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Abstract

Graph labellings form an important graph theory model for the
channel assignment problem. An optimum labelling usually depends
on one or more parameters that ensure minimum separations between
frequencies assigned to nearby transmitters. The study of spans and
of the structure of optimum labellings as functions of such parameters
has attracted substantial attention from researchers, leading to the
introduction of real number graph labellings and λ-graphs. We survey
recent results obtained in this area.

The concept of real number graph labellings was introduced a few years
ago, and in the sequel, a more general concept of λ-graphs appeared. Though
the two concepts are quite new, they are so natural that there are already
many results on each. In fact, even some older results fall in this area, but
their authors used a different mathematical language to state their achieve-
ments. Since many of these results are so recent that they are just appearing
in various journals, we would like to offer the reader a single reference for
the state of art as well as to draw attention to some older results that fall in
this area.
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1 Graph labellings and the channel assign-

ment problem

Graph theory models for radio frequency assignment problems can be traced
back to the early 1980’s in the paper of Hale [27]. Since then, several different
forms of graph colorings were developed to model such problems, e.g., the
model of T -colorings of graphs, which forbids certain differences between
labels at adjacent vertices [42].

Based on a transmitter frequency problem related to him by Lanfear, in
1988 Roberts proposed a new assignment problem with two levels of inter-
ference [43] which Griggs adapted to graphs and extended to a more general
graph problem of distance-constrained labellings [26]: For nonnegative in-
tegers p1, . . . , pk, an L(p1, . . . , pk)-labelling of a graph G is a labelling of its
vertices by nonnegative integers such that vertices at distance exactly i re-
ceive labels that differ by at least pi. The maximum label assigned to any
vertex is called the span of the labelling. The goal of the problem is to
construct an L(p1, . . . , pk)-labelling of the smallest span. The smallest span
of such a labelling is denoted by λp1,...,pk

(G). Because of practical appli-
cations, the distance constraints are often considered to decrease with the
distance [5], i.e., p1 ≥ p2 ≥ · · · ≥ pk ≥ 1. However, there also appears in
practical applications the case p1 = 0, p2 = 1 [4, 29].

The idea behind this model is the following: radio-transmitters are rep-
resented by vertices of a graph and those that are very close are joined by
edges. The highest level of interference appears among transmitters repre-
sented by adjacent vertices. However, some interference still appears among
transmitters represented by vertices at distance two, three, etc. In order to
assign frequencies efficiently from the available range, we seek an assignment
of frequencies from the shortest possible interval such that the frequencies
assigned to very close transmitters differ a lot (in order to avoid interfer-
ence), while the frequencies assigned to transmitters that are close but not
very close differ less. This idea directly leads to the distance-constrained
labellings of graphs as introduced in the previous paragraph.

Distance-constrained labellings are closely related to ordinary graph col-
orings: If p1 = . . . = pk = 1, then the problem reduces to the coloring of the
k-th power of the graph G. Hence, many results on colorings of graph powers
translate to distance-constrained labellings and vice versa. As an example,
the reader is referred to the work of Molloy and Reed [40, 41] on colorings of
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squares of planar graphs.
The fundamental case of distance-constrained labelling (based on the

problem of Lanfear and Roberts) is when p1 = 2 and p2 = 1. A major
open problem on L(2, 1)-labellings of graphs is the conjecture of Griggs and
Yeh [26] that asserts that every graph G with maximum degree ∆ ≥ 2 has
an L(2, 1)-labelling of span at most ∆2. The conjecture is still open almost
15 years after it was published. In a series of papers [26, 12, 35, 19], the orig-
inal upper bound ∆2 + 2∆ on λ2,1(G) of such graphs G has been decreased
successively to the current best bound of Gonçalves [19], ∆2 + ∆ − 2. The
conjecture was verified for several special classes of graphs, including graphs
of maximum degree two, chordal graphs ([45], see also [11, 32]), Hamiltonian
cubic graphs [30] and planar graphs with maximum degree ∆ 6= 3 [3]. Be-
cause of practical applications of the distance-constrained labelling, it is not
surprising that there is also a growing body of papers on their algorithmic
aspects [1, 6, 14, 15, 31, 38].

McDiarmid’s survey [37] deals with a general version of the channel as-
signment problem, which is described by a graph G in which each edge e is
assigned a positive integer weight (separation) w(e). We consider labellings
c of the vertices of G with positive integers such that the labels of adjacent
vertices u and v differ by at least w(uv). The span of the labelling c is its
maximum label. The goal is to find a labelling of minimum span. When the
weights of all edges equal one, then the minimum span is just the chromatic
number of G.

It is not hard to see that distance-constrained labellings of graphs with
constraints at distance at most k can be viewed as a special instance of the
channel assignment problem with the underlying graph being the k-th power
of the original graph G.

To capture better some of the properties of distance-constrained labellings
as a function of the separations pi, Griggs et al. was led to introduce the
more general model of real number labellings with distance constraints [22].
An even more general model, λ-graphs, was later proposed by Babilon et
al. [2], which is a special case of the channel assignment problem, in which
there are only k possible edge weights, except that the labels and weights
are real numbers, not integers. Theoretical results for distance-constrained
labellings can be extended to λ-graphs, and several open conjectures on
distance-constrained labellings were proven in the more general λ-graph con-
text.

