorithm for k~MCSP that is based on the Hitting Set problem.
In Section 3 we describe how to modify the algorithm to get an O(k) ap-
proximation for k-MCSP. In Section 4 we deal with the running time of the
algorithm and we show how to implement the algorithm in linear time, using
the suffix tree data structure. Finally, Section 5 describes how to modify the
algorithm so that it works also for the signed and reversed variants of MCSP
and thus, for signed and unsigned SBR.

2 Common partition via hitting set

In Minimum Hitting Set Problem, we are given a set U and a collection &
of subsets of U, that is, S = {S1,..., Sk} such that S; C U fori=1,... k.
The task is to find a minimum hitting set for S which is a smallest set H C U



such that H N S; # () for each ¢ € 1, ..., k. Minimum Hitting Set problem is
equivalent to Minimum Set Cover [1].

We are going to use an algorithm for Minimum Hitting Set Problem as
a procedure for MCSP. The idea behind the algorithm is simple. Given the
strings A and B and a string P such that the number of occurrences of P
in A is larger (or smaller, resp.) than the number of occurrences of P in
B, we know that even in the minimum common partition of A and B at
least one duo in (an occurrence of) P in A (or in B, resp.) must be broken.
The algorithm aims at “hitting” (that is, cutting) all substrings of A and B
that have a different number of occurrences. This motivates the following
definition.

For two strings A and S, let #substr(A, S) be the number of occurrences
of the substring S in the string A. For a partition P = (P, P, ..., P,,) and
a string S, we denote by #blocks(P, S) the number of blocks P; = S in P.

Algorithm HS

input: strings A, B
construct an instance (U, S) of the Hitting Set problem:
U «— duos(A) U duos(B)
T—{X € X* | #substr(A, X) # #substr(B, X)}
S—{duos(X) | X €T}
solve (approximately) the Minimum Hitting Set problem:
® «— a hitting set for (U,S)
transform the hitting set into a common partition:
A, B «— for each duo xy € ®, cut all occurrences of xy in the strings A, B
output: (A, B)

Lemma 2.1 The partition (A, B) computed by the algorithm HS is a com-
mon partition of the strings A and B.

Proof: The proof is by contradiction. Suppose that there exists a block
X € A such that #blocks(A, X) # #blocks(B, X); if there are several such
blocks, take as X the longest one. Since the block X is not cut by any
duo from ® we have duos(X) N ® = (), and since ® is a correct answer
for the Hitting Set problem, it holds that duos(X) ¢ S. We conclude that
#substr(A, X) = #substr(B, X). We aim to get a contradiction by inferring
an equality for #blocks(.A, X) and #blocks(B, X).

Exploiting the fact that X is not cut by any duo from ®, it is possible
to calculate the numbers #blocks(A, X)) and #blocks(B, X) by the following



formula (by X C Y we denote that X is a substring of Y and by X C— YV
that X is a proper substring of Y'):

#blocks(A, X) = #substr(A, X) — Y #substr(Y, X) - #blocks(A4,Y")

YCAXCY

#blocks(B, X) = #substr(B, X) — ) #substr(Y, X) - #blocks(B,Y)
YCB,XCY
By our choice, X is the longest block with #blocks(.A, X') # #blocks(B, X)
(informally, a “wrong” block); therefore for all strings Y satisfying X C Y we
have #blocks(A,Y) = #blocks(B,Y). We conclude that #blocks(.A, X) =
#blocks(B, X), which is a contradiction. O

Lemma 2.2 The algorithm HS finds a 2k-approximation of the minimum
common partition (if an procedure for a minimum hiting set is available).

Proof: Consider any common partition A’, B’ of A and B. Then, every duo
in a minimum hitting set for the instance (U,S) must appear as a broken
duo in A" od B’. The claim follows. O

Observe that by replacing the optimal procedure for Minimum Hitting
Set by an a-approximation procedure, the algorithm HS finds a 2ka-approxi-
mation of the minimum common partition.

Unfortunately, Minimum Hitting Set problem is hard to approximate; to
achieve a good approximation ratio, we need to investigate special properties
of the instance (U, S). This is the subject of the next section.

