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Gábor Hegedűs

Abstract

Let n be an arbitrary integer, let p be a prime factor of n. Denote

by ω1 the pth primitive unity root, ω1 := e
2πi
p .

Define ωi := ωi
1 for 0 ≤ i ≤ p−1 and B := {1, ω1, . . . , ωp−1}

n ⊆ Cn.
Denote by K(n, p) the minimum k for which there exist vectors

v1, . . . , vk ∈ B such that for any vector w ∈ B, there is an i, 1 ≤ i ≤ k,
such that vi · w = 0, where v · w is the usual scalar product of v and
w.

Gröbner basis methods and linear algebra proof gives the lower
bound K(n, p) ≥ n(p − 1).

Let m = m(n) denote the minimal integer such that there exists
subsets A1, . . . , Am of {1, . . . , 4n}, such that for any subset B ⊆ [4n]
with 2n elements there is at least one i, 1 ≤ i ≤ m, with Ai ∩ B

having n elements. We obtain here the result m(p) ≥ p in the case of
p primes.

1 Introduction

First we introduce some notations.
Let n be an arbitrary integer, let p be a prime factor of n. Denote by

ω1 the pth primitive unity root, i.e., let ω1 := e
2πi
p . Define ωi := ωi

1 for each
1 ≤ i ≤ p − 1.

Let R(n, d) denote the minimal k for which there exist vectors v1, . . . , vk ∈
{−1, 1}n such that for any vector w ∈ {−1, 1}n there is an i, 1 ≤ i ≤ k such
that |vi ·w| ≤ d, where v ·w denotes the usual inner product of two vectors.
Since v · w ≡ n (mod 2) for any two vectors v, w ∈ {−1, 1}n, R(n, 0) is
defined only for even n, while R(n, d) for d ≥ 1 is well–defined for all n.
A simple construction of Knuth [12] shows that R(n, d) ≤ dn/(d + 1)e for
n ≡ d (mod 2), where dxe denotes the least integer which is at least x. In [1]
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Alon, Bergmann, Coppersmith and Odlyzko showed that this construction is
optimal. In their proof they used only elementary linear algebra.

It is possible to generalize this problem and consider balancing families of
vectors whose components are pth root of unity for some fixed p. Our main
result is the following:

Theorem 1.1 Let n be an arbitrary integer, let p be a prime factor of n.

Denote by ω1 the pth primitive unity root, ω1 := e
2πi
p .

Define ωi := ωi
1 for 0 ≤ i ≤ p − 1 and B := {1, ω1, . . . , ωp−1}

n ⊆ Cn.
Denote by K(n, p) the minimum k for which there exist vectors v1, . . . , vk ∈

B such that for any vector w ∈ B, there is an i, 1 ≤ i ≤ k, such that
vi · w = 0, i.e., v is orthogonal with respect to the usual scalar product to w.
Then K(n, p) ≥ n(p − 1).

The previous balancing vector problem can be rephrased in term of an
extremal problem for subsets of a set, with an n-dimensional vector u =
(u1, . . . , un) ∈ {−1, 1}n corresponding a subset A of {1, 2 . . . , n} with j ∈ A
iff uj = 1. Galvin posed a problem in this setting that was similar to this. He
asked for a determination of the minimal integer m = m(n) such that there
exists subsets A1, . . . , Am of {1, . . . , 4n}, such that for any subset B ⊆ [4n]
with 2n elements there is at least one i, 1 ≤ i ≤ m, with Ai ∩ B having n
elements.

Galvin noticed that if one defines Ai = {i, i + 1, . . . , i + 2n − 1} for
1 ≤ i ≤ 2n, then it is easy to verify that these Ai have the right property, so
m(n) ≤ 2n.

We obtain the following Theorem with an other application of Gröbner
basis methods and linear algebra.

Theorem 1.2 Let p be a prime. Then m(p) ≥ p.