We introduce these real number labellings in the next section, and survey
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the main results about them in the following sections, including the general
theoretical results as well as formulas for specific finite and infinite graphs.
The paper concludes with some of the prominent open problems.

2 Labellings with variable weights

Graph labellings with real numbers were first mentioned in the paper of
Griggs and Yeh [26]. They observed that the study of L(2d, d)-labellings of
graphs for a real number d is equivalent to the study of L(2, 1)-labellings
by the Scaling Property that we recall later. Subsequently, people worked
out the optimal L(p, q)-spans of specific graphs as functions of (integers) p
and q. Among there, Georges and Mauro [18] determine spans of optimal
L(p, q)-labellings of infinite d-regular trees, and van den Heuvel et al. [28] and
Leese and Noble [36] provide results for the circular version of the problem.
A natural generalization of distance-constrained labellings based on ideas
above is the notion of real number graph labellings introduced by Griggs and
Jin [22].

An L(p1, . . . , pk)-labelling of a (possibly infinite) graph G for real numbers
p1, . . . , pk is a function f : V (G) → R such that |f(v) − f(w)| ≥ pi for any
two vertices v and w at distance exactly i in G. The span of the L(p1, . . . , pk)-
labelling f is equal to the difference of the supremum and the infimum of the
labels, i.e., supv∈V (G) f(v) − infv∈V (G) f(v). The infimum of the span of all
L(p1, . . . , pk)-labellings of G is denoted by λ(G; p1, . . . , pk). It can be shown
that there always exists an optimum L(p1, . . . , pk)-labelling, i.e., a labelling
of span λ(G; p1, . . . , pk). Let us remark that if all the parameters p1, . . . , pk

are integers, then λp1,...,pk
(G) = λ(G; p1, . . . , pk) by Theorem 3 below.

By the Compactness Principle, if the maximum degree of a graph G is
bounded, there exists a labelling of finite span. On the other hand, if k ≥ 2
and G contains vertices of arbitrarily large degree, then G need not have
a labelling of finite span. Since the labels of an optimum labelling f can
be made nonnegative by subtracting infv∈V (G) f(v) from the label of each
vertex, there is always an optimum labelling with nonnegative reals. Hence,
we can require the labels f(v) of the vertices to be nonnegative reals and
define the span of the labelling to be the supremum of the labels used in the
labelling. The spans of optimum labellings with nonnegative reals coincide
with λ(G; p1, . . . , pk).

The values of λ(G; p1, . . . , pk) can be viewed as a function of the pa-
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rameters p1, . . . , pk. Griggs and Jin [22] showed that λ(G; p1, . . . , pk) is a
continuous piecewise linear function of its parameters on [0,∞)k. We say
that a function is piecewise linear, if there exists a partition of its domain
into (possibly infinitely many) measurable parts such that the function is
linear on each of them.

The function λ(G; p1, . . . , pk) also satisfies the so-called Scaling Prop-
erty [22], i.e., for every positive real number α:

αλ(G; p1, . . . , pk) = λ(G; αp1, . . . , αpk) .

In particular, if k = 2, the values of λ(G; p1, p2) are fully determined by the
values of the function for p2 = 1. Hence, we often describe only the values of
λ(G; x, 1) instead of giving the entire description of the function λ(G; x, y).

The instances of the channel assignment problem derived from distance-
constrained labellings of graphs are of special structure. However, there is
no need to restrict ourselves to the channel assignment problems only of
this type. Similarly, as real number graph labellings generalize distance-
constrained labellings of graphs, we can generalize the notion of the channel
assignment problem. A λ-graph G is a graph with k types of edges. We allow
two vertices to be joined by several edges of different types. A labelling f
of the vertices of the λ-graph G with nonnegative real numbers is said to be
proper with respect to the parameters x1, . . . , xk if the labels of every pair
of vertices u and v joined by an edge of the i-th type differ by at least xi.
The span of the labelling is the supremum of the labels of the vertices. The
infimum of the spans of proper labellings is denoted by λG(x1, . . . , xk). The
values of λG(x1, . . . , xk) viewed as a k-parameter function form the λ-function
of G.

It is important to note for the remainder of the paper, we will always
implicitly assume that for every choice of the parameters x1, . . . , xk, the value
of the function λG(x1, . . . , xk) is finite. As we discuss later, this is equivalent
to the statement that G (viewed as an ordinary graph) can be colored (in
the ordinary sense) with a finite number of colors.

The results of [22] on real number graph labellings readily translate to
the more general setting of λ-graphs:

Theorem 1. Let G be a (possibly infinite) λ-graph with k types of edges. The
λ-function of G is a continuous, non-decreasing and piecewise linear function
of x1, . . . , xk on [0,∞)k.

It is not hard to see that the λ-function also satisfies the Scaling Property:
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Theorem 2 (Scaling Property). Let G be a (possibly infinite) λ-graph with
k types of edges and α, x1, . . . , xk nonnegative reals. It holds that:

αλG(x1, . . . , xk) = λG(αx1, . . . , αxk) .

