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Abstract. In this paper we survey the recent results on graph
homomorphisms perhaps for the first time in the broad range of
their relationship to wide range applications in computer science,
physics and other branches of mathematics. We illustrate this
development in each area by few results.

1. Introduction

Graph theory receives its mathematical motivation from the two
main areas of mathematics: algebra and geometry (topology) and it
is fair to say that the graph notions stood at the birth of algebraic
topology. Consequently various operations and comparisons for graphs
stress either its algebraic part (e.g. various products) or geometrical
part (e.g. contraction, subdivision). It is only natural that the key
place in the modern graph theory is played by (fortunate) mixtures
of both approaches as exhibited best by the various modifications of
the notion of graph minor. However from the algebraic point of view
perhaps the most natural graph notion is the following notion of a ho-
momorphism:

Given two graphs G and H a homomorphism f of G to H is any
mapping f : V (G) → V (H) which satisfies the following condition :

[x, y] ∈ E(G) implies [f(x), f(y)] ∈ E(H).

This condition should be understood as follows: on both sides of the
implication one considers the same type of edges: undirected {u, v}
often denoted just uv or directed ((u, v) often as well just uv). It is
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important that this definition is flexible enough to induce analogous
definitions of the homomorphisms for hypergraphs (set systems) and
relational systems (with a given signature; that will be specified later).

Homomorphisms arise naturally in various and very diverse situa-
tions

• in extremal combinatorics (and particularly in problems related
to colorings, partitions and decompositions of graphs and hy-
pergraphs);

• in statistical physics (as a model for partition functions);
• in probability (as a model of random processes, for example

random walk);
• in logic (any satisfiability assignment of a formula may be viewed

as a homomorphism);
• in Artificial Intelligence (as a model and criterium of satisfaction

leading to Constraint Satisfaction Problems);
• finite model theory (as a natural way of compare and classify

models);
• theory of algorithms (as an example and reduction tool);
• in complexity theory (and more recently in logic, descriptive

complexity in particular);
• in algebraic combinatorics (providing the vital link to algebraic

topology);
• in category theory (as a motivating example, a thoroughly stud-

ied particular case).

This paper cannot even touch upon all these topics. This is too
ambitious even for a monograph. To a certain extent this has been
a plan of recently published book in [22]. But the progress has been
fast and we want to complement this by giving some highlights of this
development. The interested reader can consult also surveys and papers
[30, 63, 32, 3, 48].

This paper is a (much) extended version of the talk given by that
author at Cargese school Physics and Computer Science, October 17-
29, 2005. The purpose of this text is to illustrate the rich conceptual
framework of the contemporary study of homomorphisms in various
mathematical as well as non mathematical context of various related
applications. Because of this (and size) we cannot present full proofs
and even to define all the related concepts. But we aim to present at
least outline of the recent trends and perhaps for the first time we bring
together topics which never coexisted together in a paper.
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2. Preliminaries

We rely on standard texts such as [2], [41] (for graph theory), [22]
(for graphs and homomorphisms), [35, 41] (for general combinatorics).
However the field of combinatorial structures related to homomor-
phisms (which this author likes to call combinatorics of mappings, see
forthcoming [47]) is currently developing very fast and it is the purpose
of this short survey to cover this recent development.

3. Counting

3.1. Hom and hom. The symbol Hom(G,H) will denote the set of
all homomorphisms of G to H. The symbol hom(G,H) will denote
the number of all homomorphisms of G to H. These sets carry much
of the information about the structure of graphs G and H. Consider
for example the simple situation when G is an undirected graph and
H = K2. In this case hom(G,H) = 2k where k is the number of
bipartite components of G. But this simplicity is an exception. Already
when we consider the graph H = K∗

2 which consists from two vertices,
one edge joining them and one loop at one of the vertices (if the vertices
are denoted by 0, 1 the edges are 01, 11; sometimes this graph is called a
“lollipop” sometimes even“io”) then the situation changes dramatically.

What is the meaning of hom(G,K∗
2 )? This is suddenly much more

interesting: a homomorphisms f : G −→ K∗
2 corresponds exactly to an

independent subset of vertices of G (a subset A ⊂ V (G) is said to be
independent if it does not contain any edge; the correspondence is easy:
we can put A = f−1(0)) and thus hom(G,K∗

2 ) is just an the number
of independent sets in the graph G. It follows that hom(G,K∗

2 ) is a
difficult parameter related to hard - core model in statistical physics.
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It is a difficult even in simple (and important) cases such as the d-
dimensional cube (and its determination is known as “Dedekind prob-
lem”). K∗

2 ) is of course not an isolated example. The triangle K3 is
another (hom(G,K3) is the number of 3− colorings of a graph G.)

On the other side the set Hom(G,H) may be endowed not only
with the categorial structure (inherited from the category of graphs;
this leads to sums and products as well as to the notion of power graph
GH) but more recently also by the following geometric structure:

Given graphs G,H we consider all mappings f : V (G) −→ P ′(V (H))
(here P ′(X) denotes the set of all non-empty subsets of X) which satisfy

xy ∈ E(G), u ∈ f(x), v ∈ f(y) ⇒ uv ∈ E(F ).

It is natural to call such mapping f a multihomomorphism: ev-
ery homomorphism is a multihomomorphism and, moreover, for every
multihomomorphism f every mapping g : V (G) → V (H) satisfying
g(v) ∈ f(v) for every v ∈ V (G) is a homomorphism. By abuse of
notation (for this moment) denote the set of all multihomomorphisms
G → H also by Hom(G,H). This set may be naturally partially
ordered: for multihomomorphisms f, f ′ we put f ≤ f ′ iff for every
v ∈ V (G) holds f(v) ⊆ f ′(v).

This construction is called Hom complex and it crystalized in the long
and intensive history of coloring special graphs, most notably Kneser
graphs, see [42, 30, 12, 65]. It plays the key role in this application of
topology to combinatorics. Hom complex Hom(G,H) is viewed as an
order complex and this in turn as a topological space (in its geometric
realization). All these constructions are functorial. ([60] is early study
of graphs from the categorical point of view.)

3.2. Lovász’ theorem. Let F1, F2, F3, . . . be a fixed enumeration of
all non-isomorphic finite graphs. The Lovász vector of a graph G is
hom(G) = (n1, n2, n3, . . . ), where nk = hom(Fk, G).