The organisation of this article is the following:
In Section 2 we define Gröbner bases and standard monomials in poly-

nomial rings. In Section 3 we prove our main method giving a general lower
bound for the degree of a polynomial via standard monomials. In Section
4 we determine the standard monomials of combinatorially interesting finite
subsets. In Section 5 we prove our main results.
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2 Gröbner bases and standard monomials

We recall now some basic facts concerning Gröbner bases in polynomial rings.
A total order ≺ on the monomials (words) Mon is a term order, if 1 is
the minimal element of ≺, and uw ≺ vw holds for any monomials u, v, w
with u ≺ v. There are many interesting term orders. We define now the
lexicographic (lex) and the deglex term orders. Let u = xi1

1 xi2
2 · · · xin

n and
v = xj1

1 xj2
2 · · · xjn

n be two monomials. Then u is smaller than v with respect
to lex (u ≺lex v in notation) iff ik < jk holds for the smallest index k such
that ik 6= jk. Similarly, u is smaller than v with respect to deglex (u ≺deg v
in notation) iff either deg u < deg v, or deg u = deg v and u ≺lex v. Note
that we have xn ≺ xn−1 ≺ . . . ≺ x1, for both lex and deglex. The leading
monomial lm(f) of a nonzero polynomial f ∈ S is the largest (with respect
to ≺) monomial which appears with nonzero coefficient in f when written as
a linear combination of different monomials.

Let I be an ideal of S. A finite subset G ⊆ I is a Gröbner basis of I
if for every f ∈ I there exists a g ∈ G such that lm(g) divides lm(f). In
other words, the leading monomials of the polynomials from G generate the
semigroup ideal of monomials {lm(f) : f ∈ I}. Using that ≺ is a well
founded order, it follows that G is actually a basis of I, i.e., G generates I
as an ideal of S. It is a fundamental fact (cf. [6, Chapter 1, Corollary 3.12]
or [2, Corollary 1.6.5, Theorem 1.9.1]) that every nonzero ideal I of S has a
Gröbner basis.

A monomial w ∈ S is called a standard monomial for I if it is not a
leading monomial of any f ∈ I. Let Sm(≺, I) stand for the set of all standard
monomials of I with respect to the term-order ≺ over F. It follows from the
definition and existence of Gröbner bases (see [6, Chapter 1, Section 4]) that
for a nonzero ideal I the set Sm(≺, I) is a basis of the F-vector-space S/I.
More precisely, every g ∈ S can be written uniquely as g = h+f where f ∈ I
and h is a unique F-linear combination of monomials from Sm(≺, I).

For F ⊆ Fn, F 6= ∅ we put

Sm(≺,F) := Sm(≺, I(F))

and
sm(≺,F) := {u ∈ Nn : xu ∈ Sm(≺, I(F))} ⊆ Nn.

It is immediate that sm(≺,F) is downward closed. Also, the standard mono-
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mials for I(F) form a basis of the functions from F to F, hence

|Sm(≺,F)| = |sm(≺,F)| = |F|. (1)

Let I be an ideal of S = F[x1, . . . , xn]. The Hilbert function of the algebra
S/I is the sequence hS/I(0), hS/I(1), . . .. Here hS/I(m) is the dimension over
F of the factor-space F[x1, . . . , xn]≤m/(I ∩ F[x1, . . . , xn]≤m) (see [5, Section
9.3]).

In the case when I = I(F) for some F ⊆ Fn, the number hF (m) :=
hS/I(m) is the dimension of the space of functions from F to F which can be
represented as polynomials of degree at most m.

On the other hand,

hF (m) = |Sm(≺,F) ∩ Mon(n,≤m)|, (2)

where ≺ is an arbitrary degree-compatible term order (this means that
deg u < deg v implies u ≺ v), for instance deglex.

3 The method

First we prove a general condition which gives a lower bound for the degree
of a polynomial.

Theorem 3.1 Let F be an arbitrary field and P (x1, . . . , xn) ∈ F[x1, . . . , xn]
be an arbitrary polynomial.

Let F ⊆ Fn be an arbitrary finite subset of the affine space and h ∈ Fn\F .
We define T := F ∪ {h}.

Suppose that P (h) 6= 0 and P (f) = 0 for each f ∈ F . Let

y ∈ Sm(≺deg, T ) \ Sm(≺deg,F).

Then deg(P ) ≥ deg(y).

Proof.

Write G for the deglex Gröbner basis of the ideal I(T ). We denote by
P the reduction of P via the Gröbner basis G. Then deg(P ) ≤ deg(P ),
because in the process of reduction we replaced each monomial of P with such
monomials which have smaller degree. Clearly P (h) = P (h) 6= 0, P (f) =
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P (f) = 0 for each f ∈ F , because we reduced P with such polynomials
which vanish on T .