3 O(k)-Approximation ratio for MCSP

Let (A,,B,) denote a minimum common partition of strings A and B (if
there are several minimum common partitions, we choose any of them); we
say that the breaks in A, and B, are the optimal breaks. There are 2|A,| — 2
optimal breaks. We say that a substring X = a;...a; (resp., X = b;...b;)
goes over an optimal break if there exists an optimal break [,/ + 1 in A,
(resp., in B,) such that ¢ <1 < j.

Recall the definition of the set T = {X € X* | #substr(A, X) # #substr(B,
X)}; informally, T' is the set of all wrong substrings. Note that in the in-
stance of the Hitting Set problem, most of the substrings in T" are obsolete.
To be more specific, if X, Y € T and X is a proper substring of Y, then we
can remove Y from the set T and a hitting set for {duos(X) | X € T\{Y}}



will still be a hitting set for §. Using this observation it is possible to sub-
stantially reduce the size of the set §. In particular, the relation C induces
a partial order on the set T'; let T, € 1" be the set of all minimal elements
of T', with respect to the relation C. Then T},;, satisfies the desired property

(P) if X,Y € T, and X is a proper substring of Y, then Y & Ty,

and, at the same time, a hitting set for the set &’ = {duos(X) | X € Tiin}
is a hitting set for S.

Lemma 3.1 If X € T,;, then there exists an occurrence of X in A or in B
that goes over an optimal break.

Proof: Consider a string X € T}, and suppose that no occurrence of X in
A and B goes over an optimal break. Then every occurrence of X in A or
B is a substring of some block in the minimum common partition (A,, B,).
Since A, and B, consists of the same multiset of blocks and no occurrence
of X goes over an optimal break, we have #substr(A, X) = #substr(B, X).
This implies X ¢ T, which is a contradiction. O

Using the lemma, we assign to each string in 7,,;, an optimal break.
In particular, for X € Ty, let f(X) denote the optimal break that an
occurrence of X in A or in B goes over; if there is more than one such
optimal break, we choose an arbitrary one.
Example: For A = abaab, B = ababa, the minimum common partition is
(aba, ab), (ab, aba), ba € T, and f(ba) = the break 2,3 in the partition of B.

Lemma 3.2 If XY €Ty, X=21,...,2; and f(X)=f(Y), then duos(Y)N
{129, a2} # 0.

Proof: Since X and Y go over the same optimal break, their overlap has size
at least two. Moreover, since X is not a proper substring of Y and vice versa
(by property (P) and the assumptions of the lemma), the claim follows (cf.
Figure 1). O

The consequence of Lemma 3.2 is the following. Let A be a partition of
A and B be a partition of B and let X = z;...x; be a common substring
of A and B such that X € T,;,. Then, by cutting all occurrences of x;x
and z;_12; in A and B we “hit” (that is, we cut) also (a duo in) each string
from T, that goes over the optimal break f(X). Thus, if we choose for each
optimal cut one string from 7T,,,;, that goes over it (if there is any such string
for the cut; if there is no such string, we ignore this cut) and put together
the first and the last duos of each such string, then we get a hitting set for

7



L1X2 Xy

optimal break

Figure 1: Hlustration of Lemma 3.2

Tmin Of size at most twice the size of the minimum hitting set. Of course, we
do not know the optimal breaks so we have to construct the hitting set in a
different way. The following algorithm does it:

Algorithm FAsT HS

input: strings A, B
compute a set 7" such that Ty, € T and T is of size O(n)
D0
A—(A), B—(B)
for each X € T" in order of increasing length do
if duos(X)N® = () then

add the first and last duo of X to ®

cut all occurrences of the first and last duo of X in the partitions A, B
output: (A, B)

Lemma 3.3 If a string X passes the test duos(X) N ® = O in the above
algorithm, then X € Tin.

Proof: Suppose, for a contradiction, that X passed the test yet X & T,,in.
Let @ denote the set ® just before processing the string X. The assumption
X & T, implies that there exists a string X’ € T},,;, such that X’ is a proper
substring of X. Since | X’| < |X]|, the string X’ has been processed before
the string X and therefore duos(X’) N ®" # (). Moreover, since duos(X') C
duos(X), it holds that duos(X) N ®’ # (), and therefore X cannot pass the
test, which is a contradiction. O

Theorem 3.4 The algorithm FAST HS computes a 4k-approzimation of the
minimum common partition of A and B.

