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ABSTRACT. From the work of Simmons about nuclei in frames it
follows that a topological space X is scattered if and only if each
congruence © on the frame of open sets is induced by a unique sub-
space A so that © = {(U,V)|UNA =V NA}, and that the same
holds without the uniqueness requirement iff X is weakly scattered
(corrupt). We prove a seemingly similar but substantially different
result about quasidiscrete topologies (in which arbitrary intersec-
tions of open sets are open): each complete congruence on such a
topology is induced by a subspace if and only if the correspond-
ing poset is (order) scattered, i.e. contains no dense chain. More
questions concerning relations between frame, complete, spatial,
induced and open congruences are discussed as well.

1. INTRODUCTION: THE ROLE OF DOWN-SET LATTICES IN
DUALITIES

Each subset A of a partially ordered set (poset) X with order relation
< generates a down-set (lower set, decreasing set, initial interval)

lA={zx € X |z <a for some a € A}
and an up-set (upper set, increasing set, final interval)
TA={x e X |a <z for some a € A}.

As usual, |a denotes the principal ideal | {a}, and Ta the principal filter
T{a}. Since the pioneering work of Alexandroff [1] one knows that the
lattices (X)) of all up-sets and, by dualization, the lattices D(X) of
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all down-sets are precisely the quasidiscrete topologies, i.e. those Tj
topologies which are closed under arbitrary intersections. Moreover,
the open sets in the lower Alexandroff topology D(X) are precisely the
closed sets with respect to the upper Alezandroff topology (X ). In
other words, the down-sets are just the complements of the up-sets.
Sending each poset to the corresponding quasidiscrete space with the
upper Alexandroff topology and keeping fixed the underlying maps of
the morphisms yields a concrete isomorphism between the category of
posets with isotone (i.e. order preserving) maps and the category of
quasidiscrete spaces with continuous maps. The inverse isomorphism
is established by restriction of the specialization functor, which sends
any topological space X to X<, the underlying set equipped with the
specialization order, defined by

r<y & xE@ < for all open U, x € U implies y € U.

This quasiorder is antisymmetric, hence a partial order, iff X is a Tj-
space. Thus, the specialization functor forgets the topological structure
and adds an order structure instead.

The (up- or) down-set lattices are very special complete lattices,
namely those in which arbitrary joins are unions and arbitrary meets
are intersections. Abstractly, they are the superalgebraic lattices, i.e.
those which are join generated by their completely join prime or super-
compact elements (the principal ideals). Being completely distributive
and join generated by completely join irreducible elements, such lattices
may be seen as the most obvious generalization of finite distributive
lattices. Indeed, the Birkhoff duality between finite posets and finite
distributive lattices [11] naturally extends to a duality between arbi-
trary posets with isotone (order preserving) functions on the one side
and superalgebraic lattices with complete homomorphisms, preserving
arbitrary joins and meets, on the other [8, 20, 36]. One duality functor
sends each poset to its down-set lattice and any isotone function to its
preimage map. A duality functor in the opposite direction is obtained
by associating with any superalgebraic lattice the subposet of all su-
percompact elements and with any complete homomorphism between
superalgebraic lattices the restriction of its lower adjoint to the super-
compact elements. Thus, the superalgebraic lattices may be regarded
as the pointfree counterparts of Alexandroff spaces, in the same vein
as spatial frames correspond to sober spaces via the open set functor
and the spectrum functor in the opposite direction [36, 43].

Completely distributive lattices and their relationships to down-set
lattices have been studied quite extensively a long time ago, mainly by
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Raney [54, 55]. Down-set lattices play a role in diverse areas of order
theory and topology, for example, in the theory of standard completions
for ordered sets [3, 17, 27], in connection with continuous and algebraic
lattices [36], and also in the more general context of Z-continuous and
Z-algebraic posets [10, 20, 24, 25]. For further categorical aspects of
the down-set functor, see [8]. A further perspective to duality aspects
of down-set lattices was opened by Banaschewski [4], who charcterized
them as the bounded distributive topological lattices with a Boolean
(compact and zero-dimensional) topology.

Renewed interest in down-set lattices comes from their role in ob-
taining relational semantics and developing the correspondence theory
of algebraic logics generalizing modal logics [33]. In this setting the
object of study are partially ordered algebras and more specially often
distributive lattice-ordered algebras. The objective is to associate, in a
natural way, with each of these abstract algebras, A, a relational struc-
ture, S(A), so that A may be represented as a concrete algebra over
the powerset of the set underlying S(A) that is constructed by means
of first order definable subcollections and operations. In doing this one
has two routes. One is to obtain from the algebra A its topo-relational
dual space, A, (through, e.g., extended Priestley duality), and then to
forget the topology thus leaving a relational structure S(A) by which A
may be represented concretely over its powerset. Another route from
A to S(A) is to first complete the algebra A to obtain an algebra A
that lies within an extended Birkhoff duality between down-set lattices
with additional 'complete’ operations and certain relational structures.
The two assignment routes may be seen as:

A — A°
! !
A, — S(A)

Here the lower horizontal assignment is given by the forgetful functor;
the upper assignment is given by canonical extension [32, 44] which is a
candidate for the algebraic or pointfree version of the left adjoint to the
forgetful functor on the lower horizontal level. The extended Birkhoff
duality that effects the correspondence between A% and S(A) is, in the
distributive setting, none other than the simple duality between down-
set lattices and partially ordered sets mentioned above. By using the
upper route then relational semantics, and even topological duality
can be studied by a combination of canonical extension theory and
discrete duality [16, 33, 37] and [34, 35], respectively. In this approach,
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in most available cases, dualities are correspondence results overlayed
with obvious necessary conditions.

To illustrate, in the case of a Boolean algebra A, the structure X =
S(A) is the poset of all prime filters of A (ordered by inclusion), and
A, is that poset equipped with Stone’s hull-kernel topology, while A°
is the powerset B (X). Here, the topological duality A «» A, is Stone’s
duality for Boolean algebras (see [59] for Stone’s original approach and
[43] for a modern treatment), while the discrete duality X < JB(X) on
the right is the one between sets and complete atomic Boolean algebras.
By virtue of that duality, complete congruences of (X) correspond to
subsets of X. This lifts to a duality result by ‘overlaying’ the property
that a subset of X must be closed in the Boolean topology in order to
restrict correctly to a quotient of the abstract Boolean algebra A sitting
inside A7 (as the Boolean subalgebra of clopen sets). As a well-known
and useful consequence, the congruences of a Boolean algebra are in
one-to-one correspondence with the closed subsets of the dual space.