Theorem.[36] Two finite graphs G and H are isomorphic if and only
if hom(G) = hom(H).

We include a short proof of this important result.
Proof. It is more than evident that if G ∼= H then hom(G) =

hom(H). Let homi(F,G) denote the number of all monomorphisms (in-
jective homomorphisms) of F to G. Suppose that hom(G) = hom(H).
We claim that then also homi(F,G) = homi(F,H) for an arbitrary
graph F . This claim will be proved by induction on the number of
vertices of the graph F . First, if |V (F )| = 1, then homi(F,G) =
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hom(F,G) = hom(F,H) = homi(F,H). Suppose |V (F )| > 1. Then
we can write

hom(F,G) =
∑

Θ∈Eq(V (F ))

homi(F/Θ, G)

= homi(F,G) +
∑

Θ∈Eq(V (F ))
Θ6=id

homi(F/Θ, G),

where Eq(V (F )) is the set of all equivalence relations on V (F ) and
F/Θ is the graph whose vertex set is the set of all equivalence classes
of Θ and an edge connects two classes c and c′ if there are vertices u ∈ c
and u′ ∈ c′ so that {u, u′} is an edge of F . (Note that loops may occur
in F/Θ.) This is because every homomorphism f : F → G corresponds
to a monomorphism of F/Θ to G for Θ = {(u, u′); f(u) = f(u′)}.

Similarly, we get

hom(F,H) = homi(F,H) +
∑

Θ∈Eq(V (F ))
Θ6=id

homi(F/Θ, H).

By induction, we know that for any Θ ∈ Eq(V (F )), Θ 6= id,

homi(F/Θ, G) = homi(F/Θ, H),

since |V (F/Θ)| < |V (F )|. It follows that we have also homi(F,G) =
homi(F,H).

Applying this for the following choices F = G and F = H we get
homi(G,H) = homi(G,G) ≥ 1 and homi(H,G) = homi(H,H) ≥ 1. If
there is a monomorphism of G to H and a monomorphism of H to G,
then (as our graphs are finite) G and H are isomorphic. �

The Lovász’ theorem has a number of interesting (and despite its
seeming simplicity, profound) consequences. For example one can prove
easily the following cancellation law for products of graphs. (There are
many graph products. Here we mean the product G×H defined by the
property that projections are homomorphisms. This is the categorical
product of category of all graphs and their homomorphisms.)

3.3. Corollary. Let G and H be graphs. If graphs G × G = G2 and
H × H = H2 are isomorphic then so are graphs G and H.

Proof. (sketch) Let F be a graph. Every homomorphism f : F →
G2 corresponds to a pair of homomorphisms (f1, f2) of F to G; if f(u) =
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(x1, x2), then fi(u) = xi. Moreover, the correspondence is one-to-one
(due to the categorical properties of the product). Therefore

hom(F,G)2 = hom(F,G2) = hom(F,H2) = hom(F,H)2

and so hom(F,G) = hom(F,H).) �

This particular case was conjectured by Ulam (for finite partially or-
dered sets)([5]). Along the same lines one can also prove the following:

Let A, B and C be graphs, let C have a loop. If A × C ∼= B × C,
then A ∼= B.

These results hold in fact not just for graphs but for arbitrary finite
structures (with a mild conditions on the underlying category). For
example it is important to observe that the following dual form of
Theorem 2.2 holds:

If hom(G,Fi) = hom(H,Fi) for every i = 1, 2, 3, . . . then graphs G
and H are isomorphic.

The proof uses (again) the inclusion-exclusion principle. These re-
sults form an important part in the Tarski’s and Birkhoff’s project of
arithmetization of theory of finite structures (see [43, 5]). It is not gen-
erally true that A × C ∼= B × C implies A ∼= B. A counterexample:
A consists of two isolated loops, B = C = K2. Another counterexam-
ple: A = K3, B = C6 (the cycle of length 6), C = K2. With more
efforts one can prove that if A, B and C are not bipartite, then they
have the cancellation property: A × C ∼= B × C =⇒ A ∼= B, [36].

4. Weighted Counting, Random and Quantum

In the statistical physics we deal with a structure of (typically) large
number of particles each in a finite number of states σ1, . . . , σt. The
particles are positioned in the vertices of a graph G (with vertices
{1, 2, . . . , t}) and interactions occurs only between neighboring vertices.
Two particles σi, σj are interacting with energy γ(σi, σj) and the total
energy of the state σ of the structure (i.e. of all states of the vertices
of the graph G) is given by H(σ) =

∑

ij∈E(G) γ(σi, σj). Finally the

partition function (in a simplified form) is given by

Z =
∑

σ

e−H(σ).

The partition function relates to the number of weighted homomor-
phisms. This was as developed recently in a series paper by Lovász et
al. in a broad spectrum of asymptotic graph theory, random structures
and abstract algebra (see e.g. [16, 35, 38, 37, 3, 4]).
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Let G,H be graphs (undirected). Additionally, let the vertices and
edges of H be weighted:

α : V −→ R+, β : E −→ R.

In this situation define the weighted version of hom(G, (H,α, β)) as
follows:

hom(G, (H,α, β)) =
∑

ϕ:V (G)→V (H)

∏

v∈V (G)

αϕ(v)

∏

uv∈E(G)

βϕ(u)ϕ(v).

Of course if α and β are functions identically equal to 1 then the
weight hom(G, (H,α, β)) of homomorphisms is just hom(G,H). The
partition function Z may be expressed by this weighted homomorphism
function. Towards this end write

Z =
∑

σ

e−H(σ) =
∑

σ

∏

ij∈E(G)

e−γ(σi,σj =
∑

σ

∏

ij∈E(G)

β(σi, σj).

where we put β(σi, σj) = e−γ(σi,σj).
It follows that the partition function may be computed as weighted

homomorphism function. This has many variants and consequences.
For example, in the analogy with number of 3-colorings expressed
by hom(G,K3) and Ising model expressed by hom(G,K∗

2 ), one can
ask which partition functions can be expressed as weighted functions
hom(−, (H,α, β)) for a (finite) weighted graph (H,α, β). The surpris-
ing and elegant solution to this question was given in [16] and we finish
this section by formulating this result. A graph parameter is a function
p which assigns to every finite graph G a real number p(G) and which
invariant under isomorphisms.