Proof: If X1, X, are two different strings for which the set ® was increased
then, by Lemma 3.2, f(X;) # f(Xz2). Thus, the set ® was increased at



most |A,| + |B,| — 2 times and therefore the final set ® contains at most
2 (Ao + |B,| — 2) duos.

Since we are dealing with an instance of k-MCSP, each duo from the set
® introduces at most k£ cuts. It follows that

Al < k-2 (|A| +|B,] —2) +1 < 4k - | A,
O

Remark: The approximation ratio applies even if we measure the size of a
common partition not by the number of blocks but by the number of breaks.

Lower bound. Let A = ba{ab}*~! and B = {ab}*. Then the set ® consists
of two duos {aa, ab} and the partition computed by the algorithm FAsT HS
has size k + 1 while the minimum common partition has size 3.

4 Linear running time

We are going to describe how to implement the algorithm in linear time. The
linear implementation heavily uses the suffix tree data structure and the fact
that a suffix tree of a string of length m can be constructed in time O(m)
for constant size alphabets [12] and even for integer alphabets [7].

We start with the construction of the set 77. Let $ and # be two char-
acters that do not appear in A. We compute the suffix tree 7 of the string
C = A$B#. Recall that each leaf of the tree T corresponds to a suffix of C.
We mark by A each leaf of 7 that corresponds to a suffix starting in the sub-
string A of C'; and we mark by B each leaf of 7 that corresponds to a suffix
starting in the substring B of C'. For each node v of 7 we compute the number
numA(v) of leaves in the subtree of v marked by A and the number numB(v)
of leaves in the subtree of v marked by B; this requires time O(n), for strings
A, B of length n. For a node v of 7, let s(v) denote the concatenation of
the labels of the edges between the root and the node v and, for v #root,
let s'(v) denote the concatenation of s(parent(v)) with the first character of
the label of the edge (parent(v),v). If s'(v) does not contain the characters
$ and # we say that v is a proper node. Observe that for each proper node
v, numA(v) = #substr(A, s'(v)) and numB(v) = #substr(B, s'(v)). Thus, if
numA(v) # numB(v) we know that s'(v) € T. Once we have the suffix tree
7 and the values numA(v) and numB(v) for all vertices, we easily compute
a set

T' = {s'(v) | v is a proper node and numA(v) # numB(v)}



by traversing the tree 7 in, say, breadth first search order. Since the suffix
tree consist of O(n) nodes, the size of T" is bounded by O(n). We also note
that for each string X € Ty, there is a proper node v such that s'(v) = X
and numA(v) # numB(v) which guarantees that Ty, C 71"

7t .
Q > Sababa#
ab$ababa# b A a Sababa#
A B A
a $ababa# ab$ababa# 4
ba#
A A B
ab$ababa# : B
ba#
A B

B

Figure 2: Suffix tree 7 of the string C' = abaab$ababa#. The larger dots
denote the proper nodes.

To give an example, consider strings A = abaab and B = ababa. The
suffix tree of the string C' = A$B+# is given in Figure 2 and the relevant sets
are as follows:

T" = {aa,aba,abaa, abab, ba, baa,bab}
Twin = {aa,ba}

& = {aa,ba}
A = (ab,a,ab)
B = (ab,ab,a)

To finish the description of the fast implementation of the algorithm, it
remains to describe how to maintain the set ®, how to test the condition
duos(X) N ® # () and how to realize the cuts. We employ a data structure
for the set—splitting problem [8]. In this problem, we are given a set consisting
of the integers {1,...,m} and the task is to perform an intermixed sequence
of the following two operations:

e split(i) — splits the set containing ¢ into two sets, one with all integers
smaller than ¢ and the other with all integers greater than or equal to
i

10



e find(i) — returns the smallest integer in the set containing i.

Gabow and Tarjan [8] describe a data structure that requires O(1) amortized
time for each operation. In our setting, we maintain for each partition A
and B a separate data structure that stores information about cuts in that
partition. Initially, each structure consists of only one set, the set {1,...,n}.
Each time when we add a duo cd to & we perform the cuts of the partitions

A and B as follows:

for each occurrence of the duo c¢d in A do
A.split(j + 1), where j is the position of the current occurrence cd in A
(i.e., Ajtjq1 = Cd)
for each occurrence of the duo cd in B do
B.split(j + 1), where j is the position of the current occurrence cd in B
(i.e., bjbj_|_1 = Cd)
Since every duo appearing in A and B is processed at most once by the
algorithm the total number of split operations is at most O(n).
For an occurrence a;...a; = X (resp., b;,...,b; = X) of the substring
X € T, it holds that duos(X) N ® = () if and only if A.find(i) = A.find(j)
(resp., B.find(i) = B.find(j)). This provides a way for testing the condition
duos(X) N ® # () in constant time.