We can expand P into the unique form

P =
∑

m∈Sm(≺deg ,T )

αm · m, (3)

where αm ∈ F. It is enough to prove that αy 6= 0, namely then deg(P ) ≥
deg(y).

Suppose indirectly, that αy = 0. Since F ⊆ T , thus Sm(≺deg,F) ⊆
Sm(≺deg, T ) and Sm(≺deg, T ) \ Sm(≺deg,F) = {y}. Therefore the equation
(3) yields to the following expansion:

P =
∑

m∈Sm(≺deg ,F )

αm · m, (4)

and since P (f) = 0 for each f ∈ F , hence αm = 0 for each m ∈ Sm(F ,≺deg).

But then P ≡ 0 as functions mapping T to F, which is a contradiction with
P (h) 6= 0.

J. Farr and S. Gao proved in Lemma 2.2 of [8] the following.

Lemma 3.2 Suppose that G = {g1, . . . , gs} is a reduced Gröbner basis for
the ideal I(F), where F ⊆ Fn is a finite set of points. For a point h =
(a1, . . . , an) /∈ F , let gi denote the polynomial in G with smallest leading
term such that gi(h) 6= 0, and define

gj := gj −
gj(h)

gi(h)
· gi, j 6= i, and (5)

gik := (xk − ak) · gi, 1 ≤ k ≤ n. (6)

Then
G = {g1, . . . , gi−1, gi+1, . . . , gs, gi1, . . . , gin} (7)

constitutes a Gröbner basis for the ideal I(F ∪ {h}).

Corollary 3.3 Let F be an arbitrary field and ≺ be an arbitrary term order
on the monomials of F[x1, . . . , xn]. Let F ⊆ Fn stand for an arbitrary finite
subset. Let h ∈ Fn \ F be an arbitrary vector and T := F ∪ {h}.
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Let G = {g1, . . . , gs} ⊆ F[x1, . . . , xn] stand for the reduced Gröbner basis
of the ideal I(F) with respect to the term order ≺.

Suppose that m1 ≺ . . . ≺ mk, where mi := lm≺(gi). Consider

i := min{j ∈ [k] : gj(h) 6= 0}.

Then Sm(T ,≺) = Sm(F ,≺) ∪ {mi}.

Proof.

This Corollary is obvious from Lemma 3.2. Namely

|Sm(≺, T )| = |Sm(≺,F))| + 1,

therefore it is enough to prove that mi ∈ Sm(≺, T ).
Indirectly, suppose that mi /∈ Sm(≺, T ). This means that there exists a

polynomial g ∈ G such that lm(g) divides mi. Clearly if j < i, then lm(gj) =
lm(gj) = mj. Similarly, if j > i, then lm(gj) = max(lm(gj), lm(gi)) =
lm(gj) = mj.

Since G was a reduced Gröbner basis of the ideal I(T ) by Lemma 3.2,
hence lm(gj) = mj does not divide mi for each j 6= i. Since

lm(gil) = xl · lm(gi) = xl · mi,

thus lm(gil) does not divide also mi for each 1 ≤ k ≤ n, which gives a
contradiction.

Corollary 3.4 Let F be an arbitrary field and ≺ be an arbitrary term order
on the monomials of F[x1, . . . , xn]. Let F ⊆ Fn stand for an arbitrary finite
subset. Let h ∈ Fn \ F be an arbitrary vector and T := F ∪ {h}.

Let G = {g1, . . . , gs} ⊆ F[x1, . . . , xn] stand for the reduced Gröbner basis
of the ideal I(F) with respect to the term order ≺.

Let χh : T → F denote the characteristic function of h, i.e., χh(h) = 1
and χh(f) = 0 for each f ∈ F . Then

χh ≡
1

gi(h)
· gi (8)

gives an expansion of χh into the unique linear combination of standard
monomials of the ideal I(T ).
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4 Standard monomials

Let n be an arbitrary integer, let p be a prime factor of n. Denote by ω1

the pth primitive unity root, i.e., let ω1 := e
2πi
p . Define ωi := ωi

1 for each
1 ≤ i ≤ p − 1. Write B := {1, ω1, . . . , ωp−1}

n ⊆ Cn and

D := {xu = xu1

1 · . . . · xun

n : 0 ≤ ui ≤ p − 1 for each 1 ≤ i ≤ n}.