4.1. Theorem. ([16]) For a graph parameter p are the following two
statements equivalent:

1. p is a graph parameter for which there exists a weighted graph
(H,α, β) such that p(G) = hom(G, (H,α, β)) for every graph G;

2. there exists a positive integer q such that for every k ≥ 0 the
matrix M(p, k) is positive semidefinite and its rank is at most qk.

Motivated by physical context, the parameter p is called reflection
positive if the matrix M(p, k) (called in [16] the connection matrix) is
positive semidefinite for every k. There is no place to define here the
connection matrix, let us just say that it is an infinite matrix induced
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by values of the parameter p on amalgams of graphs along k-element
subsets (roots).

Where are the random aspects of all this (as claimed by the title of
this section) ? For this consider the following:

t(G,H) =
hom(G,H)

|V (H)||V (G)|
, t(G, (H,α, β)) =

hom(G, (H,α, β))

|V (H)||V (G)|

These quantities are called homomorphism density. They express the
probability that a random mapping is a homomorphism; or the average
weight of a mapping V (G) −→ V (H). This connection leads to a ho-
momorphism based interpretation of important asymptotic properties
of large graphs such as Szemerédi Regularity Lemma [66] or properties
of quasirandom graphs [10, 67]; see [38, 4, 37].

Where are quantum aspects of this? Well it appears that in proving
Theorem 4.1 it is both natural and useful to extend the homomorphism
function to formal finite linear combinations of graphs. These combi-
nations, called quantum graphs, [16], are natural in physical context
and they appear a convenient tool in proving 4.1.

5. Existence and CSP

Perhaps this section should precede the counting sections. What can
be easier than deciding as opposed to seemingly more difficult counting.
Well the answer is not so simple and in fact both parts of the theory
point to different directions: As we indicated above the counting re-
lates to probability and properties of random structures in general, to
partition models of physical phenomena; on the other side the exis-
tence problems relate to computational complexity of decision models
(such as Constraint Satisfaction Problem (CSP), logic and descriptive
complexity and dualities. Some of this will be covered in this and next
sections. The sections on counting preceded “existence” sections as
they are perhaps conceptually more uniform and they are also closer
to this volume (of Cargese school).

We consider here the following decision problem:

5.1. H-coloring Problem. Consider the following decision problem
(for a fixed graph H):

Instance: A graph G.
Question: Does there exists a homomorphism G −→ H.

This problem covers many concrete problems which were and are
studied (see [22]):



HOMOMORPHISMS OF STRUCTURES (CONCEPTS AND HIGHLIGHTS) 9

(i) For H = Kk (the complete graph with k vertices) we get a
k-coloring problem;

(ii) For graphs H = Kk/d we get circular chromatic numbers’ see
e.g. [69];

(iii) For H Kneser graphs K
(

k
d

)

we get so called multicoloring; [22].

Further examples include so called T -colorings, see e.g.[69],[62], which
in turn are related to the recently popular channel assignment problem.

Perhaps the most extensively studied aspect of H-coloring problems
is its complexity. This is interesting and generally still unresolved. The
situation is well understood for complete graphs: For any fixed k ≥ 3
the Kk-coloring problem (which is equivalent to the deciding whether
χ(G) ≤ k) is NP-complete. On the other hand K1- and K2-coloring
problems are easy. Thus, in the undirected case, we can always assume
that the graph H is not bipartite.

Some other problems are easy to discuss. For example, if H = C5

then we can consider the following (arrow replacement) construction:
For a given graph G let G∗∗ be the graph which we obtain from G

by replacing of every edge of G by a path of length 3 (these paths
are supposed to be internally disjoint). Another way to say this is to
consider a subdivision of G where each edge is subdivided by exactly
two new vertices. It is now easy to prove that for any undirected graph
G the following two statements are equivalent:

(i) G −→ K5;
(ii) G∗∗ −→ C5.

This example is not isolated (the similar trick may be used e.g. for
any odd cycle). Using analogous, but more involved, edge-, vertex- and
other replacement constructions (called indicators, subindicators, and
edge - subindicators) the following has been proved in [23]:

5.2. Theorem. For a graph H the following two statements are equiv-
alent :

(1) H is non-bipartite;
(2) H-coloring problem is NP-complete.

This theorem (and its proof) has some particular features which we
are now going to explain:

1. The result claimed by the theorem is expected. In fact the result
has been a long standing conjecture, but it took nearly 10 years before
the conjecture had been verified.
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2. As the statement of 5.2 is expected, so its proof is unexpected.
What one would expect in this situation? Well, we should prove
first that C2k+1-coloring is NP-complete (which is easy and in fact
we sketched this above) and then we would“observe” that the prob-
lem is monotone. Formally, iff H-coloring problem is NP-complete and
H ⊆ H ′ then also H ′-coloring problem is NP-complete.

The monotonicity may sound plausible but there is not known a
direct proof of it. It is certainly a true statement (by virtue of Theorem
5.2 ) but presently the only known proof is via the Theorem 5.2. In
fact there is here more than meets the eye : for oriented graphs the
NP-complete instances are not monotone!

3. We have to stress that the analogy of Theorem 5.2 for oriented
graphs fails to the true.

One can construct easily an orientation ~H of bipartite graph H such
that ~H - coloring problem is NP-complete. Even more so, one can con-
struct a balanced oriented graph ~H with the property that ~H-coloring
problem is NP-complete (an oriented graph is called balanced if every
cycle has the same number of forward and backward arcs).

One can go even further and (perhaps bit surprisingly) one can omit
all cycles. Namely, one has the following [24]:

5.3. Theorem. There exist an oriented tree T (i.e. T is an orientation
of an undirected tree) such that T -coloring problem is NP-complete.

Presently the smallest such tree T has 45 vertices.

6. Constrained Satisfaction Problems (CSP)

Every part of mathematics has some typical features which presents
both its advantages and its limitations. One of such feature for the
study of homomorphisms is the fact that its problems are usually easy
to generalize and formulate, that there is the basic thread which allows
to concentrate on important and “natural” questions (to try to explain
this is also the main motif of this paper). The H-coloring problem
(explained in the previous section) is a good example of this. One can
formulate it more generally for every finite structure. We consider the
general relational structures (so general that they are sometimes called
just finite structures):

6.1. Relational Structures. A relational structure of a given type
generalizes the notion of a relation and of a graph to more relations and
to higher (non-binary) arities. The concept was isolated in the thirties
by logicians (e.g. Löwenheim, Skolem) who developed logical “static”



HOMOMORPHISMS OF STRUCTURES (CONCEPTS AND HIGHLIGHTS) 11

theory. As we shall see this influenced terminology even today as we
find useful to speak about models (of our chosen relational language).
In the sixties new impulses came from the study of algebraic categories
and the resulting “dynamic” studies called for a more explicit approach,
see e.g [61]. We shall adopt here a later notation (with a touch of logical
vocabulary).