For bounded distributive lattices, X = S(A) is the prime filter spec-
trum of the (bounded) distributive lattice A (see [60] and [43]), and A,
is that poset equipped with the Priestley or patch topology [51], while
A7 is (up to isomorphism) the up-set lattice t(X). In this case, we
have the Priestley duality A <+ A, on the left and the aforementioned
Alexandroff duality X < (X)) between posets and superalgebraic lat-
tices on the right. Again, an important aspect of the left hand duality is
that congruences of the abstract algebra A are in one-to-one correspon-
dence to the closed subsets of the dual space A,. This result however
is not the simple overlay of topology on the corresponding result for
the discrete structures: the complete congruences of a down-set lattice
are not in general in one-to-one correspondence with the subsets of the
dual poset. The duality result is of course understandable in this set-
ting, e.g., by lifting the congruences to the free Boolean extension and
then applying the Boolean duality result. Nevertheless it is a natural
question to ask which down-set lattices have the property that their
complete congruences are in one-to-one correspondence to the subsets
of the underlying poset, by associating with each subset A the induced
congruence © 4 = {(U,V) € D(X)?|UN A=V N A}. The main result
of this paper is the answer to the above question: This is the case if
and only if the underlying poset is (order) scattered, i.e., it does not
contain a densely ordered chain.

Our approach will be through the extensive theory of pointfree topol-
ogy. We consider down-set lattices as special frames and give various
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abstract characterizations of these, as well as of their complete quo-
tients, the completely distributive or supercontinuous lattices. Here,
the majority of the results and tools needed are already available, but
for selfcontainment and a streamlined exposition, we include most of
the necessary proofs, since the pertinent literature is rather dispersed
and some arguments would become rather circuitous.

Our main interest lies in the understanding of complete quotients
and congruences (compatible with arbitrary joins and meets) of super-
algebraic frames. The problem treated here is parallel to a well-known
problem in pointfree topology: In the adjunction between topological
spaces and frames, subspaces of a space give rise to surjective frame
homorphisms on the frame side. Thus, in pointfree topology, frame
quotients (and thus frame congruences) are considered as ‘pointfree’
or generalized subspaces. The question is then which spaces have the
property that all generalized subspaces (i.e. frame quotients of their
topology) are ‘bona fide subspaces’ (i.e. isomorphic to the topology
of a subspace). This problem was solved by Simmons [57] (see also
Niefield and Rosenthal [50, 56]): the spaces in question are exactly
the corrupt or weakly scattered ones (in which all nonempty closed sets
have weakly isolated points; see Section 3). We see how our result may
be regarded as the corresponding fact for Alexandroff Tj spaces: such
a space (resp. the associated poset) is order-scattered if and only if
its generalized subspaces are ‘bona fide subspaces’. This sounds quite
similar to the above statement about frame congruences, but topologi-
cal scatteredness, though loosely related to order-scatteredness [49], is
something different, and the proof requires other techniques.

We take the occasion to explore the import of complete congruences
for frames in general, give a characterization of the complete congru-
ences among the frame congruences for an arbitrary open set frame, and
show that it is precisely the Ti-topologies for which only the open sub-
spaces induce complete congruences (while for Alexandroff spaces, all
subsets do). Moreover, it turns out that topological scatteredness of an
Alexandroff space is a much stronger property than order scatteredness:
the posets whose upper Alexandroff spaces are scattered are the Noe-
therian ones (in which every directed subset has a greatest element).

After this introductory section we shall give, in the second section,
the promised characterizations of down-set lattices and their complete
quotients in the setting of frames. Crucial will be the observation that
the points of a poset are separated (by the complements of a principal
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ideal and a principal filter) iff the MacNeille completion is supercon-
tinuous (cf. [9, 21]), while the points are principally separated (by a
principal ideal and a complementary principal filter) iff the MacNeille
completion is superalgebraic, hence isomorphic to a down-set lattice
(see [21]). Using this, we prove, in frame-theoretic guise, the quotient
version of our main result, namely, that all the complete quotients of
a superalgebraic lattice are superalgebraic if and only if its subposet
of supercompact elements is scattered. In the third section, we revisit
the duality between frames and spaces and identify all the pertinent
types of frame congruences including general, spatial, induced, open
and complete congruences. We explore their mutual relationships and
arrive, in the last section, at our main theorem.

As we hope that this paper also will be of interest outside the point-
free topology community, we introduce all the specialized tools and
definitions and include proofs whenever this does not lead us too far
afield. For readers interested in a choice-free development, we point
out that many of our deductions work in set theory without the Axiom
of Choice. In a few cases, we use the weaker Principle of Dependent
Choices is used are marked by an asterisk. This rather ‘obvious’ (but in
ZF unprovable) principle says that, given a relation R on a nonempty
set X such that for each x € X there is a y with z Ry, there exists a
sequence (x,) with z, R,y for all n.

Convention. Statements where the Principle of Dependent Choices
is used are marked by an asterisk.

2. SUPERALGEBRAIC AND SUPERCONTINUOUS LATTICES

Our first goal is to provide the tools that will allow us to understand
up- or down-set lattices and their complete quotients in a ‘pointfree
framework’. Although, by the usual definition of the specialization
order, the up-set lattices are regarded as the lattices of open sets in
the associated Alexandroff topologies (A-topologies for short), one may
take the down-set lattices as well, because they are just the open set
lattices with respect to the dual order. In the present context, we prefer
to work with down-set lattices, because the underlying poset X sits,
right side up, in its down-set lattice D(X).

A frame (resp. co-frame) is a complete lattice L satisfying the ‘infi-
nite’ distributive law

aN\VB=\{anb|be B} (tesp. aVAB=AN{aVvb|be B})



7

foralla € L and B C L. A frame homomorphism preserves all joins
and all finite meets, while a complete homomorphism preserves all joins
and all meets. ‘Classical’ frames are the lattices O(X) of open sets of
topological spaces X. Their isomorphic copies are called spatial frames.
Abstractly, they are characterized by the condition that every element
is a meet of (A-)primes. If f : X — Y is a continuous mapping between
topological spaces then

Of) : ) - O(X), U fU]

is a frame homomorphism, and in case Y is an Alexandroff space, O(f)
is even a complete homomorphism. For more details about frames see,
e.g., [43] or [52].