Let B0 := {(t1, . . . , tn) ∈ B : t1 · . . . · tn = 1}. First we characterize
the standard monomials and the reduced Gröbner basis of the ideal I(B0) ⊆
C[x1, . . . , xn] with respect to any ≺ term order.

Consider the following equivalence relation ≡ on D:
let the monomials xu = xu1

1 · . . . · xun
n and xv = xv1

1 · . . . · xvn
n be equivalent

via ≡ iff there exists a 0 ≤ k ≤ p− 1 such that ui + k ≡ vi (mod p) for each
1 ≤ i ≤ n.

Denote by D/ ≡ the set of equivalence classes of D with respect to ≡
and write [a] := {b ∈ D : b ≡ a} for the equivalence class of a ∈ D. It is
easy to verify that |[a]| = p for each equivalence classes [a] ∈ D/ ≡, therefore
|D/ ≡ | = pn−1.

Let ≺ be a fixed term order on the monomials of C[x1, . . . , xn]. Let K(≺)
denote the set of monomials u of D such that there exists an equivalence
class [a] ∈ D/ ≡ for which u is the minimal element of [a] with respect to
the term order ≺. Clearly |K(≺)| = pn−1.

Lemma 4.1 Let [b] ∈ D/ ≡ be an arbitrary equivalence class. Let a denote
the minimal element of [b] with respect to the term order ≺ and suppose that
b 6= a. Then the polynomial b − a ∈ I(B0).

Proof.

By the definition of the equivalence relation ≡, xu ≡ xv iff there exists a
0 ≤ k ≤ p− 1 such that ui + k ≡ vi (mod p) for each 1 ≤ i ≤ n. This means
that xu is the reduction of the monomial xv ·(x1 · . . . ·xn)k via the polynomials
xp

i −1, where 1 ≤ i ≤ n. Since B0 ⊆ B and xp
i −1 ∈ I(B) for each 1 ≤ i ≤ n,

hence xp
i − 1 ∈ I(B0), and by the definition of B0 x1 · . . . · xn − 1 ∈ I(B0),

therefore xu(b) = xv(b) for each b ∈ B0. This gives that xv −xu ∈ I(B0).

Proposition 4.2 Let ≺ be an arbitrary term order on the monomials of
C[x1, . . . , xn]. Then Sm(≺, B0) = K(≺).
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Proof. Clearly

|Sm(≺, B0)| = |B0| = pn−1 = |K(≺)|.

If b = xu1

1 · . . . · xun
n /∈ D, then b ∈ in(I(B0)). Namely there exists an

index 1 ≤ i ≤ n such that ui ≥ p. Let c denote the reduction of b via xp
i − 1.

Clearly c 6= b, and c − b ∈ I(B) ⊆ I(B0).
Therefore it is enough to show that for each b ∈ D \ K(≺) there exists a

polynomial gb ∈ I(B0) such that lm≺(gb) = b. Consider the equivalence class
[b] ∈ D/ ≡ and let a ∈ D denote the minimal element of this equivalence
class with respect to the term order ≺. Then we define gb := b − a. Since
b /∈ K(≺), therefore b 6= a. It follows from the definition of a that lm≺(gb) = b
and Lemma 4.1 shows that gb = b − a ∈ I(B0).

Theorem 4.3 Let ≺ be an arbitrary term order on the monomials of C[x1,
. . . , xn]. Then the following set of polynomials constitute a reduced Gröbner
basis of the ideal I(B0) with respect to term order ≺:

G := {b − a : a is the minimal element of [b], b 6= a, [b] ∈ D/ ≡}

∪{xp
i − 1 : 1 ≤ i ≤ n}.

Proof. To show that G is a Gröbner basis of I(B0) it is enough to prove
that G ⊆ I(B0) and there exists a polynomial g ∈ G for each f ∈ I(B0) such
that lm(g) divides lm(f).

The containment G ⊆ I(B0) follows from Lemma 4.1.
Let f ∈ I(B0) be an arbitrary polynomial. Then b := lm(f) /∈ Sm(≺

, B0) = K(≺) by Proposition 4.2. If b = xu1

1 · . . . · xun
n /∈ D, then there exists

an index 1 ≤ i ≤ n such that ui ≥ p. Then clearly lm(xp
i − 1) = xp

i divides
u.