A type ∆ is a sequence (δi; i ∈ I) of positive integers. A relational
system A of type ∆ is a pair (X, (Ri; i ∈ I)) where X is a set and
Ri ∈ Xδi ; that is Ri is a δi-nary relation on X. In this paper we shall
always assume that X and I are finite sets (thus we consider finite
relational systems only).

The type ∆ = (δi; i ∈ I) will be fixed throughout this paper. Note
that for the type ∆ = (2) relational systems of type ∆ correspond to
directed graphs, the case ∆ = (2, 2) corresponds to directed graphs
with blue-green colored edges (or rather arcs).

Relational systems (of type or signature ∆) will be denoted by capital
letters A, B, C,..... A relational system of type ∆ is also called a ∆-
system (or a model). If A = (X, (Ri; i ∈ I)) we also denote the base
set X as A and the relation Ri by Ri(A). Let A = (X, (Ri; i ∈ I)) and
B = (Y, (Si; i ∈ I)) be ∆-systems. A mapping f : X → Y is called
a homomorphism if for each i ∈ I holds: (x1, ..., xδi

) ∈ Ri implies
(f(x1), ..., f(xδi

)) ∈ Si.
In other words a homomorphism f is any mapping F : A → B

which satisfies f(Ri(A)) ⊆ Ri(B) for each i ∈ I. (Here we extended
the definition of f by putting f(x1, ..., xt) = (f(x1), ..., f(xt)).)

For ∆-systems A and B we write A → B if there exists a homomor-
phism from A to B. Hence the symbol → denotes a relation that is
defined on the class of all ∆-systems. This relation is clearly reflexive
and transitive, thus induces a quasi-ordering of all ∆-systems. As is
usual with quasi-orderings, it is convenient to reduce it to a partial
order on classes of equivalent objects: Two ∆-systems A and B are
called homomorphically equivalent if we have both A → B and B → A;
we then write A ∼ B. For every A there exists up to an isomorphism
unique A′ such that A ∼ A′ and A′ has smallest size |A′|. Such A′ is
called the core of A.

The relation → induces an order on the classes of homomorphically
equivalent ∆-system, which we call the homomorphism order. (So this
is partial order when restricted to non-isomorphic core structures.)

The homomorphism order will be denoted by C∆ (as it is also called
coloring order). We denote by Rel(∆) the class of all finite relational
structures of type ∆ and all homomorphisms between them. This cat-
egory plays a special role in the model theory and theory of categories
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[61]. It is also central in the branch of Artificial Intelligence (AI) deal-
ing with Constraint Satisfaction Problems [11]. The expressive power
of homomorphisms between relational structures leads to the following:

6.2. Theorem. ([14]) Every Constraint Satisfaction Problem can be
expressed as a membership problem for a class CSP(B) of relational
structures (of a certain type ∆) defined as follows:

CSP(B) = {A;A −→ B}.

Recall, that the membership problem for a class K is the following
problem: Given a structure A does A belong to K? Is it A ∈ K?
For brevity we call the membership problem for class CSP(B) simply
B−coloring problem, or CSP(B) problem. The structure B is usually
called template of CSP(B).

(Generalized) coloring problems cover a wide spectrum (applications
rich) problems. This attracted recently a very active research on the
boundary of complexity theory, combinatorics, logic and universal al-
gebra. Only some of it will be review in this paper.

However the complexity status of the CSP(B) problem is solved only
for special and rather restricted situations. The following are principal
results:

(1) undirected graph coloring (i.e. Theorem 5.2), see [23];
(2) the characterization of complexity of B−coloring problems for

structures B which are binary (i.e. for which |B| = 2), see [64];
(3) the characterization of complexity of B−coloring problems for

structures B which are ternary (i.e. for which |B| = 3), see [7].

The last two results may seem to be easy, or limited, but reader
should realize that while the size of the |B| may be small (such as 2
or 3) the relational system can in fact be very large as the arities δi of
relations Ri(B) may be arbitrary large. Whole book [11] is devoted to
the case |B| = 2.

Nevertheless in all known instances one proves that the CSP(B)
problem is either polynomial (the class of polynomial problems is de-
noted by P) or NP-complete. This is remarkable as such dichotomy
generally does not hold. Of course, there is a possibility that the classes
P and NP coincide (this constitutes famous P-NP problem; one of the
millennium problems). But if these classes are distinct (i.e. if P ⊂ NP)
then there are infinitely intermediate classes (by a celebrated result
of Ladner [39]). This (and other more theoretical evidence) prompted
Feder and Vardi [14] to formulate the following by now well known
problem:
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6.3. Dichotomy Conjecture. Every CSP(B) problem is either P or
NP-complete.

Although this is open, a lot of work was done. Let us finish this
section by formulating two related results.

6.3.1. Oriented Graphs Suffice. At the first glance the complexity
of the CSP(B) problem lies in the great variety of possible relational
structures. Already in [14] it has been realized that it is not so.

Theorem. The dichotomy conjecture follows from the dichotomy of
the complexity of H-coloring problem where H is an oriented graph.

This is interesting as this positions Theorem 5.2 in the new light and
shows a surprising difference between colorings (partitions) of undi-
rected and directed graphs which was not before realized. See [14] for
the original proof; see also [22].

6.3.2. Dichotomy is Asymptotically Almost Surely True. Re-
lational structures and homomorphisms express various decision and
counting combinatorial problems such as coloring, satisfiability, and
linear algebra problems. Many of them can be reduced to special cases
of a general Constraint Satisfaction Problem CSP(B). A number of
such problems have been studied and have known complexity, e.g.,
when we deal with undirected graphs or the problem is restricted to
small sets A (see [64, 23, 7]). However at this moment we are far from
understanding the behavior of CSP(B) problem even for binary rela-
tions (i.e., when relational systems of type ∆ = (2)). It seems that the
Dichotomy Conjecture holds in a stronger sense:

Dichotomy Conjecture*. Most CSP(B) problems are NP-com-
plete problems with a few exceptions which are polynomial.