In order to provide the desired abstract characterizations of A-topo-
logies, let us recall the relevant definitions. An element ¢ of a poset X
is compact if the set X'\ T ¢ is closed under directed joins, and V-prime
if X'\ Tc is closed under finite joins; if X \ Tc¢ is even a principal ideal
L d then c is supercompact in X (and d is supercompact in the dual of
X). We denote by scX the subposet of all supercompact elements. In
a complete lattice, these are precisely the \/-primes, satisfying ¢ € | A
whenever ¢ <\/A (while compact elements are characterized by the
condition that ¢ < \/A implies x < \/F for some finite F' C A). A
complete lattice L is (super-)algebraic if each of its elements is a join of
(super-)compact elements (see, e.g., Banaschewski and Niefield [7]). A
poset X is separated (or a Raney poset [47]) if for a £ b in X there are
c¢,d € X suchthat a £ d,c £b,and TcU | d = X; and X is principally
separated if, in addition, ¢ and d may be chosen so that ¢ £ d (whence
X\ Te=]d;see 21, 22]). Finally, a poset is weakly atomic [14] if each
non-trivial interval contains a covering pair u < v (so that u <wv but
no x satisfies u < x < w). Parts of our first characterization theorem
have been known for a long time; concerning (a)< (e), see Biichi [12]
or Raney [54]; the equivalence (d)< (e) (d)<(e) was first observed by
Bruns [13]. See also [15] and [22].

Theorem 2.1. For a complete lattice L, the following conditions are
equivalent:

L s principally separated.

)
)
d) L is a weakly atomic frame and a co-frame.
) L is isomorphic to a down-set frame (A-topology).
)

The join map \/ : ®(scL) — L is an isomorphism.
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Proof. (a)=-(b). Supercompact elements are V-prime and compact.

(b)=(a). It suffices to show that any compact element ¢ € L is a join
of supercompact elements. By spatiality of the dual lattice, c is the join
of a minimal finite set F' of V-primes. For any such p € F' and any set
A with p < \/A, we find a finite F C A such that ¢ < \/(EU (F\{p})),
and as p £ b for b € F\{p}, there is an a € E C A with p < a. Hence,
each p € F' is supercompact.

(a)=(f) = (e) is straightforward.

(e)=(d). Clearly, any down-set system D(X) is a frame and a co-
frame; moreover, it is weakly atomic, since for A C B in ®(X) and for
xr € B\ A, the down-set V = AU |z covers the down-set U = V '\ {z}
in the interval [A, B].

(d)=(c). If a £ b, i.e. a Ab < a, choose u,v with a A b < u <
v < a. By the co-frame property, the minimum ¢ = min{z |v < z V u}
exists, is \/-irreducible (indeed, < ¢ implies x < u, while ¢ € u) and
consequently supercompact, because L is a frame. For d = max(L\Tc¢)
we get a £ d (since ¢ < a), ¢ £ b (otherwise v < a A (bVu) < wu), and
TeUld=L.

(¢)=(a). Given a £ b in L, choose ¢,d with a £ d, ¢ £ b and
TcU]d = L. Then c is supercompact with ¢ < a but ¢ £ b. Thus,
each element is a join of supercompact ones. ll

Of course, the conditions (c) — (e) are self-dual. Thus, in contrast to
algebraic lattices, the duals of superalgebraic lattices are again super-
algebraic.

The Axiom of Choice allows to omit the word ‘spatial” in (b), because
then (d) is easily derived for any algebraic frame, with the help of Zorn’s
Lemma (cf. [14]).

Now, the well-known duality between posets and superalgebraic lat-
tices (see [20] or [36] for details, and [18] for a more general framework)
may be stated as follows (for corresponding notions, also applicable in
the non-distributive setting, see [18, 20, 24] and [30]):

Proposition 2.2. Assigning to each isotone map f : X —Y the map
D(f): DY) = D(X), B f[B],

one obtains a duality between the category of posets with isotone maps
(resp. the isomorphic category of quasidiscrete spaces) and the category
of superalgebraic lattices with complete homomorphisms (preserving ar-
bitrary joins and meets). Moreover, f is an order embedding iff D(f)
18 onto.
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Concerning the last fact, note that if f is an embedding then U =
D(f)(] flU]) for each U € D(X); conversely, if D(f) is onto then each
principal ideal |y of X is the preimage of some U € D(Y), whence
f(x)<f(y)€U implies z € f U] = |y, i.e. z<y.

Next, to the characterization of complete homomorphic (rather than
isomorphic) images of A-topologies. Recall that a complete lattice is
continuous (in the sense of Scott [36]) if each a € L is the join of its way-
below elements ¢ < a, belonging to all directed down-sets whose join is
above a. Replacing directed with arbitrary down-sets in that definition,
one obtains the supercontinuous lattices. Thus, a complete lattice L
is supercontinuous iff each element a € L is the join of all ¢ < a, the
latter meaning that ¢ belongs to every down-set whose join is above
a. We call < the superway-below relation (elsewhere referred to as
the well-below relation or long-way-below relation, and also denoted by
<X ). By definition, ¢ is supercompact (resp. compact) iff ¢ < ¢ (resp.
¢ < ¢). The major part of the resulting theory of supercontinuous
and superalgebraic lattices is entirely parallel to that of continuous
and algebraic lattices (see Gierz et al. [36]), being based on the non-
conditional versions of the way-below relation and of compact elements.
In fact, both mainstreams are special instances of the general theory of
Z-algebraic and Z-continuous posets and lattices (see [10, 24, 25]). For
example, the superway-below relation of supercontinuous lattices (cf.
[55]) has the same interpolation property as the way-below relation of
continuous lattices (see [36]):

Proposition 2.3. The superway-below relation < of a supercontinuous
lattice is idempotent, i.e. transitive and interpolative:

a<lb & a<dc<b for some c.

A lattice L is superalgebraic iff it is supercontinuous and for a <\ b in
L, there is a supercompact ¢ with a < ¢ <b (hence a < ¢ <1c<1b).

Corollary 2.4. Every down-set frame s supercontinuous. Its super-
compact elements are just the principal ideals, and one has for any two
down-sets A, B:

A< B & AC |xC B for some x € X.

Next, a remark about morphisms between supercontinuous lattices
(see [10, 24] and [36]).

Proposition 2.5. A map between supercontinuous lattices is a com-
plete homomorphism iff it has a left (=lower) adjoint preserving the
superway-below relation.
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From Raney’s pioneering work [55] we know that the supercontin-
uous lattices are just the completely distributive ones. These may be
characterized, without using choice functions, by the identity

MVA:Aex}=\{\B:BecxXx#},
where X is any system of subsets and X'# consists of all subsets of the

union (JX that intersect each member of X'. We add here some al-
ternative characterizations of supercontinuity, essentially due to Raney

54, 55].