If b ∈ D\K(≺), then let a denote the minimal element of the equivalence
class [b]. Then gb := b − a gives our statement.

It is obvious from Proposition 4.2 that the leading terms of the polyno-
mials in G constitute the minimal generating set of the initial ideal of I(B0).
Reducedness follows from the fact that all non-leading monomials in these
polynomials are actually standard monomials for I(B0) by Proposition 4.2.
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We prove the following easy consequence of the characterization of stan-
dard monomials:

Proposition 4.4 Let ≺ be an arbitrary degree-compatible term order. Then

{xu ∈ D : deg(xu) <
n(p − 1)

p
} ⊆ Sm(B0,≺). (9)

Proof.

Let b0 ∈ D be an arbitrary monomial and we denote by bk the reduction
of xu ·(x1 · . . . ·xn)k via the equations xp

i −1, 1 ≤ i ≤ n, for each 0 ≤ k ≤ p−1.

Suppose that deg(b0) < n(p−1)
p

. Then by Theorem 4.3 it is enough to prove
that

deg(bi) > deg(b0) (10)

for each 1 ≤ i ≤ p − 1, because ≺ was a degree-compatible term order, thus
(10) means that b0 is the minimal element of the equivalence class [b0].

Without lost of generality we can suppose that

b0 = xp−1
1 · . . . ·xp−1

λ1
xp−2

λ1+1 · . . . ·x
p−2
λ1+λ2

· . . . ·x1
λ1+...+λp−2+1 · . . . ·xλ1+...+λp−2+λp−1

,

where n = λ1 + . . . + λp.
Then

deg(b0) = (p − 1)λ1 + . . . + λp−1 <
n(p − 1)

p
. (11)

It is easy to verify from the definition of bi that

bi =xi−1
1 · · · xi−1

λ1
xi−2

λ1+1 · · · x
i−2
λ1+λ2

· · · xp−1
λ1+...+λi+1 · · · x

p−1
λ1+...+λi+1

· · ·

· · · xp−i
λ1+...+λp−1+1 · · · x

p−i
λ1+...+λp

.

Then

deg(bi) = (i − 1)λ1 + . . . + λi−1 + (p − 1)λi+1 + . . . + (p − i)λp.

Therefore it is enough to prove that

(p− 1)λ1 + . . . + λp−1 < (i− 1)λ1 + . . . + λi−1 + (p− 1)λi+1 + . . . + (p− i)λp.
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This inequality is equivalent with

(p − i)(λ1 + . . . + λi) < i(λi+1 + . . . + λp) (12)

for each 1 ≤ i ≤ p − 1.
It is easy to verify that the inequality (12) is equivalent with

(λ1+. . .+λi)(p(p−i)−(p−1)) < (λi+1+. . .+λp)
i

p − i
(p(p−i)−(p−1)). (13)

But n = λ1 + . . . + λp, hence from (11) we get

(p − 1)λ1 + . . . + λp−1 <
p − 1

p
(λ1 + . . . + λp). (14)

After some rearrangement of the inequality (14) we find that

λ1(p − 1)2 + . . . + λi(p(p − i) − (p − 1)) <

λi+1(ip − (p − 1)2) + . . . + λp−1(−1) + (p − 1)λp. (15)

Now it is easy to verify that

(λ1+. . .+λi)(p(p−i)−(p−1)) ≤ λ1(p−1)2+. . .+λi(p(p−i)−(p−1)). (16)

From (15) and (16) we conclude that

(λ1+. . .+λi)(p(p−i)−(p−1)) < λi+1(ip−(p−1)2)+. . .+λp−1(−1)+λp(p−1).
(17)

But since
(p − i)(p − 1) ≤ i(p(p − i) − (p − 1))

for each 1 ≤ i ≤ p − 1, hence we get

λi+1(ip − (p − 1)2) + . . . + λp−1(−1) + λp(p − 1) <

i

p − i
(p(p − i) − (p − 1))(λi+1 + . . . + λp) (18)

and the inequality (13) follows from (17) and (18).

Corollary 4.5 Let q ∈ B1 be an arbitrary vector. Define Q := B0 ∪ {q}.