Because of the Scaling Property, the function λG(x1, . . . , xk) is finite for
all values of x1, . . . , xk if and only if it is finite for one choice of positive
values of x1, . . . , xk. Since λG(1, . . . , 1) is equal to the chromatic number
of (the underlying graph of) G decreased by one, our assumption that the
function λG is well-defined is equivalent to the assumption that G has a finite
chromatic number.

The notion of λ-graphs provides us with a more general framework for
the study of real number graph labellings. Consider a graph H and reals
p1, . . . , pk. Let us consider the following λ-graph G with k types of edges:
the vertices of G are the same as those of H and two vertices u and v are
joined by an edge of the i-th type, 1 ≤ i ≤ k, if their distance in H is exactly
i. It is easy to see that the following holds:

λG(x1, . . . , xk) = λ(H; x1, . . . , xk) .

Because of this close connection, we decided to use similar notations for the
functions describing spans of optimum labellings of λ-graphs and optimum
real number graph labellings.

In the rest of this paper, we survey results obtained on real number graph
labellings and λ-graphs. We start with general results obtained in this area
and we then focus on results obtained for specific infinite and finite graphs.

3 General structural results

In this section, we survey general results on λ-graphs and real number graph
labellings. One of the first questions that comes to mind is whether the sets
of labels used in an optimum labelling can be assumed to be of some special
form. The answer to this question was provided in the paper [22]. They
define the D-set D(x1, . . . , xk) of x1, . . . , xk to be the set of all combinations
of x1, . . . , xk with non-negative integer coefficients. Let us remark at this
point that N denotes the set of non-negative integers throughout the paper.

D(x1, . . . , xk) =

{

k
∑

i=1

αixk for some αi ∈ N

}

.
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The next theorem of [22] was proved for real number graph labellings, but
its proof readily translates to the setting of λ-graphs (with finite spans):

Theorem 3 (Griggs and Jin [22]). Let G be a (possibly infinite) λ-graph
with k types of edges. For all nonnegative real numbers x1, . . . , xk, there is
an optimal labelling f with respect to x1, . . . , xk, such that f(v) = 0 for
some vertex and for all vertices v, f(v) ∈ D(x1, . . . , xk). In particular,
λG(x1, . . . , xk) ∈ D(x1, . . . , xk).

Theorem 3 can also be derived from a later theorem of Babilon et al. [2]:
they established an analogue of the classical Gallai-Roy Theorem for the
channel assignment problem for an infinite underlying graph with finitely
many edge-weights. Recall that the Gallai-Roy Theorem [16, 44] states that
the chromatic number of a graph G decreased by one is equal to the length
(the number of edges) of a longest oriented path of an orientation of G
for which the length of a longest path is minimized. We state the result
of [2] using the language of λ-graphs. An orientation of a graph G is said
to be finitary if there is a constant K ≥ 0 such that every oriented walk
has length at most K. In particular, a finitary orientation is acyclic and
does not contain infinite oriented paths. Note that there could be an acyclic
orientation without infinite oriented paths that is not finitary. The weight
of a path is the sum of the weights of its edges. Finally, the weight of an
orientation is the supremum of the weights of its oriented paths. Note that
if the orientation of a λ-graph is finitary, the supremum is always attained
and is finite (since G has only finitely many edge types). Moreover, it can
be shown that there exists a finitary orientation of minimum weight, and its
weight is equal to the span of an optimum labelling:

Theorem 4 (Babilon et al. [2]). Let G be a (possibly infinite) λ-graph with
k types of edges. The optimal span of the labelling of G with respect to
x1, . . . , xk is equal to the minimum weight of a finitary orientation of G.

Let us remark that the proof of Theorem 4 involves the Axiom of Choice.
Given a finitary orientation of the minimum weight, it is easy to construct

an optimum labelling of a λ-graph G: let f(v) of a vertex v be the maximum
weight of an oriented path that ends at v. It is straightforward to check that
the labelling f is a proper labelling of G and that its span is equal to the
weight of the orientation. By Theorem 4, the labelling f is optimum.

We already know that the λ-function of any λ-graph is a continuous
piecewise linear function. A natural question is whether the λ-function is

7



always comprised of only finitely many linear parts. Griggs and Jin [22]
proposed that this is true for real number graph labellings (the Piecewise
Linearity Conjecture). They verified their conjecture for finite graphs, and
got more support for the conjecture by verifying it for infinite graphs with
conditions at distance at most two. The proof of the conjecture for λ-graphs
with two types of edges is implicitly contained in [2]. The conjecture was
eventually proved (for general k) by Král’ [33] in the more general setting
of λ-graphs. Moreover, he proved it in the following stronger form (we state
the result as Theorem 5 later): not only the λ-function of each λ-graph is
a piecewise linear function comprised of finitely many parts, but, for every
fixed k ≥ 1 and χ ≥ 1, there exists a single finite partition of [0,∞)k such
that the λ-function of every λ-graph with k types of edges and chromatic
number at most χ is linear on every part of the partition.