For example for undirected graphs CSP(B)-problem is always hard
problem with exactly 3 exceptions: B is homomorphically equivalent
either to the loop graph, or to the single vertex graph (with no edges)
or the symmetric edge, [23]. Results for other solved cases have a
similar character supporting the modified Dichotomy Conjecture* (see
[64, 7]). One can confirm this feeling by proving that both Dichotomy
and Dichotomy* Conjectures are equivalent:

Theorem. Let ∆ = (δi)i∈I be such that maxi∈I δi ≥ 2. Then
CSP(B) is NP-complete for almost all relational systems B of type ∆.
(Note that for B of type (1, 1, . . . , 1) the problem CSP(B) is trivial.)

In order to make the statement of Theorem precise, let R(n, k) de-
note a random k-ary relation defined on a set [n] = {1, 2, . . . , n}, for
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which the probability that (a1, . . . , ak) ∈ R(n, k) is equal to 1/2 in-
dependently for each (a1, . . . , ak), where 1 ≤ ar ≤ n for r = 1, . . . , k.
Assume further that not all ai’s are equal: for a ∈ [n], we assume
(a, a, . . . , a) /∈ R(n, k). Let ([n], (R(δi, n)i∈I)) denote the random rela-
tional system of type ∆ = (δi)i∈I . In this situation we show that the
probability that ([n], (R(δi, n)i∈I))−coloring is NP-complete tends to
one as either n, or maxi δi tends to infinity.

Note that B−coloring problem for relational system B is NP-com-
plete, provided it is NP-complete for the system (B,Ri0(B)) of type
(δi0) for some i0 ∈ I. (The converse implication, in general, does not
hold). Thus, we prove our result for ‘simple’ relational systems which
consist of just one k-ary relation.

Theorem. For a fixed k ≥ 2,

lim
n→∞

Pr
(

([n],R(n, k)) is NP complete
)

= 1,

while for a given n ≥ 2,

lim
k→∞

Pr
(

([n],R(n, k)) is NP complete
)

= 1.

The proof uses properties of random graphs together with an alge-
braic approach to the dichotomy conjecture (based on the analysis of
clones of polymorphisms) which was pioneered by [28, 8].

7. Dualities

From the combinatorial point of view there is a standard way how
to approach (and sometimes to solve) a monotone property P : one
investigates those structures without the property P which are critical,
(or minimal) without P . One proceeds as follows: denote by F the class
of all critical structures and define the class Forb(F) of all structures
which do not “contain” any F ∈ F . The class Forb(F) is the class of
all structures not containing any of the critical substructures and thus
it is easy to see that Forb(F) coincides with the class of structures
with the property P . Of course in most cases the class F is infinite
yet a structural result about it may shed some light on property P .
For example this is the case with 3-colorability of graphs where 4-
critical graphs were (and are) studied thoroughly (historically mostly
in relationship to Four Color Conjecture).

Of particular interest (and as the extremal case in our setting) are
those monotone properties P of structures which can be described by
finitely many forbidden substructures. The object of the theory of
homomorphism duality is to characterize a family F of obstructions
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to the existence of a homomorphism into a given structure B. In a
large sense, such a class F always exists; for instance, the class of all
the structures not admitting a homomorphism to B has this property.
However, it is desirable to seek a more tractable family of obstructions
to make this characterization meaningful. The classical examples of
graph theory makes this point clear. A graph is bipartite if and only
if it does not contain an odd cycle; hence, the odd cycles are a family
of obstructions to the existence of a homomorphism into the complete
graph K2. However, the class of directed graphs provides a much more
fertile ground for the theory, and numerous examples of tree dualities
and of bounded treewidth dualities are known (see [24]).

When the family F of obstructions is finite (or algorithmically “well
behaved”), then such theorems clearly provide an example of good char-
acterizations (in the sense of Edmonds). Any instance of such good
characterization is called a homomorphism duality. This concept was
introduced by [52] and applied to various graph theoretical good charac-
terizations. The simplest homomorphism dualities are those where the
family of obstructions consists from only singletons (i.e. single struc-
tures). In the other words such homomorphism dualities are described
by a pair A, B of structures as follows:

(Singleton) Homomorphism Duality Scheme
A structure C admits a homomorphism into B if and only if A does

not admit a homomorphism into C.

Despite the fact that singleton homomorphism dualities are scarce
for both undirected and directed graphs, for more general structures
(such as oriented matroids with suitable version of strong maps) the
(singleton) homomorphism duality may capture general theorems such
as Farkas Lemma (see [25]). In [52] are described all singleton homo-
morphism dualities for undirected graphs. As a culmination of several
partial results all homomorphism dualities for general relational struc-
tures were finally described in [57]. This is not the end and more
recently the homomorphism dualities emerged as an important phe-
nomena in new context. This we will briefly describe.

7.1. Generalized CSP Classes. For the finite set of structures D in
Rel(∆) we denote by CSP(D) the class of all structures A ∈ Rel(∆)
satisfying A −→ D for some D ∈ D. Thus CSP(D) is the union of
classes CSP(D) for all D ∈ D. This definition (of generalized CSP
class is sometimes more convenient and in fact generalized CSP classes
are polynomially equivalent to the classes described syntactically as
MMSNP ( [14]; the equivalence is non trivial and follows from [31]).
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These classes are sometimes called color classes and denoted by

−→ D = CSP(D).

7.2. Forb Classes. Let F be a finite set of structures of Rel(∆).
Denote by Forb(F) the class of all structures A ∈ Rel(∆) which do
not permit a homomorphism F −→ A for any F ∈ F . Formally:

Forb(F) = {A | there is no f : F → A withF ∈ F}

Let us remark that these classes are sometimes denoted by

Forb(F) = F 6−→ .

7.3. Finite Duality. Finite duality is the equation of two classes: of
the class Forb(F) and of the class CSP(D) for a particular choice of
forbidden set F and dual set D. Formally:

Forb(F) = CSP(D).

We also say that D has finite duality. Finite dualities were defined
in [52]. They are being intensively studied from the logical point of
view, and also in the optimization (mostly CSP) context.

We say that a class K ⊂ Rel(∆) is First Order definable if there
exists a first order formula φ (i.e. quantification is allowed only over
elements) such that the class K is just the class of all structures A ∈
Rel(∆) where φ is valid. Formally:

K = {A;A |= φ}.