Let y ∈ Sm(≺deg, Q) \ Sm(≺deg, B0). Then deg(y) ≥ n(p−1)
p

.
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Proof.

Clearly Sm(Q,≺deg) ⊆ D, hence y ∈ D \ Sm(B0,≺deg). Since by Propo-

sition 4.4 {xu ∈ D : deg(xu) < n(p−1)
p

} ⊆ Sm(B0,≺), this means that

D\Sm(B0,≺deg) ⊆ D\{xu ∈ D : deg(xu) < n(p−1)
p

} = {xu ∈ D : deg(xu) ≥
n(p−1)

p
}.

Let t be a integer, 0 < t ≤ n/2. We define Ht as the set of those subsets
{s1 < s2 < · · · < st} of [n] for which t is the smallest index j with sj < 2j.

We have H1 = {{1}}, H2 = {{2, 3}}, and H3 = {{2, 4, 5}, {3, 4, 5}}. It is
clear that if {s1 < . . . < st} ∈ Ht, then st = 2t − 1, moreover st−1 = 2t − 2
if t > 1.

For a subset J ⊆ [n] and an integer 0 ≤ i ≤ |J | we denote by σJ,i the i-th
elementary symmetric polynomial of the variables xj, j ∈ J :

σJ,i :=
∑

T⊆J,|T |=i

xT ∈ Z[x1, . . . , xn].

In particular, σJ,0 = 1.
Now let 0 < t ≤ n/2, 0 ≤ d ≤ n and H ∈ Ht. Put H ′ = H ∪ {2t, 2t +

1, . . . , n} ⊆ [n]. We write

fH,d = fH,d(x1, . . . , xn) :=
t

∑

k=0

(−1)t−k

(

d − k

t − k

)

σH′,k.

Specifically, we have f{1},d = x1 + x2 + · · · + xn − d, and

f{2,3},d = σU,2 − (d − 1)σU,1 +

(

d

2

)

,

where U = {2, 3, . . . , n}.
Let Dd denote the collection of subsets xU , where U = {u1 < . . . < ud+1}

and uj ≥ 2j holds for j = 1, . . . , d.
The following statement is from [11].

Proposition 4.6 Assume that 0 < t ≤ n/2, H ∈ Ht and 0 ≤ d ≤ n.
(a) The degree of fH,d is t, lm(fH,d) = xH , and the leading coefficient is 1.
(b) If D ⊆ [n], |D| = d, then fH,d(vD) = 0.
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Let p denote a prime.

Proposition 4.7 Let V := V
(

[4p]
2p

)

⊆ {0, 1}4p ⊆ F4p
p and let C ∈

(

[4p]
3p

)

be an

arbitrary subset. Define Q := V ∪ {vC}. Let y ∈ Sm(Q,≺deg) \ Sm(V,≺deg).
Then deg(y) ≥ p.

Proof.

For 0 < t < p and H ∈ Ht we define gH ∈ Fp[x1, . . . , x4p] as the modulo p
reduction of the polynomial (with integer coefficients) fH,2p. By Proposition
4.6 (a) the degree of gH is t and the leading term of gH is xH .

Let ≺ be an arbitary term order on the monomials of Fp[x1, . . . , x4p] for
which xn ≺ . . . ≺ x1. We proved in Theorem 1.2 of [11] that

G = {x2
2 − x2, . . . , x

2
n − xn} ∪ {xJ : J ∈ D2p}∪

∪{gH : H ∈ Ht for some 0 < t ≤ 2p}

constitutes the reduced Gröbner basis of the ideal I(V ) with respect to ≺.
By Proposition 3.3 it is enough to prove that

gH(vC) = 0 (19)

for each H ∈ Ht, where 0 < t < p.
Consider the complete p-uniform family

F(p) = {K ⊆ [n] : |K| ≡ 0 (mod p)}. (20)

We prove that

Lemma 4.8 Let p a prime. Let x, j be integers, 0 ≤ j < p. Then

(

x + p

j

)

≡

(

x

j

)

(mod p).

Proof. The congruence follows from the Vandermonde identity ([10], pp.
169-170)

(

x + s

t

)

=
t

∑

k=0

(

x

k

)(

s

t − k

)

, (21)
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with s = p and t = j, by noting that the binomial coefficients
(

p
i

)

vanish
modulo p for 1 ≤ i < p.