Theorem 2.6. For a complete lattice L, the following conditions are
equivalent:

(a) L is supercontinuous.
(b

(c) L is separated.
(

(

)
)

d) L satisfies N{VA: AV} =\VNY foraly CD(L).
)

L 1s completely distributive.

e) L is the complete homomorphic image of a down-set frame (A-
topology ).

(f) The join map \/ : D(L) — L preserves arbitrary meets (and
joins).

Proof. (a)=-(c). For a £ b, there is a ¢ £ b that belongs to every
down-set having a join above a. Since the down-set A = L\ T¢ does
not contain ¢, we must have a £ d := \/A. Furthermore, if x ¢ | ¢ then
xr € Aandsox e d.

(b) is equivalent to (d) by the identity ({] A: Ac X} =] {A\B: B¢
X#}.

(¢)=(d). Let Y be any collection of down-sets. For a := A{\ A :
A€ Y}and b:=\/ (Y, it is clear that b < a. Assuming a £ b, we
find ¢,d € L with a £ d, c £ b, and L = TcU |d. Then \/ A £ d for
all A € ), and so A € |d, whence ANTc # (. As each A € Y is
a down-set, it follows that ¢ € (), in contrast to ¢ £ \/()Y. Thus,
VINY) = AV

(d) = (f) = (e). Being left adjoint to the principal ideal map a — |a
from L into ®(L), the join map preserves joins, and by hypothesis (d),
it also preserves meets.

(e) = (a) follows from the fact that superalgebraic lattices are super-
continuous and that supercontinuity, respectively, complete distributiv-
ity is preserved by complete homomorphisms (see [10] for more general
results on Z-continuous posets). L
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Again, (c) is obviously a self-dual statement, so supercontinuity is a
self-dual property, too. Furthermore, combining Theorem 2.1 with 2.6,
we conclude:

Corollary 2.7. The supercontinuous lattices are precisely the complete
homomorphic images of superalgebraic lattices.

By the isomorphism B(X) ~ {0, 1}, it is clear from Theorem 2.1 that,

a complete lattice is superalgebraic iff it is completely embeddable in
a discrete cube {0,1}%.

In full analogy to that embedding theorem, one can prove that

* a complete lattice is supercontinuous iff it is completely embeddable

in a real cube [0,1]%.

However, the known proofs (see, e.g. [19, 36]) require Dependent
Choices, similarly as in the case of Urysohn’s Lemma for normal spaces.

The coincidence between superalgebraicity and principal separation
extends to the non-complete case as follows (see [9] and [21]). The cut
operator of a poset X associates with any subset A the cut generated
by A, the intersection of all principal ideals containing A. Its range
is M(X), the completion by cuts, Dedekind-MacNeille completion or
normal completion [11, 46]. See [5] for categorical aspects and [21]
for a different characterization of that completion as a reflector. The
latter reference also contains most of the following facts, establishing
the “completion-invariance” of (principal) separation:

Theorem 2.8. (1) A poset X is principally separated iff the completion
M(X) is superalgebraic iff the cut operator induces an isomorphism

between D(scX) and N(X).

(2) A poset X is separated iff the completion M(X) is supercontinuous
iff the cut operator induces a complete homomorphism from ®(X) onto

N(X) .

Proof. (1) If X is principally separated and P = scX its subposet of
supercompact elements, the restricted cut operator I' : ®(P) — (X)),
A— N{ly|A C |y} has the left adjoint

L:N(X)—D(P), Cr PNC.
Indeed, if C CT'(A) then for ¢ € PNC thereisad € X with X\Tc = |d,
so ¢ € A would imply AC |d and ce C CT'(A) C | d, a contradiction;
thus, L(C') C A, which in turn entails C CT'(A), since a € C implies
a = \{c € Plc < a} CTI(A). Consequently, I' preserves meets.
Furthermore, I' is onto, since |z = I'(P N | z) by join-density of P,
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and each cut is an intersection of principal ideals. But I' is also an
embedding: for A, B € ®(P) with A € B and ¢ € A\ B, we get
TenNB = (), hence B C |d and ¢ € |d for d = max(X \ T¢); thus,
A ZT(B). We see that I' : ©(P) — (X)) is an isomorphism, whence
M(X) is superalgebraic, by Theorem 2.1.

On the other hand, if we assume that 9(X) is superalgebraic, then
for a £ bin X, ie. |a € |bin (X)), there is a supercompact cut
C C lawith C & |b. The equation C = \/m(X){lc : ¢ € C} forces C
to coincide with one | ¢, whence ¢ < a but ¢ £ b; now, there is a cut
Dwithe ¢ De |t € D CC |z ie. D=X\Tc¢ and as D is a
/\-prime cut, it must be a principal ideal |d. Thus, X is principally
separated.

(2) If X is separated then the restricted cut operator I': D(X)—9(X)
is onto and preserves joins, being left adjoint to the inclusion map
MN(X) — D(X). But I' also preserves meets, as can be shown by a
similar argument as above. Hence, I' : ®(X) — M(X) is a complete
homomorphism, and in particular, 91(X) is supercontinuous by Theo-
rem 2.6.

On the other hand, if we assume that 91(X) is supercontinuous and
that @ € b in X, then we have |a € |b in DM(X), so there is a cut
C<la with C € |b. Pick ¢ € C with ¢ £ b. Then |¢ < |a, hence
la Z Vyxy{lz e £z} =T(X\T¢), and we find a d € X with a £ d
and X\ TecC |d,ie TcU |d=X. Thus, X is separated. 0

Recall that a poset is said to be (order) scattered if the chain Q of
rationals is not embeddable in it. At least for chains, that notion has
a long history dating back to the pioneering work of Hausdorff [38].
Recall also that a nontrivial poset is dense if it has no covering pairs.
An easy application of Dependent Choices yields:

Proposition 2.9.% The following conditions are equivalent for a poset
X:

(a) X is order scattered.

(b) X has no dense subchain.

(c) FEwvery subposet of X is weakly atomic.

For deeper results about scattered ordered sets, we refer to [28].