It has been recently showed [1, 63] that if the class CSP(D) is first
order definable then it has finite duality. (This is a consequence of the
solution of an important homomorphism preservation conjecture solved
in [63].) On the other hand the finite dualities in categories Rel(∆)
were characterized in [15] as an extension of [57]. By combining these
results we obtain:

Theorem. For a finite set D relational structures in Rel(∆) are
the following statements equivalent:

(i) The class CSP(D) is first order definable;
(ii) D has finite duality; explicitly, there exists a finite set F such

that Forb(F) = CSP(D);
(iii) Forb(F) = CSP(D) for a finite set A of finite forests.

We did not define what is a forest in a structure(see [57, 15]). For the
sake of completeness let us say that a forest is a structure not containing
any cycle. And a cycle in a structure A is either a sequence of distinct
points and distinct tuples x0, r1, x1, . . . , rt, xt = x0 where each tuple ri
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belongs to one of the relations R(A) and each xi is a coordinate of ri

and ri+1, or, in the degenerated case t = 1 a relational tuple with at
least one multiple coordinate. The length of the cycle is the integer t in
the first case and 1 in the second case. Finally the girth of a structure
A is the shortest length of a cycle in A (if it exists; otherwise it is a
forest).

In a sharp contrast with that, there are no finite dualities for (gen-
eral) finite algebras. It has been recently shown [33] that there are no
such dualities at all. Namely, one has

Theorem. For every finite set A of finite algebras of a given type
(δi)i∈I and every finite algebra B there exists a finite algebra A such
that A ∈ Forb(A) and A /∈ CSP(B).

(This concerns the standard homomorphisms f : (X, (αi)i∈T ) →
(X ′, (α′

i)i∈T ) satisfying

(∗) x = αi(x1, . . . , xni
) ⇒ f(x) = α′

i(f(x1), . . . , f(xni
))). )

8. Restricted Dualities

8.1. Special Classes. In this section we deal with graphs only. We
motivate this section by the following two examples.

Example1. Celebrated Grötzsch’s theorem (see e.g. [2]) says that
every planar graph is 3-colorable. In the language of homomorphisms
this says that for every triangle free planar graph G there is a homo-
morphism of G into K3.

Using the partial order terminology (for the homomorphism order
C∆) the Grötzsch’s theorem says that K3 is an upper bound (in the
homomorphism order) for the class P3 of all planar triangle free graphs.
As obviously K3 6∈ P3 a natural question (first formulated in [48])
suggests: Is there yet a smaller bound? The answer, which may be
viewed as a strengthening of Grötzsch’s theorem, is positive: there
exists a triangle free 3-colorable graph H such that G → H for every
graph G ∈ P3. Explicitly:

K3 6−→ G ⇔ G −→ H

for every planar graph G. Because of this we call such theorem re-
stricted duality. A restricted duality asserts the duality but only for
structures in a restricted class of graphs. The (non-trivial) existence
of graph H above has been proved in [49] (in a stronger version for
proper minor closed classes). The case of planar graphs and triangle is
interesting in its own as it is related to the Seymour conjecture and its
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partial solution [18], see [44]; it seems that a proper setting of this case
is in the context of TT -continuous mappings, see [55]. Restricted du-
ality results have been generalized since to other classes of graphs and
to other forbidden subgraphs. In fact for every “forbidden” finite set of
connected graphs we have a duality restricted to any proper subclass
K of all graphs which is minor closed, see [49]. This then implies that
Grötzsch’s theorem can be strengthened by a sequence of ever stronger
bounds and that the supremum of the class of all triangle free planar
graphs does not exist.

Example2. Let us consider all sub-cubic graphs (i.e. graph with
maximum degree ≤ 3). By Brooks theorem (see e.g. [2]) all these
graphs are 3-colorable with the single connected exception K4. What
about the class of all sub-cubic triangle free graphs? Does there exists
a triangle free 3-colorable bound? The positive answer to this question
is given in [20]. In fact for every finite set F = {F1, F2, . . . , Ft} of
connected graphs there exists a graph H with the following properties:

- H is 3-chromatic;
- G −→ H for every subcubic graph G ∈ Forb(F).
It is interesting to note that while sub-cubic graphs have restricted

dualities (and, more generally, this also holds for the classes of bounded
degree graphs) for the classes of degenerated graphs a similar statement
is not true (in fact, with a few trivial exceptions, it is never true).

Where lies the boundary for validity of restricted dualities? We
clarify this after introducing the formal definition.

Definition. A class K of graphs has a all restricted dualities if, for
any finite set of connected graphs F = {F1, F2, . . . , Ft}, there exists a
finite graph DK

F such that Fi 6−→ DK
F for i = 1, . . . , t and such that for

all G ∈ K holds. Explicitly:

(Fi 6−→ G), i = 1, 2, . . . , t, ⇐⇒ (G −→ DK
F)

.
It is easy to see that using the homomorphism order we can refor-

mulate this definition as follows: A class K has restricted dualities if
for any finite set of connected graphs F = {F1, F2, . . . , Ft} the class
Forb(F) ∩ K is bounded in the class Forb(F).

The main result of [50] can be then stated as follows:
Theorem. Any class of graphs with bounded expansion has all

restricted dualities.

Of course we have to yet define bounded expansion (and we do so
in the next section). But let us just note that both proper minor
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closed classes and bounded degree graphs form classes of bounded ex-
pansion. Consequently this result generalizes both Examples 1. and
2. In fact the seeming incomparability of bounded degree graphs and
minor closed classes led the authors of [50] to the definition of bounded
expansion classes.

8.2. Bounded expansion classes. Recall that the maximum average
degree mad(G) of a graph G is the maximum over all subgraphs H of

G of the average degree of H, that is mad(G) = maxH⊆G
2|E(H)|
|V (H)|

. The

distance d(x, y) between two vertices x and y of a graph is the minimum
length of a path linking x and y, or ∞ if x and y do not belong to same
connected component.

We introduce several notations:

• The radius ρ(G) of a connected graph G is:

ρ(G) = min
r∈V (G)

max
x∈V (G)

d(r, x)

• A center of G is a vertex r such that maxx∈V (G) d(r, x) = ρ(G).

Definition Let G be a graph. A ball of G is a subset of vertices
inducing a connected subgraph. The set of all the families of pairwise
disjoint balls of G is noted B(G).