Griggs and Jin [22] also conjectured that Theorem 3 can be refined in
the sense that it is enough to consider combinations of the parameters with
nonnegative integer coefficients that do not exceed a constant depending
only on G and not the separation parameters xi themselves (the Coeffi-
cient Bound Conjecture). Let us state their conjecture more formally. Let
D(A; x1, . . . , xk) to be the set of all numbers of the form

∑k
i=1 αixi for some

integers αi, 0 ≤ αi ≤ A. The conjecture asserts that for every graph G
and every integer k ≥ 1, there exists a number A such that for every choice
of x1, . . . , xk, there is an optimal L(x1, . . . , xk)-labelling f of G with labels
f(v) ∈ D(A; x1, . . . , xk). Griggs and Jin [22] made the stronger conjecture
that the number A could be chosen depending only on k and the maximum
degree ∆ of G, not on G itself (the Delta Bound Conjecture).

Both the Coefficient Bound Conjecture and the Delta Bound Conjecture
were proven in [33] in a stronger form: first, the proof works in the more gen-
eral setting of λ-graphs, and second, it works more generally for graphs with
bounded chromatic number χ, not just for those with bounded maximum
degree ∆ (note that χ ≤ ∆ + 1). Let us now state the result.

Theorem 5 (Král’ [33]). For every k ≥ 1 and χ ≥ 1, there exist con-
stants Ak,χ and Bk,χ such that the space [0,∞)k can be partitioned into Bk,χ

polyhedral cones, such that the λ-function λG(x1, . . . , xp) of every λ-graph G
(possibly infinite) with k types of edges and chromatic number at most χ is
a linear function of x1, . . . , xp on each of the cones.

Moreover, for each G and each of the cones, there exist linear func-
tions fv(x1, . . . , xk) such that a vertex labelling of G assigning a vertex v

8



the value of fv(x1, . . . , xk) is an optimal labelling of G, and fv(x1, . . . , xk) ∈
D(Ak,χ; x1, . . . , xk).

Even more surprising is the following consequence concerning the number
of possible λ-functions of λ-graphs.

Theorem 6 (Král’ [33]). There exist only finitely many (piecewise-linear)
functions that can be the λ-function of a λ-graph with at most k types of
edges and chromatic number at most χ.

The key ingredient of the proofs of Theorem 5 and 6 is Theorem 4. It
is shown that for every fixed k and χ, the length of the longest oriented
path of a minimum-weight finitary orientation of G can be bounded by a
constant Ck,χ depending only on k and χ. However, the constant Ck,χ grows
enormously in k. In particular, it is not even bounded by a tower function of
k. We believe that the bounds obtained in [33] are far from optimal and can
be improved. In particular, we think that Ck,χ can be bounded by a function
exponential in k and χ and maybe even polynomial in one of the parameters
(see Problem 1 in Section 6).

Besides Theorems 5 and 6, the technique used in [33] provides the follow-
ing generalization of the Compactness Principle to λ-graphs.

Theorem 7 (Král’ [34]). Every λ-graph G with k types of edges and a finite
chromatic number contains a finite subgraph H such that λG(x1, . . . , xk) =
λH(x1, . . . , xk) for all (x1, . . . , xk) ∈ [0,∞)k.

Note that the Compactness Principle implies the existence of such a finite
subgraph H for every choice of (x1, . . . , xk), but it does not guarantee the
existence of such a universal finite subgraph H. Also note Theorem 7 implies
the Piecewise Linearity Conjecture of Griggs and Jin.

We mentioned that the constants Ak,χ and Bk,χ in Theorem 5 are really
huge. Substantially better bounds than these are known for real number
graph labellings with conditions at distance at most two, as well as for λ-
graphs with two types of edges. Here is a refinement of Theorem 5 for real
number graph labellings from [22].

Theorem 8 (Griggs and Jin [22]). Let G be a (possibly infinite) graph
G with maximum degree ∆. For all nonnegative real numbers x1, . . . , xk,
there is an optimal labelling f with respect to x1, . . . , xk such that f(v) ∈
D(2∆5; x1, . . . , xk) for every vertex v of G. In particular, λG(x1, . . . , xk) ∈
D(2∆5; x1, . . . , xk).
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Theorem 5 can be refined for λ-graphs G with two types of edges using
the next lemma:

Lemma 9 (Babilon et al. [2]). Let G be a (possibly infinite) λ-graph G with
two types of edges and let ∆ be the maximum degree of G. The λ-function is
a linear function on the set

[

0, 1
2∆2+2∆+1

]

× {1}.

By the Scaling Property, the number of linear parts of the λ-function on
[0,∞)2 is equal to the number of its linear parts on [0,∞) × {1}. Fix a λ-
graph G with maximum degree ∆, and let h(x) = λG(x, 1). By Lemma 9, the
function h is linear on the intervals

[

0, 1
2∆2+2∆+1

]

×{1} and [2∆2+2∆+1,∞)×
{1}. By the Compactness Principle, h(1) ≤ ∆. An argument used in the
proof of Theorem 4.5 in [2] yields that every linear piece of h starts and ends
at a point of the form α/β where α + β ≤ ∆(2∆2 + 2∆ + 1) = O(∆3). Since
there are at most O(∆6) such points, the following refinement of Theorem 5
holds:

Theorem 10. Let ∆ ≥ 1 be a fixed integer. The space [0,∞)2 can be parti-
tioned into at most s = O(∆6) parts S1, . . . , Ss such the λ-function of every
λ-graph G with maximum degree ∆ is a linear function of x1 and x2 on each
Si, i = 1, . . . , s.