Example 2.10. Like every chain, the real unit interval I = [0, 1] (with
the usual order) is separated, hence supercontinuous (being complete).
Here, the superway-below relation <1 (which coincides with the way-
below relation on the half-open interval |0, 1]) is just the strict order
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<. As a strict order is irreflexive, it is clear that there are no super-
compact elements in I; that is, I is extremely non-superalgebraic. But,
by Theorem 2.6, it is a quotient of its (superalgebraic!) down-set frame
under the complete homomorphism \/ : ©(I) — I. Up to isomorphism,
D(I) is obtained by doubling each element of I. Though being super-
algebraic, hence weakly atomic, the complete chain ®(I) is clearly not
scattered.

The previous example is generic among examples of supercontinuous
lattices which are not superalgebraic, in that every supercontinuous but
not superalgebraic lattice cannot be weakly atomic and must therefore
contain a copy of the real unit interval. We are now ready for the first
version of our main result, characterizing scattered posets by a com-
mon property of their subposets, and by another one of the complete
quotients of their down-set lattices.

Theorem 2.11.% The following conditions are equivalent for a poset X :
(a) X is order scattered.
(b) Ewvery separated subposet of X is principally separated.
(c) Ewvery complete quotient of ®(X) is superalgebraic (weakly ato-
mic).

Proof. (a)=(c). Let h be a complete homomorphism from ®(X) onto
a complete lattice L. By Proposition 2.6, L is supercontinuous (thus,
by Theorem 2.1, it is superalgebraic iff weakly atomic). Assume L is
not superalgebraic. Then there exist @ <1 b in L such that the interval
[a, b] contains no supercompact elements (Proposition 2.3). Therefore,
< is not only iinterpolative but also irreflexive on [a, b], whence a <
u <1 v < bentails v < v. By Proposition 2.5, the left adjoint g of A
is an embedding that preserves joins and the superway-below relation.
We define now a relation = on X by

rCy < lxCglu) Cgv) C |y for some u,v € [a,b] with u < v.

This relation [ is not empty, since by the interpolation property of <,
we find aq,b; with a < ay < by < b, so that Proposition 2.3 and the
embedding property of g yield x1,vy; with

g(a) € L1 € glar) C g(br) € Lyr € g(b), hence z; Ty

A similar argument shows that the relation C interpolates, i.e. x Cy
implies x C 2 C y for some z: given u,v with |z C g(u) C g(v) C |y,
choose elements uq,v; with v < u; < v1 < v and a z satisfying the
inclusions

Lz Cglu) Cglur) €1z Cg(vr) Cg(v) S Ly, hencex C 2z Cy.



14

Now, since z C y implies |z C |y, i.e. < y, the usual recursive
interpolation procedure (using Dependent Choices again) yields a dense
subchain of X. Thus, X is not order scattered, in contrast to (a).

(c)=-(b). Let Y be a separated subposet of X. The relativization map
R:D(X)—9(Y), A— ANY

is a surjective complete homomorphism. Furthermore, since Y is sep-
arated, the restricted cut operator

F:9Y)—=NY), A= N{ly: AC |y}

is a surjective complete homomorphism, too (see Theorem 2.8), and so
is the composite map I'o R : ©(X) — M(Y). Hence, M(Y) is super-
algebraic, and again by Theorem 2.8, it follows that Y is principally
separated.

(b)=-(a). If X is not order scattered then it contains a subposet iso-
morphic to Q, which is separated (like every chain) but not principally
separated (being dense). O

Our final remark about supercontinuity is:
Proposition 2.12. * Every supercontinuous frame is spatial.

Proof. Given a £ b in a supercontinuous frame, use the approximation
and interpolation property of the superway-below relation in order to
find, via Dependent Choices, a sequence of elements (c,) such that
Cr1 < Cp < a but not ¢, < b. Then it is easy to see that the element
p = \{z|c, £ x for all n} is A-irreducible, hence prime, and above b
but not above a. 0

By similar arguments, one proves that even every continuous frame
is spatial (see [36]), the basic ingredient for the Hofmann-Lawson dual-
ity of continuous frames. However, the spatiality of continuous frames
requires additional choice principles like the Prime Ideal Theorem,
though not the full strength of the Axiom of Choice (cf. [43]).

3. CONGRUENCES ON TOPOLOGIES AND FRAMES

Every frame (indeed, every complete lattice) L gives rise to a spe-
cific topological space, its spectrum X = &(L), whose points are
the (A-)prime elements of L and whose closed sets are the ‘shadows’
TaNX (a € L) (cf. [36]). Alternately, points may be obtained as the
characters, i.e. frame homomorphisms into the two-element chain 2,
with each a € L yielding an open set {z : z(a) = 1} (see, e.g, [43, 52]).
In this setting, frame homomorphisms h : L — M give rise to contin-
uous maps S(h) : (M) — &(L), defined by x +— xoh. The spectrum
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functor & together with the open set functor 9 in the opposite direc-
tion yields the categorical (dual) adjunction at the heart of point free
topology, relating frames with topological spaces. The dual adjunction
becomes a duality when restricted to sober spaces and spatial frames,
respectively.

A space X is weakly sober if each A-irreducible closed set is the
closure of a point, or, equivalently, if each frame homomorphism from
O(X) into 2 is of the form A, where z is a point and \,(U) =1 &z €
U. One can show easily (see [53]) that if X is weakly sober then for
every frame homomorphism h : O(X) — O(Y) there is a continuous
f:Y — X such that h = O(f), and that in sober spaces (that is, in
weakly sober Ty-spaces), the map f stipulated above is unique. For
more about sobriety see, e.g., [40] and [43].

Note that a frame L is spatial if and only if distinct elements of L
give rise to distinct open sets of the space G(L). Although all countable
frames are spatial (being necessarily weakly atomic and therefore meet
generated by their completely meet-irreducible, hence prime elements),
there exist non-spatial frames in abundance (prominent examples are
all atomless complete Boolean algebras). We know that all down-set
frames are spatial, and that they are captured within the class of all
frames as the superalgebraic ones, so that there is a way of recapturing
the points of a quasidiscrete space faithfully. This is through the su-
percompact elements, or in a format more related to the description of
the spectrum by characters, as the complete (rather than frame) homo-
morphisms into 2. However, the duality functor from superalgebraic
lattices to quasidiscrete spaces is not induced by the spectrum func-
tor from spatial frames to sober spaces: V-prime elements need not be
supercompact, and quasidiscrete spaces need not be sober.