Let P = {V1, . . . , Vp} be a family of pairwise disjoint balls of G.

• The radius ρ(P) of P is ρ(P) = maxX∈P ρ(G[X])
• The quotient G/P of G by P is a graph with vertex set {1, . . . , p}

and edge set E(G/P) = {{i, j} : (Vi × Vj) ∩ E(G) 6= ∅ or Vi ∩
Vj 6= ∅}.

We introduce several invariants that generalize the one of maximum
average degree:

Definition The greatest reduced average density (grad)of G with
rank r is

∇r(G) = max
P∈B(G)
ρ(P)≤r

|E(G/P)|

|P|

The following is our key definition:
Definition A class of graphs K has bounded expansion if there exists

a function f : N → N such that for every graph G ∈ K and every r
holds

(1) ∇r(G) ≤ f(r).

f is called the expansion function. Proper minor closed classes have
expansion function bounded by a constant, regular graphs by the expo-
nential function, geometric graphs such as d-dimensional meshes have
polynomial expansion. Expansion function can grow arbitrary fast.
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Finally note that bounded expansion classes have many applications.
Some of them are included in [51].

8.3. Lifts and Shadows. We return to the general relational struc-
tures. We restrict by generalizing to a particular situation. Duals of
structures are a fascinating subject (see e.g. [34, 58, 56]). In closing
these sections on dualities we want to briefly stress the following aspect
which is on the first glance surprising.

Consider again the general duality scheme: structure C admits a
homomorphism to D ∈ D if and only if F does not admit a homomor-
phism into C for any F ∈ F ; formally:

Forb(F) = CSP(D).

One is somehow tempted to think that the left side of the definition
is somewhat more restrictive, that the finitely many obstacles make
the problem easy if not trivial. After all, while the class CSP(D) may
be complicated and have membership problem NP-complete even for
a simple graph D (such as K3) the left side is always polynomially
decidable (for every finite set F). But in a way this is a misleading
argument. The expressing power of the classes Forb(F) for finite sets
F is very large. This follows from a recent work [32] which we now
briefly describe. We start with an example.

Think of 3-coloring of graph G = (V,E). This is a well known hard
problem and there is a multiple evidence for this: concrete instances
of the problem are difficult to solve (if you want a non-trivial exam-
ple consider Kneser graphs; [42]), there is an abundance of minimal
graphs which are not 3-colorable (these are called 4-critical graphs, see
e.g. [29]) and in the full generality (and even for important “small”
subclasses such as 4-regular graphs or planar graphs) the problem is a
canonical NP-complete problem.

Yet the problem has an easy formulation. A 3-coloring is simple to
formulate even at the kindergarten level. This is in a sharp contrast
with the usual definition of the class NP by means of polynomially
bounded non-deterministic computations. Fagin [13] gave a concise
description of the class NP by means of logic: NP languages are just
languages accepted by an Existential Second Order (ESO) formula of
the form

∃PΨ(S, P ),

where S is the set of input relations, P is a set of existential relations,
the proof for the membership in the class, and Ψ is a first-order for-
mula without existential quantifiers. This definition of NP inspired
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a sequence of related investigations and these descriptive complexity
results established that most major complexity classes can be charac-
terized in terms of logical definability of finite structures. Particularly
this led Feder and Vardi [14] to their seminal reduction of Constraint
Satisfaction Problems to so called MMSNP (Monotone Monadic Strict
Nondeterministic Polynomial) problems which also nicely link MMSNP
to the class NP in computational sense. Inspired by these results we
would like to ask an even simpler question:

Can one express the computational power of the class NP by combi-
natorial means?

It may seem to be surprising that the classes of relational structures
defined by ESO formulas (i.e. the whole class NP) are polynomially
equivalent to canonical lifts of structures which are defined by a finite
set of forbidden substructures.

Shortly, finitely many forbidden lifts determine any language in NP.
Let us briefly illustrate this by our example of 3-colorability: Instead

of a graph G = (V,E) we consider the graph G together with three
unary relations C1, C2, C3 which cover the vertex set V ; this structure
will be denoted by G′ and called a lift of G (G′ has one binary and
three unary relations). There are 3 forbidden substructures or patterns:
For each i = 1, 2, 3 the graph K2 together with cover Ci = {1, 2} and
Cj = ∅ for j 6= i form pattern Fi (where the signature of Fi contains
one binary and three unary relations). The class of all 3-colorable
graphs then corresponds just to the class Φ(Forb(F1,F2,F3)) where Φ
is the forgetful functor which transforms G′ to G and the language of
3-colorable graphs is just the language of the class satisfying formula
∃G′(G′ ∈ Forb(F1,F2,F3)). This extended language (of structures G′)
of course expresses the membership of 3-colorability to the class NP.

Let us define lifts and shadows more formally: We will work with
two (fixed) signatures, ∆ and ∆ ∪ ∆′ (the signatures ∆ and ∆′ are
always supposed to be disjoint). For convenience we denote struc-
tures in Rel(∆) by A,B etc. and structures in Rel(∆ ∪ ∆′) by A′,B′

etc. For convenience we shall denote Rel(∆ ∪ ∆′) by Rel(∆, ∆′). The
classes Rel(∆) and Rel(∆, ∆′) will be considered as categories endowed
with all homomorphisms. The interplay of categories Rel(∆, ∆′) and
Rel(∆) is here the central theme. Towards this end we define the
following notion: Let Φ : Rel(∆, ∆′) → Rel(∆) denote the natural
forgetful functor that “forgets” relations in ∆′. Explicitly, for a struc-
ture A′ ∈ Rel(∆, ∆′) we denote by Φ(A′) the corresponding structure
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A ∈ Rel(∆) defined by X(A′) = X(A), R(A′) = R(A) for every
R ∈ ∆ (for homomorphisms we have Φ(f) = f).

These object-transformations call for a special terminology: For A′ ∈
Rel(∆, ∆′) we call Φ(A′) = A the shadow of A′. Any A′ with Φ(A′) =
A is called a lift of A. The analogous terminology is used for subclasses
K of Rel(∆, ∆′) and Rel(∆).

The following combinatorial characterization of NP was recently
proved in [32]:

Theorem. For every language L ∈ NP there exist relational types
∆, ∆′ and a finite set F ′ of structures in Rel(∆, ∆′) such that L is
computationally equivalent to Φ(Forb(F ′)). Moreover, we may assume
that the relations in ∆′ are at most binary.