To conclude, we briefly mention bounds on the number of linear parts of
finite λ-graphs in terms of their orders.

Theorem 11 (Babilon et al. [2]). Let G a λ-graph of order n with two types
of edges. The number of linear parts of its λ-function does not exceed O(n2).

As we discuss in Section 6 before Problem 5, the functions λ(G; x, 1) for
most graphs G have the “up-down” behavior. The opposite type of behavior
is that the λ-function is either convex or concave. In such a case, the bound
of Theorem 11 can be significantly improved.

Theorem 12 (Babilon et al. [2]). Let G a λ-graph of order n that has two
types of edges such that its λ-function is convex. The number of linear parts
of λG does not exceed O(n2/3). Moreover, there exists a λ-graph G of order
n such that λG is a convex function with Ω(n2/3) linear parts.

Babilon et al. [2] conjecture that the bound on the number of parts con-
tained in Theorem 11 can be improved to a linear function of n (see Problem 2
in Section 6).
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4 Results on specific finite graphs

Determining optimal spans of real number graph labellings for particular
graphs is also important. Though determining the spans even for small
graphs is quite challenging, there is already a large family of graphs for
which spans of their optimal real number labellings are known. For the
reader’s convenience, we include some of them here. For paths and cycles,
Georges and Mauro [17] worked out the values of λ(G; x1, x2) for integers
x1 ≥ x2 ≥ 1, which can be extended by the Scaling Property and continuity
to give λ(G; x, 1) for all reals x ≥ 1. The results of [17] are extended to x < 1
and proven in the real number model in [23]. The new methods could also
be helpful for computing the optimal spans of real number graph labellings
of other graphs.

Theorem 13 (Griggs and Jin [23], cf. [17]). The following values are spans
of optimal real number graph labellings of the path Pn, 2 ≤ n ≤ 6:

λ(Pn; x, 1) =















































x, if n = 2,
1, if n = 3 and 0 ≤ x ≤ 1/2,
2x, if n = 3 and 1/2 ≤ x ≤ 1,
x + 1, if n = 3 and x ≥ 1,
x + 1, if n = 4,
x + 1, if n ∈ {5, 6} and 0 ≤ x ≤ 1,
2x, if n ∈ {5, 6} and 1 ≤ x ≤ 2, and
x + 2, if n ∈ {5, 6} and x ≥ 2.

For paths Pn with n ≥ 7 vertices, the following values are spans of optimal
labellings:

λ(Pn; x, 1) =























x + 1, if 0 ≤ x ≤ 1/2,
3x, if 1/2 ≤ x ≤ 2/3,
2, if 2/3 ≤ x ≤ 1,
2x, if 1 ≤ x ≤ 2, and
x + 2, otherwise (x ≥ 2).

The function λ(Pn; x, 1) is depicted in Figure 1.
Similarly as for paths, the values of λ(Cn; x, 1) for cycles Cn can be in-

ferred for x ≥ 1 from the paper of Georges and Mauro [17]. In [23], the
results were extended to x < 1 and fit in the scenario of the real number
graph labellings. Note that unlike in the case of paths, the optimal span of

11
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1

2

3

4

5

6

x + 2

5x
3

3x

x + 4

Figure 1: The function λ(Pn; x, 1) for paths Pn with at least seven vertices
(n ≥ 7).

a cycle depends for large cycles also on the congruence class of its length
modulo twelve.

Theorem 14 (Griggs and Jin [23], cf. [17]). The following values are spans
of optimal labellings of the cycle C3 and C5:

λ(Cn; x, 1) =























2k, if n = 3,
2, if n = 5 and 0 ≤ x ≤ 1/2,
4x, if n = 5 and 1/2 ≤ x ≤ 1,
4, if n = 5 and 1 ≤ x ≤ 2, and
2x, otherwise (n = 5 and x ≥ 2).

The values of spans of optimal labellings of the cycle Cn for n = 4 or n ≥ 6
are given in the following table:
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λ(Cn; x, 1) n ≡12 0 n ≡12 1, 5, 7, 11 n ≡12 2, 10 n ≡12 3, 9 n ≡12 4, 8 n ≡12 6

x ∈ [0, 1/2] x + 1 2 2 2 x + 1 2

x ∈ [1/2, 2/3] 3x 2 2 2 3x 2

x ∈ [2/3, 1] 2 3x 3x 2 3x 2

x ∈ [1, 2] 2x x + 2 x + 2 2x x + 2 2x

x ∈ [2, 3] x + 2 2x 2x 2x x + 2 2x

x ∈ [3,∞) x + 2 2x x + 3 2x x + 2 x + 3

Another class of graphs for which the optimal spans of real number la-
bellings are known is the class of wheels (a wheel Wn is the graph obtained
from the cycle Cn by adding a new vertex adjacent to all the vertices of the
cycle). In this case, the values of optimal spans for large wheels depend only
on the parity of the base cycle.