As mentioned in the introduction, our interest here is in understand-
ing complete congruences (compatible with arbitrary joins and meets)
of superalgebraic frames. But, in order to set them in context, we con-
sider several related types of congruences on general frames and give
some partial insight into how they relate. In the category of frames, the
frame congruences, i.e., those corresponding to images under frame ho-
momorphisms, are of course the most central ones. It is not hard to see
that, via the spectrum functor, surjective frame homomorphisms yield
embeddings. Thus it is natural that surjective frame homomorphisms
and thus frame congruences are identified as generalized subspaces in
pointfree topology. On the other hand, if X is a topological space and
A is a subspace of X then the inclusion map e : A — X induces a
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surjective frame homomorphism
Oe):D(X)—9D(A), U—-UNA

whose kernel is the induced congruence A, given by

UA)WV & UNA=VnNA.

A first obvious question concerning such induced congruences is:
which spaces have the property that the inducing subspaces are unique?
The answer has been given in [53]:

Proposition 3.1. A space X is Tp if and only if each frame congruence
on O(X) is induced by at most one subspace of X .

Here T is the separation axiom between Ty and 77 requiring that
each point z has an open neighborhood U such that U \ {z} is open
[2, 61] (for related material on Tp-spaces, see [13, 18, 29, 39, 53]).

Proof. Let X be Tp and suppose 4,B C X but A ¢ B. Choose
x € A\ B and an open U such that x € U and V = U \ {x} is open.
Then UNA#V NAwhileUNB=VNB; hence Ay # Ap.

On the other hand, if for each z € X the congruence Ay is distinct
from Ax\ (s}, there exist open sets U # V' in O(X) such that U\ {z} =
V' \{z}. That is possible only if one of them, say U, contains z, and
V =U\{z}. O

The next question is: which congruences have a chance to be in-
duced? A congruence on a frame L is called spatial provided the corre-
sponding quotient frame is spatial (that is, isomorphic to a topology).
On open set frames O(X), certainly each induced congruence A, is
spatial (as the quotient will be, up to isomorphism, (A)), but not all
spatial congruences have to be induced. The precise criterion is:

Proposition 3.2. A space X is weakly sober if and only if every spa-
tial congruence on O(X) is induced. Thus, in weakly sober spaces the
spatial congruences are exactly the induced ones.

Proof. Suppose X is weakly sober and © is a spatial congruence on
O(X), i.e. there is an isomorphism i: O(X)/e — O(Y). Then g =
iope: OX)—OY) (with pe : O(X) — O(X) /e the canonical epi-
morphism) is a surjective frame homomorphism, and by weak sobriety,
there is a continuous f:Y — X with g = O(f). Now, © is the kernel
of pe, hence of g, and consequently, the image A = f[Y] is a subspace
of X with © = Ay4; indeed,
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UOV & g(U) =g(V) & f U] = f[V]
& [ = V) e ANU=ANY.

Conversely, assume each spatial congruence on O(X) is of the form A 4,
and let W be a A-irreducible member of O(X). Then

O ={(U,V) e DX)xOX):UCW &V W}

is a spatial congruence, since the quotient is a two-element frame (con-
sisting of the two congruence classes O(W) and O(X)\O(W)). Thus,
our hypothesis yields an A C X with © = A4. In particular, for
Ve O(X) with V&€ W, we have XOV (since X € W) and so A =
ANX =ANV. In other words, V € W implies A C V. We apply
this to the open sets X\ T (which contain W if and only if x is not in ).
Assuming W # X\ 7 for all z, we obtain A C {X\ZT:z g W} =W,
hence ANX = ANW and so XOW, i.e. X =W, impossible as W is
prime. By way of contradiction, we see that W is the complement of a
point closure, and X is weakly sober. [

Corollary 3.3. A space is sober if and only if each spatial congruence
on O(X) is induced by a unique subspace.

Thus, for a weakly sober space X all quotients of the open set frame
that do correspond to spaces are induced by actual subspaces of X,
which are unique in the sober case. The much stronger property of
X that all generalized subspaces (that is, all quotients of its open set
frame) are induced by (unique) actual subspaces of X is much rarer.
Identifying the spaces with that property is of course a natural task,
and it has been settled by Simmons [57] (in the language of nuclei
rather than congruences; see Theorem 3.4 below). The crucial prop-
erty is (topological) scatteredness, requiring an isolated point in each
nonempty (closed) subspace. That topological property should not
be confused with the order-scatteredness introduced earlier, but there
exist interesting relations between the two notions (see, e.g., Mislove

(48, 49]).

Niefield and Rosenthal [50, 56] solved the analogous pointfree prob-
lem and gave several characterizations of those frames L for which all
quotients are spatial. One of these conditions says that every element
a € L\{1} has an essential prime, that is, a prime element p such that
a = b A p for some b > a. We omit the easy proof of that fact and refer
to [56], Ch. 4.4, for details. In an open set frame (X)), each comple-

ment X\ {z} of a point closure is prime, and it is an essential prime for
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an open set V, i.e. V. =UnN (X \{z}) C U for some open U, iff z is a
weakly isolated point of the proper closed subspace A = X\ V', meaning
that € ANU C {z} for some U € O(X). (Niefield and Rosenthal
used slightly different definitions of essential primes and of weakly iso-
lated points, which however amount to the same results.) A space is
said to be weakly scattered [50] if each nonempty closed subspace has
a weakly isolated point (Simmons called such spaces corrupt). Every
weakly scattered space is weakly sober, since for irreducible closed A,
the condition z € ANU C {z} entails {z} C A C {z} U (X \U), and
then A & X\U forces A = m On the other hand, as already observed
by Simmons [57], a space is scattered iff it is weakly scattered and Tp.
Now, combining the previous remarks with Propositions 3.1 and 3.2,
we arrive at Simmons’ Theorem, translated from nuclei to congruences
(which are just the kernels of nuclei):

Theorem 3.4. A space X is weakly scattered (resp. scattered) if and
only if each frame congruence on O(X) is induced by a subspace (resp.
a unique subspace).

4. COMPLETE CONGRUENCES ON FRAMES AND SUPERALGEBRAIC
LATTICES

In the duality between superalgebraic lattices and posets (further
exploited in correspondence theory [33] and extended Priestley dual-
ity [34]) complete congruences and induced congruences stand in the
same relationship as do frame congruences and induced congruences in
pointfree topology. Before getting into that in detail though we explore
the import of complete congruences for frames more generally.

Our first remark concerns spatiality. By Corollary 2.7 and Proposi-
tion 2.12, we may note:

Proposition 4.1. FEvery complete congruence on a supercontinuous
lattice and, in particular, on a down-set lattice, is spatial (but not nec-
essarily induced).