We omit the technical details (which are involved) but let us add
the following: There seems to be here more than meets the eye. This
scheme fits nicely into the mainstream combinatorial and combinato-
rial complexity research. Building upon Feder-Vardi classification of
MMSNP we can isolate three computationally equivalent formulations
of NP class:

(1) By means of shadows of forbidden homomorphisms of relational
lifts (the corresponding category is denoted by Relcov(∆, ∆′)),

(2) By means of shadows of forbidden injections (monomorphisms)
of monadic lifts (i.e. with type ∆′ consisting from unary rela-
tions only),

(3) By means of shadows of forbidden full homomorphisms of mona-
dic lifts (full homomorphisms preserve both edges and also non-
edges).

Our results imply that each of these approaches includes the whole
class NP. It is interesting to note how nicely these categories fit to
the combinatorial common sense about the difficulty of problems: On
the one side the problems in CSP correspond and generalize ordinary
(vertex) coloring problems. One expects a dichotomy here. On the
other side the above classes 1.− 3. model the whole class NP and thus
we cannot expect dichotomy there. But this is in accordance with the
combinatorial meaning of these classes: the class 1. expresses coloring
of edges, triples etc. and thus it involves problems in Ramsey the-
ory [19, 45]. The class (2) may express vertex coloring of classes with
restricted degrees of its vertices (which is difficult restriction in a ho-
momorphism context) . The class (3) relates to vertex colorings with
a given pattern among classes which appears in many graph decom-
position techniques (for example in the solution of the Perfect Graph
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Conjecture [9]). The point of view of forbidden partitions (in the lan-
guage of graphs and matrices) is taken for example in [17]. This clear
difference between combinatorial interpretations of syntactic restric-
tions on formulas expressing the computational power of NP is one of
the pleasant consequences of this approach. See [32] for details and
other related problems.

9. Homomorphism Order

Recall that C∆ denote the homomorphism quasiorder of all relational
structures of type ∆:

A ≤ B ⇔ A −→ B.

There are surprising close connections between algorithmic questions
(which motivated dualities) and order theoretic properties of C∆. We
mention two such results (characterization theorems).

9.1. Gaps and Density. A pair (A,B) of structures is said to be a
gap in C∆ if A < B and there is no structure C such that A < C < B.

Similarly, for a subset K of C, a pair (A,B) of structures of K is said
to be a gap in K if A < B and there is no structure C ∈ K such that
A < C < B.

The Density Problem for a class K is ask for the description of all
gaps of the class K. This is a challenging problem even in the simplest
case of the class of all undirected graphs. This question has been asked
first in the context of the structure properties of classes of languages
and grammar forms. The problem has been solved in [68]:

Theorem. The pairs (K0, K1) and (K1, K2) are the only gaps for
the class of all undirected graphs. Explicitly, given undirected graphs
G1, G2, G1 < G2, G1 6= K0 and G1 6= K1 there is a graph G satisfying
G1 < G < G2.

The density problem for general classes Rel(∆) was solved only in
[57] in the context of the characterization of finite dualities.

Theorem. For every class Rel(∆) the following holds:

(1) For every (relational) tree T there exists unique structure PT

predecessor of T such that the pair (PT,T) is a gap in Rel(∆);
(2) Up to homomorphism equivalence there are no other gaps in

Rel(∆) of the form A < B with B connected.

The importance of this lies in the next result (a gap of the form
A < B with B connected is called a connected gap).
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Theorem. For every category Rel(∆) there is a one to one corre-
spondence between connected gaps and singleton dualities.

In fact this theorem holds in a broad class of posets called Heyting
posets, [53]. The characterization of gaps in the subclasses of structures
present a difficult problem.

9.2. Maximal Antichains. Let P = (P,≤) be a poset. We say that
a subset Q of P is an antichain in P , if neither a ≤ b nor b ≤ a for any
two elements a, b of Q (such elements are called incomparable (this fact
is usually denoted by a‖b). A finite antichain Q is called maximal, if
any set S such that Q $ S ⊆ P is not an antichain. One can determine
maximal antichains in classes Rel(∆).

Consider a duality

Forb(F) = CSP(D)

and consider the set M = F ∪D. Then M has the property that any
other structure A ∈ Rel(∆) is comparable to one of its elements (as
any structure A ∈ Rel(∆) either satisfies F → A for an F ∈ F or
A → D for an D ∈ D. One can prove the converse of this statement:

Theorem. Let ∆ = (k). There is a one-to-one correspondence
between generalized dualities and finite maximal antichains in the ho-
momorphism order of Rel(∆).

9.3. Universality. The homomorphism order C∆ has spectacular prop-
erties. One of them is related to the following notion:

A countable partially ordered set P is said to be universal if it con-
tains any countable poset (as an induced subposet).

A poset P is said to be homogeneous if every partial isomorphism be-
tween finite subposets extends to an isomorphism (of the whole poset).
It is a classical model theory result that universal homogenous poset
exists and that it is uniquely determined. Such universal homogeneous
poset can be constructed in a standard model theoretic way as Fräıssé
limit of all finite posets.

The poset C∆ fails to be homogeneous (due to its algebraic structure)
but it is universal [21]. The oriented graphs create here again a little
surprise: Denote by Path the partial order of finite oriented paths (i.e.
“zig-zags”) with the homomorphism ordering. It seem that the order
of paths is an easy one:

• Paths can be coded by 0 − 1 sequences;
• One can decide whether P ≤ P ′ (by an easy rewriting rules);
• Density problem for paths has been solved, [59].
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We finish this paper with the following non-trivial result which found
immediately several applications [26, 27]:

Theorem. The partial order Path is universal.
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[23] P. Hell, J. Nešetřil, Complexity of H-coloring, J. Comb. Th. B 48 (1990),
92-110.
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[45] J. Nešetřil, Ramsey Theory, Handbook of Combinatorics (eds. R. L. Graham,

M. Grötschel, L. Lovász), Elsevier (1995), 1331-1403.
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[59] J. Nešetřil, X. Zhu: Path Homomorphisms, Proc. Camb. Phil. Soc., 120 (1996),
207-220.

[60] A. Pultr, The right adjoints into the categories of relational systems, Lecture
Notes in Mathematics 137 (1970), 100-113.
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