Theorem 15 (Griggs and Jin [23]). The following values are spans of optimal
labellings of the wheels W3 and W4:

λ(Wn; x, 1) =















3x, if n = 3,
x + 1, if n = 4 and 0 ≤ x ≤ 1/3,
4x, if n = 4 and 1/3 ≤ x ≤ 1, and
2x + 2, otherwise (n = 4 and x ≥ 1).

For odd wheels Wn, n ≥ 5, the spans of optimal labellings are given by the
following formula:

λ(Wn; x, 1) =























n−1
2

, if 0 ≤ x ≤ 1/3,
3x + n−3

2
, if 1/3 ≤ x ≤ 1/2,

nx, if 1/2 ≤ x ≤ 1,
x + n − 1, if 1 ≤ x ≤ n−1

2
, and

3x, otherwise (x ≥ n−1
2

).

Finally, for even wheels Wn, n ≥ 6, we have:

λ(Wn; x, 1) =























x + n/2 − 1, if 0 ≤ x ≤ 1/3,
4x + n/2 − 2, if 1/3 ≤ x ≤ 1/2,
nx, if 1/2 ≤ x ≤ 1,
x + n − 1, if 1 ≤ x ≤ n/2 − 1, and
2x + n/2, otherwise (x ≥ n/2 − 1).

13



Other natural classes of graphs to be considered are complete graphs and
complete multipartite graphs. The function λ(Kn; x, 1) = (n − 1)x for com-
plete graphs is straightforward to determine. A little more complex situation
is for complete bipartite graphs:

Theorem 16 (Griggs and Jin [25]). The following values are spans of optimal
labellings of the complete bipartite graph Kn1,n2

, n1 ≥ n2:

λ(Kn1,n2
; x, 1) =







max{n1 − 1, n2 − 1 + x}, if x ∈ [0, 0.5],
(2n2−1)x + max{n1−n2−1+x, 0}, if x ∈ [0.5, 1], and
x + n1 + n2 − 2, otherwise.

There are many other graphs G for which the values of the function
λ(G; x1, . . . , xk) are still not determined. It is also of interest to compute
“maximal” spans for important classes of graphs, such as planar graphs with
bounded degree. More precisely, for a class G of graphs G, let us define
λ(G; x1, . . . , xk) as follows:

λ(G; x1, . . . , xk) = sup
G∈G

λ(G; x1, . . . , xk) .

The problem is then to determine the values of the function λ(G; x1, . . . , xk)
for a given class G of graphs. Unfortunately, it seems that a complete solution
even for planar graphs with a fixed bounded degree ∆ ≥ 3 is completely out
of reach of the present methods.

5 Results on specific infinite graphs

In practical applications, infinite graphs often provide a convenient model
for the underlying topology of the network. Instead of considering a finite
graph, one can model a network as a regular tiling of the plane. Hence, the
infinite triangular lattice Γ4, the infinite square lattice Γ� and the infinite
hexagonal lattice ΓH naturally appear in such applications. However, let us
start with the “simplest” infinite regular graph, an infinite regular tree. Real
number graph labellings of infinite d-regular trees have already been studied
in the framework of distance-constrained labellings of graphs: Georges and
Mauro [18] determined optimum spans of infinite d-regular trees Td for x ≥ 1
and Calamoneri et al. [10] completed the characterization for x ∈ [0, 1].
Though infinite trees seem to be very simple graphs, the characterization of
their optimum spans, in particular for x ∈ (3/2, d − 1), is very complex.

14



Theorem 17 (Calamoneri et al. [10], Georges and Mauro [18]). The following
values are spans of optimal labellings of the infinite d-regular tree Td, d ≥ 2:

λ(Td; x, 1) =







































x + d − 1, if 0 ≤ x ≤ 1/2,
(2d − 1)x, if 1/2 ≤ x ≤ d/(2d − 1),
d, if d/(2d − 1) ≤ x ≤ 1,
d · x, if 1 ≤ x ≤ d/(d − 1),
x + d, if d/(d − 1) ≤ x ≤ 3/2,
2x + d − 2, if d − 1 ≤ x ≤ d, and
x + 2d − 2, if d ≤ x.

If x ∈ (3/2, d+1
2

) and x−bxc > 1/2, then the optimal span is given by the
following:

λ(Td; x, 1) =

{

(2s + 1)(x − bxc) + 2x + d − 2 − s, if x − bxc ≤ s+2
2s+3

, and

2bxc + d, otherwise,

where s =
⌊

d−bxc−2
2bxc+1

⌋

.