Under the well-known one-to-one correspondence between frame con-
gruences and nuclei, i.e. closure operators on frames preserving finite
meets [43, 52|, the so-called open nuclei

Ug: L — Lix—aNz (a€L)
correspond to the open congruences

A, ={(z,y) e LxL|zNa=1yAa},
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which evidently are not only frame but complete congruences. In par-
ticular, we see that if a congruence on an open set frame is induced by
an open subspace then it is complete.

In order to get a reversible statement, we need a slightly more compli-
cated property. Recall that in any topological space we can define the
specialization order < with x <y &z € @, and that each open set
is an up-set, while the converse is true only for Alexandroff spaces. A
subset A of a space X is said to be quasiopen [41] if TV € O(X) for all
Ve D(A).

Proposition 4.2. A subset A of a space X is quasiopen if and only if
the congruence induced by A is complete.

Proof. Suppose A C X is quasiopen and consider the quotient map
h:9(X)—9O(A), U—UNA

and define g : D(A) — O(X) by g(V) =1V. Then ¢g(V)CU < V C
U < V Ch(U). That is, g is a left adjoint to h and thus h preserves
all (joins and) meets, i.e. Ay is complete.

For the converse, suppose the quotient map h : O(X) — D(A) is
complete and g is its left adjoint. Then, for any V € O(A), we have

W = U € D(X)|V C U} = (U € 9(X)|V C h(U) =
UNA = g(V) € O(X). 0

Corollary 4.3. Openness of TA s necessary and openness of A is
sufficient for completeness of the induced congruence A 4.

Corollary 4.4. A Ty space 1s quasidiscrete if and only if each induced
congruence is complete.

Example 4.5. Even in chains with the upper (Scott) topology (cf.
[36]), openness of TA alone is necessary but not sufficient for com-
pleteness of A,: for example, in the real line R, the integers form
a subchain Z for which TZ = R is trivially open, whereas for no
nonempty proper open subset V' =]|r, oco[, the set T(ZNV) = [s,00]
(with s = min{z € Z : r < s}) is open, and therefore, Az cannot be
complete.

At the other extreme, on Tj-topologies, only the open subspaces
induce complete congruences. Indeed, a space X is T7 iff A = TA
for all A C X, and we conclude:
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Proposition 4.6. A space X is T if and only if the open subsets are
precisely those which induce complete congruences on O(X).

Proof. It only remains to show that the latter condition entails the
validity of the Tj-axiom. First, it implies T, by Proposition 3.1 and
the fact that different open sets always induce distinct congruences.
Now, for x € X and V' € O(X), the set T(V \ {x}) is either equal to
V (if x € V or there exists a y € V with y < z), or equal to V' \ T (if
x is minimal in V|, whence V\ 7 =V \ | = V' \ {z}). In any case,
T(V\{x}) is open, and by Proposition 4.2, X'\ {z} induces a complete
congruence; thus, by hypothesis, X \ {z} is open. O]

To guarantee that the complete congruences on (X)) are precisely
those which are induced by open subsets, a weaker separation axiom
than 77 is sufficient, namely, the spatial counterpart of subfitness of
frames, introduced by Isbell [42], and requiring that

for a £ b there is a ¢ withaVe=1but bVec# 1.

This property has been referred to as conjunctivity by Simmons [57,
58] and others, being the dual of the disjunction property introduced
by Wallman already in the thirties [62] and studied further by Ba-
naschewski and Harting [6] (see also [23]). A characteristic property of
subfit frames L is that every co-dense frame homomorphism h : L — M
(satisfying h(z) = 1 only if x = 1) is one-to-one (cf. [6] and [42]). Al-
though subfitness is not hereditary in general, it is inherited by open
sublocales. In other words:

Lemma 4.7. Fvery principal ideal of a subfit frame is subfit.

Proof. Let L be a subfit frame and s € L. Given a,b < s with a ﬁ b,
choose a ¢ such that a V¢ =12 bV c. Then s, the top element of the
principal ideal | s, satisfies
aV(cNs)=(aNs)V(cAs)=(aVec)ANs=s,
while b V (¢ A s) = s would lead to the contradiction
bVe = bV(cAs)Ve = sVe=aV(cAs)Ve=aVe=1. O
As remarked by Isbell [42] and Simmons [57], an open set frame O(X)

is subfit (conjunctive) if and only if the underlying space X fulfils the
following condition:

(C) ForallU € O(X) and z € U, thereis ay € {z} with {y} C U.

Simmons also noted the ‘equation’ T} = C' + T).
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Proposition 4.8. If X s a space satisfying condition C then the com-
plete congruences on O(X) are exactly those which are induced by open
subspaces.

More generally, any complete congruence resp. homomorphism on a
subfit frame is open.

Proof. Let h : L — M be complete and onto, and put s = A{zx €
L | h(x) = 1}. Then h(s) = 1. Consider the onto homomorphism

s:L—|s, x—axANs
and define k : |s — M by setting k(z) = h(x). Then we have
k(s(z)) = h(x A's) = h(x) A h(s) = h(z)

and hence k is an onto homomorphism. Now let k(x) = 1, x < s. Then
h(z) = 1 so that x = s. Thus, k(z) = 1 only for z = s and, by sub-
fitness of |s, the homomorphism k is one-to-one and hence an isomor-
phism. It follows that the kernel congruence of h is the open congru-
ence induced by s: indeed, h(z) = h(y) < k(s(x)) = k(5(y)) © xAs =
yAs. []

It remains open whether condition C' (subfitness) is not only suf-
ficient but also necessary in order that all complete congruences be
open.

Putting together Corollary 4.3 and Proposition 4.8 we have:

Corollary 4.9. A quasidiscrete topology is subfit if and only if it s
discrete, that is, the corresponding order is the identity relation. Thus,
subfit superalgebraic frames are already complete atomic Boolean alge-
bras.

We have seen that on Th-topologies all induced congruences are dis-
tinct. Among these, Ti-topologies are characterized by the property
that each complete congruence is induced by precisely one subset and
this subset is open. Also among the Tp-spaces we have the quasidis-
crete spaces, but for these all the induced congruences are complete.

There remains the question: under what circumstances are the com-
plete congruences on a topology O(X) exactly the induced ones? This
is the ‘discrete’ version of the question answered in Theorem 3.4. We
know from Corollary 4.4 that X necessarily has to be quasidiscrete,
but that is not enough: the lower Alexandroff topology ®(I) of the real
unit interval I (see Example 2.10) has non-induced complete congru-
ences, like the kernel of the join map from D(I) onto I. This congruence
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cannot be induced by any subspace, since it identifies any closed inter-
val [0, a] with the half-open interval [0, a[; but [0, a] is not congruent
to [0,a]| modulo Ay whenever a € A, and the empty set induces the
trivial congruence.