Theorem 4.1 The above implementation of the algorithm FAST HS runs in
linear time.

5 Sorting by reversals

One can easily modify the algorithms HS and FAST HS to work also for the
relation 22 for both signed and unsigned strings. We redefine #substr(A, S)
to so that it counts occurrences of both S and —S in A; the definitions of
the sets T', 7" and T,,;, remain unchanged. The new definition of #substr
requires a small change in the computation of the set T”: we compute a suffix
tree of the string C' = A#BS$(—A)#(—B)$ (the brackets are only used to
denote the scope of the reversal operation). We also need a slight change in
Lemma 3.1 and Lemma 3.2:

Lemma 3.1a If X € T,,;, then there exists an occurrence of X or —X in
A or in B that goes over an optimal break.

Lemma 3.2a If X\Y € Ty, X = z1,...,2; and f(X) = f(Y), then
duos(Y) N {129, 21171, —(7122), —(T1170)} # 0.

11



Finally, whenever the original algorithm cuts duos zy, the modified al-
gorithm also cuts duos —(xy). This increases the approximation ratio by a
factor of two.

Theorem 5.1 The algorithm FAST HS computes in linear time ©(k)-appro-

ximation for signed, unsigned and reversed k-MCSP and for signed and un-
signed k-SBR.

6 Conclusion

We presented ©(k)-approximation algorithms for signed and unsigned k-
MCSP and k-SBR, running in time O(n). A challenging open question is
whether it is possible to get a nontrivial approximation ratio independent
of the parameter k (or at least less dependent, say an approximation ratio

O(log k).

References

[1] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions
among convex optimization problems. Journal of Computer and System
Sciences, 21(1):136-153, 1980.

[2] A. Caprara. Sorting by reversals is difficult. In Proceedings of the First
International Conference on Computational Molecular Biology, pages
75-83. ACM Press, 1997.

[3] X. Chen, J. Zheng, Z. Fu, P. Nan, Y. Zhong, S. Lonardi, and
T. Jiang. Assignment of orthologous genes via genome rearrangement.
IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics, 2(4):302-315, 2005.

[4] D. A. Christie and R. W. Irving. Sorting strings by reversals and by
transpositions. SIAM Journal on Discrete Mathematics, 14(2):193-206,
2001.

[5] M. Chrobak, P. Kolman, and J. Sgall. The greedy algorithm for the
minimum common string partition problem. ACM Transactions on Al-
gorithms, 1(2):350-366, 2005.

[6] G. Cormode and S. Muthukrishnan. The string edit distance matching
problem with moves. In Proceedings of the 13th Annual ACM-SIAM
Symposium On Discrete Mathematics (SODA ), pages 667-676, 2002.

12



[7]

8]

[9]

[12]

M. Farach. Optimal suffix tree construction with large alphabets. In
Proceedings of the 38th Annual Symposium on Foundations of Computer
Science (FOCS), pages 137-143, 1997,

H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case
of disjoint set union. Proceedings of the fifteenth annual ACM symposium
on Theory of computing, pages 246-251, 1983.

A. Goldstein, P. Kolman, and J. Zheng. Minimum Common String Par-
tition Problem: Hardness and Approximations. The Electronic Journal
of Combinatorics, 12(1), Sept. 2005.

S. Hannenhalli and P. A. Pevzner. Transforming cabbage into turnip:
polynomial algorithm for sorting signed permutations by reversals. Jour-

nal of the ACM, 46(1):1-27, 1999.

P. Kolman. Approximating reversal distance for strings with bounded
number of duplicates. In Proceedings of the 30th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS), vol-
ume 3618 of Lecture Notes in Computer Science, pages 580-590, 2005.

P. Weiner. Linear pattern matching algorithms. In 14th IEEE Sympo-
stum on switching and automata theory, pages 1-11, 1973.

13