Finally, if either x ∈ [2, d+1
2

) and x− bxc ≤ 1/2 or x ∈ [ d+1
2

, d− 1), then
the optimal span is given by the following:

λ(Td; x, 1) =



















d+bxc
bxc

x + bxc − 2, if x ≤ bxcd+1
d

and d ≡bxc 0,
d+bxc−1

bxc
x + bxc − 1, if x ≤ bxc d

d−1
and d ≡bxc 1,

d+2bxc−r
bxc

x + r − 1, if x ≤ bxcd+bxc−r+1
d+bxc−r

and d ≡bxc r 6= 0, 1,

x + bxc + d − 1, otherwise.

Since the values of λ(Td; x, 1) can be quite hard to read out from Theo-
rem 17 even for a small fixed integer d, let us state as its corollaries the values
of spans of optimal labellings of the infinite path (the infinite 2-regular tree)
and the infinite 3-regular and 4-regular trees (the functions are depicted in
Figures 1, 2 and 3). Note that the values of optimal labellings of the infinite
path coincide with the values of optimal labellings of long paths (this follows
from the Compactness Principle).

Corollary 18. The following values are spans of optimal labellings of the
infinite path T2:

λ(T2; x, 1) =























x + 1, if 0 ≤ x ≤ 1/2,
3x, if 1/2 ≤ x ≤ 2/3,
2, if 2/3 ≤ x ≤ 1,
2x, if 1 ≤ x ≤ 2, and
x + 2, otherwise (x ≥ 2).
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2x + 1

x + 4

Figure 2: The function λ(T3; x, 1).

Corollary 19. The following values are spans of optimal labellings of the
infinite 3-regular tree T3:

λ(T3; x, 1) =







































x + 2, if 0 ≤ x ≤ 1/2,
5x, if 1/2 ≤ x ≤ 3/5,
3, if 3/5 ≤ x ≤ 1,
3x, if 1 ≤ x ≤ 3/2,
x + 3, if 3/2 ≤ x ≤ 2,
2x + 1, if 2 ≤ x ≤ 3, and
x + 4, otherwise (x ≥ 3).

Corollary 20. The following values are spans of optimal labellings of the

16



0 1 2 3 4 5

2

4

6

8

10

12

x + 3

7x 4
4x x + 4

11x/3 6
3x

x + 5

2x + 2

x + 6

Figure 3: The function λ(T4; x, 1).

infinite 4-regular tree T4:

λ(T4; x, 1) =







































































x + 3, if 0 ≤ x ≤ 1/2,
7x, if 1/2 ≤ x ≤ 4/7,
4, if 4/7 ≤ x ≤ 1,
4x, if 1 ≤ x ≤ 4/3,
x + 4, if 4/3 ≤ x ≤ 3/2,
11x/3, if 3/2 ≤ x ≤ 18/11,
6, if 18/11 ≤ x ≤ 2,
3x, if 2 ≤ x ≤ 2.5, and
x + 5, if 2.5 ≤ x ≤ 3, and
2x + 2, if 3 ≤ x ≤ 4, and
x + 6, otherwise (x ≥ 4).

Let us turn our attention to infinite plane lattices. The problem for
the triangular lattice Γ4 has a rich history. Griggs [21] posed an integer
version of the problem in the 2000 International Math Contest in Modeling
(MCM). Among 271 teams which participated in the contest, five teams [7,
13, 20, 39, 46] obtained new results for particular choices of parameters. In
particular, Goodwin, Johnston and Marcus [20] determined λ(Γ4; x, 1) for
x ≥ 4. Several other choices of x ≥ 1 were later settled by Jin and Yeh [29]
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Figure 4: The function λ(Γ4; x, 1)—the known values are depicted by bold
lines and the lower and upper bound by thin lines.

and by Zhu and Shi [47]. Calamoneri [9] determined the function for x ≥ 3
and gave bounds for x ∈ [1, 3]. The function λ(Γ4; x, 1) has still not been
determined for values x ∈ (1/3, 1) (see Figure 4 for the known values). The
most complete characterization is given in the next theorem.

Theorem 21 (Griggs and Jin [24], cf. Calamoneri [9]). The following values
are spans of optimal labellings of the triangular lattice Γ4 (or bounds on them
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where they have not been determined):

λ(Γ4; x, 1) =































































































2x + 3, if 0 ≤ x ≤ 1/3,
∈ [2x + 3, 11x], if 1/3 ≤ x ≤ 9/22,
∈ [2k + 3, 9/2], if 9/22 ≤ x ≤ 3/7,
∈ [9k, 9/2], if 3/7 ≤ x ≤ 1/2,
∈ [9/2, 16/3], if 1/2 ≤ x ≤ 2/3,
∈ [16/3, 23/4], if 2/3 ≤ x ≤ 3/4,
∈ [23/4, 6], if 3/4 ≤ x ≤ 4/5,
6, if 4/5 ≤ x ≤ 1,
6x, if 1 ≤ x ≤ 4/3,
8, if 4/3 ≤ x ≤ 2,
4x, if 2 ≤ x ≤ 11/4,
11, if 11/4 ≤ x ≤ 3,
3x + 2, if 3 ≤ x ≤ 4, and
2x + 6, otherwise (x ≥ 4).