The general situation is clarified by the next easy observation.

Proposition 4.10. A complete congruence on a quasidiscrete topology
18 induced if and only if the corresponding quotient is superalgebraic
(isomorphic to a quasidiscrete topology).

Proof. For any induced congruence A, on a quasidiscrete topology
O(X), the associated quotient is isomorphic to the quasidiscrete sub-
space O(A), hence superalgebraic. Conversely, if A is a subspace such
that O(X)/e is superalgebraic, choose an isomorphism i from O(X)/e
onto a quasidiscrete topology O(Y') and compose it with the complete
homomorphism pg associated with ©; then © is the kernel congruence
of the complete homomorphism i o pg (cf. the proof of Proposition 3.2,
and also [26] for a more general result.) O

This brings us back to our Theorem 2.11, characterizing those posets
for which the complete quotients of the corresponding Alexandroff
topology are exactly the induced quotients. Recall that a poset (or
the associated quasidiscrete space) is order-scattered provided the poset
does not contain a densely ordered subchain. Now, combining the pre-
vious proposition with Theorem 2.11, we arrive at:

Theorem 4.11.* A poset is order-scattered if and only if the induced
congruences of the associated Alexandroff topology (or down-set lattice)
are exactly the complete ones.

Finally, let us establish various characterizations of those quasidis-
crete spaces for which not only every complete congruence, but even
every frame congruence is induced. We already know that these are
the (weakly) scattered ones (Theorem 3.4). In order to get more handy
order-theoretical criteria, we recall some conditions that will be rele-
vant for our purposes. A poset is well-founded ( co-well-founded) if each
nonempty subset has a minimal (maximal) element, and Noetherian
if each directed subset has a greatest element, or equivalently, if each
directed down-set (“ideal” [36]) is finitely generated, hence principal.
A poset admitting no properly ascending sequences satisfies the As-
cending Chain Condition, abbreviated ACC. The following implications
obviously hold in set theory without choice:

co-well-founded = Noetherian = ACC
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The reverse implications are true as well, provided Dependent Choices
are assumed.

Theorem 4.12. * For a quasidiscrete space X and the corresponding
poset X<, the following conditions are equivalent:

(a) X is topologically scattered.

(b) X< is co-well-founded.

(¢c) Each frame congruence on O(X) is induced (by a unique sub-
set).

Fach frame congruence on O(X) is complete.

@)

FEach spatial congruence on O(X) is induced.
(

(d)
(e)
(f) Each spatial congruence on O(X) is complete.
(g) X is sober.

(h) X< is Noetherian.

(i) X< satisfies the ACC.

Proof. (a) < (b) . Both conditions say that each nonempty subset A
contains a point x with TxNA = {z} (here Tz is the least neighborhood
of z).

For the equivalence of (a) and (c) , see Theorem 3.4.
The implications (¢) = (d) = (f) and (c) = (e) = (f) are clear.

(f) = (h) . Given a directed subset D of X<, let © be the kernel
of the two-valued frame homomorphism A : O(X)— 2 with h(U) =
1< UND=#(. Then O is a spatial congruence (having two classes).
By hypothesis (f) , © is complete, so there is a smallest up-set U with
UND # (), and then, for d € U N D, we get U = 1d, so d must be the
greatest element of D.

For (e) < (g) see Corollary 3.3.

(g) < (h) is an immediate consequence of the known (and simple)
fact that the irreducible closed sets of any quasidiscrete space are the
directed down-sets of the corresponding poset.

(h) = (i) is obvious, and (i) = (a) is the aforementioned straight-
forward application of the Principle of Dependent Choices. 0

The previous proof shows that the following equivalences and implica-
tions hold true without any choice principles:

(a) & (b) &(c) =(d) =(e) &(f) &(g) & (h) =(i).
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Example 4.13. The chain w of natural numbers is well-founded but
not co-well-founded, hence not scattered as a quasidiscrete space, al-
though all complete congruences are induced, being at the same time
the complete congruences for the up-set lattice of the dual w? (which is
co-well-founded). Thus, topological scatteredness is sufficient but not
necessary for the coincidence of complete and induced congruences.

In the diagram below, we sketch the congruence types discussed in
this paper and the hierarchy between them. At each of the nodes
(1) — (6), an example is given that has the indicated property and
exactly those properties that are reachable upwards from the node.
This will demonstrate that no further implications than the previously
established ones are valid for the studied properties of congruences on
topologies.
Diagram: congruences on a spatial frame L = O(X)

frame
congruences

complete
congruences

spatial
congruences

induced spatial complete
congruences congruences

@ induced complete
congruences

0 open congruences

(1) 3 ={0,1,2} is the Sierpinski topology on 2 = {0, 1} (with the
only nontrivial open set 1 = {0}). The congruence on 3 identifying
0 = () with 1 = {0} is spatial, complete and induced by {1}, but not
by any open subspace.

(2) Induced and spatial but not complete is the congruence Ay, on
the Scott topology of the ordinal w41, which consists of all up-sets of
w+1 except {w}.
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(3) A spatial but not induced complete congruence on D(I) is the
kernel of the join mapping \/ : ©(I) — I (see Example 2.10).

(4) The upper Alexandroff topology on w is the trace of the Scott
topology on w+1 and dually isomorphic to w+1; as in (1), the spatial
congruence that identifies all nonempty open subsets is not complete —
but here it is not induced either.

(5) It seems hard to find examples of complete but not spatial con-
gruences on topologies. The quotients of topologies under complete
homomorphisms are precisely the so-called quasitopologies which may
be characterized by an infinite distributive law (see [22, 25]). The only
known example of a quasitopology without points was constructed by
Kiiz and Pultr [45]. Once one has found a non-spatial quasitopology
L, one has a complete homomorphism from D(L) onto L, and its kernel
is then a complete but not spatial congruence on D(L).

(6) Frame congruences that are neither spatial nor complete are ob-
tained as follows: take any Tj-space X without isolated points (like
the reals). The Boolean nucleus wy (see [43]) sends any open set to the
interior of its closure; the range of that nucleus is the complete Boolean
frame RO(X) of all regular open sets, and the kernel is a frame congru-
ence but not spatial (because RO(X) is not atomic). Moreover, that
congruence cannot be complete, since each of the open sets X \ {z} is
congruent to X, while their intersection ( = meet) is empty.
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