A Manhattan cellular system [5] related to the square lattice finds its
applications in the cellular networks in cities. The values of λ(Γ�; x, 1) for
all x ∈ [0,∞) were determined in [24]. Independently, Calamoneri [8, 9]
determined the function λ(Γ�; x, 1) for x ≥ 3 (let us remark that some bounds
in [8] are not completely correct and were fixed in the journal version [9] of
the paper). Let us point out the following interesting fact (that as we will
see also holds for the hexagonal lattice): since T4 is homomorphic to Γ�, the
function λ(T4; x, 1) is bounded from above by λ(Γ�; x, 1). Surprisingly, the
values of λ(Γ�; x, 1) and λ(T4; x, 1) agree for x 6∈ (1.5, 3). The reader can
compare the functions λ(Γ�; x, 1) and λ(T4; x, 1) depicted in Figures 5 and 3.

Theorem 22 (Griggs and Jin [24], cf. Calamoneri [9]). The following values
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Figure 5: The function λ(Γ�; x, 1).

are spans of optimal labellings of the square lattice Γ�:

λ(Γ�; x, 1) =







































































2x + 3, if 0 ≤ x ≤ 1/2,
7x, if 1/2 ≤ x ≤ 4/7,
4, if 4/7 ≤ x ≤ 1,
4x, if 1 ≤ x ≤ 4/3,
x + 4, if 4/3 ≤ x ≤ 3/2,
3x + 1, if 3/2 ≤ x ≤ 5/3,
6, if 5/3 ≤ x ≤ 2,
3x, if 2 ≤ x ≤ 8/3,
8, if 8/3 ≤ x ≤ 3,
2x + 2, if 3 ≤ x ≤ 4, and
x + 6, otherwise (x ≥ 4).

Besides the triangular and square lattices, the plane can also be tiled by
hexagons. Calamoneri [9] determined the values of λ(ΓH ; x, 1) for x ∈ [2,∞)
and provided lower and upper bounds for x ∈ [1, 2]. The function λ(ΓH ; x, 1)
was completely determined in [24]. As in the case of the square lattice, the
functions λ(ΓH ; x, 1) and λ(T3; x, 1) agree for most of the values of x—see
Figures 6 and 2.
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Figure 6: The function λ(ΓH ; x, 1).

Theorem 23 (Griggs and Jin [24], cf. Calamoneri [9]). The following values
are spans of optimal labellings of the hexagonal lattice ΓH :

λ(ΓH ; x, 1) =







































x + 2, if 0 ≤ x ≤ 1/2,
5x, if 1/2 ≤ x ≤ 3/5,
3, if 3/5 ≤ x ≤ 1,
3x, if 1 ≤ x ≤ 5/3,
5, if 5/3 ≤ x ≤ 2,
2x + 1, if 2 ≤ x ≤ 3, and
x + 4, otherwise (x ≥ 3).

In Theorems 22 and 23, we have seen that the values of λ(Γ�; x, 1) and
λ(ΓH ; x, 1) coincide with the values of of λ(Td; x, 1) for most values of x where
d is the common degree of the vertices of the lattice. We wonder what is the
reason for this behavior and what general property caused it.

6 Open problems

We conclude the paper with suggesting several problems for further research
on real number graph labellings. The proof of Theorem 5 is based on an
inductive argument that yields enormous bounds on the values Ak,χ and
Bk,χ. It seems that such huge bounds are not necessary and it could be
possible to establish better bounds on Ak,χ and Bk,χ.
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Problem 1. Determine whether the constants Ak,χ and Bk,χ from Theorem 5
can be bounded by a function exponential in k and χ, or even by a function
polynomial in one of the parameters k and χ.

Another problem is to provide a bound on the number of linear parts of
the λ-function of small finite λ-graphs G. It was conjectured [2] that the
quadratic bound provided in Theorem 11 can be decreased to a linear one.

Problem 2. Prove that the number of linear parts of the λ-function of a
finite λ-graph G of order n is at most O(n).

The construction of optimal labellings of infinite regular lattices, for in-
stance in [9, 24], are based on repeating the same pattern of the labels
throughout the lattice. It seems natural to ask whether all optimal labellings
of regular lattices must be of such a type:

Problem 3. Investigate the structure, in particular the symmetry properties,
of optimal labellings of the infinite regular lattices G4, G� and GH .

Research of the dependence of the circular analogue of the channel assign-
ment problem on its parameters preceded the real number graph labellings,
see, e.g., [28, 36]. It seems natural to ask whether Theorem 5 in particular
can be proven in the setting of circular labellings.

Problem 4. Explore circular labelling analogues of the real number graph
labellings and determine which of the general structural results translate to
this setting.

Finally, it is apparent that the functions λ(G; x, 1) are neither concave-up
nor concave-down. Indeed, they seem quite the opposite. In the examples
shown in this paper, starting from x = 0, the graph sections alternately
increase and decrease in slope. We know that this kind of behavior is not
common to all functions λ(G; x, 1) (an example is the function associated
with wheels Wn described in Theorem 15) but we think that there should be
a reason for this type of behavior common to most of the functions λ(G; x, 1).

Problem 5. What is the explanation for the “up-down” behavior of the func-
tions λ(G; x, 1) for most graphs G?
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