Now let D ∈ F(p) and write v = vD. Then |D| = k′ for some k′ such that
0 ≤ k′ ≤ 4p and k′ ≡ 0 (mod p). We observe that fH,2p ≡ fH,k′ (mod p), i.e.,
the coefficients of the two polynomials are the same modulo p. This holds,
because for 0 ≤ i ≤ t we have

(

2p − i

t − i

)

≡

(

k′ − i

t − i

)

(mod p),

a consequence of 0 ≤ t − i ≤ p − 1 and Lemma 4.8.
We conclude that

gH(v) ≡ fH,2p(v) ≡ fH,k′(v) = 0 (mod p).

Here the last equality follows from Lemma 4.6 (b). Since C ∈ F(p), therefore
gH(vC) = 0, which was to be proved.

5 Proofs

Proof of Theorem 1.2: Let A1, . . . , Am(p) ⊆
(

[4p]
2p

)

denote the subsets of [4p]

such that for any subset B ∈
(

[4p]
2p

)

there exists at least one i, 1 ≤ i ≤ m(p)

with |Ai ∩B| = p. We denote by vB the characteristic vector of an arbitrary
set B ⊆ [4p]. Let vi := vAi

. Consider the following polynomial:

F (x1, . . . , x4p) :=

m(p)
∏

i=1

x · vi ∈ Fp[x1, . . . , x4p].

If B ∈
(

[4p]
2p

)

is an arbitrary subset, then the previous property of the sets
A1, . . . , Am(p) implies that

F (vB) =

m(p)
∏

i=1

vB · vi =

m(p)
∏

i=1

|Ai ∩ B| ≡

m(p)
∏

i=1

|Ai ∩ B| − p = 0 (mod p). (22)
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Proposition 5.1 There exists a subset C ∈
(

[4p]
3p

)

such that

|C ∩ Ai| 6≡ 0 (mod p) (23)

for each 1 ≤ i ≤ m(p).

Proof.

Let 1 ≤ i ≤ m(p) be a fixed index and consider the set system

T i := {T ∈

(

[4p]

3p

)

: |T ∩ Ai| ≡ 0 (mod p)}.

Clearly it is enough to prove that

| ∪m(p)
i=1 T i| <

(

4p

p

)

, (24)

because then any subset from
(

[4p]
3p

)

\∪
m(p)
i=1 T i satisfies the condition (23). But

| ∪
m(p)
i=1 T i| ≤

m(p)
∑

i=1

|T i| ≤ m(p) · max
i

|T i| ≤ 2p max
i

|T i|,

because m(p) ≤ 2p.
It is easy to verify that

{T ∈

(

[4p]

3p

)

: |T ∩ Ai| = p} ∪ {T ∈

(

[4p]

3p

)

: |T ∩ Ai| = 2p} (25)

gives a disjoint decomposition of the set T i. Since Ai ∈
(

[4p]
2p

)

for each 1 ≤

i ≤ m(p), hence

|{T ∈

(

[4p]

3p

)

: |T ∩ Ai| = p}| = |{T ∈

(

[4p]

3p

)

: |T ∩ Ai| = 2p}| =

(

2p

p

)

.

(26)
Therefore |T i| = 2 ·

(

2p
p

)

for each 1 ≤ i ≤ m(p). This implies that

2p max
i

|T i| = 4p

(

2p

p

)

<

(

4p

p

)

, (27)

if p is large enough.
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Let C ∈
(

[4p]
3p

)

denote a fixed subset such that |C ∩ Ai| 6≡ 0 (mod p) for

each 1 ≤ i ≤ m(p). Then clearly

F (vC) =

m(p)
∏

i=1

vC · vi =

m(p)
∏

i=1

|Ai ∩ C| 6≡ 0 (mod p). (28)

Apply Theorem 3.1 with the choices F := V
(

[4p]
2p

)

⊆ F4p
p and h := vC ∈

F4p
p .

Define H := V
(

[4p]
2p

)

∪ vC and let

y ∈ Sm(H,≺deg) \ Sm(V

(

[4p]

2p

)

,≺deg)

denote the unique monomial from this difference. We proved in Theorem 3.1
that deg(F ) ≥ deg(y). Then deg(y) ≥ p follows from Proposition 4.7. This
means that m(p) ≥ deg(F ) ≥ p, which was to be proved.

Proof of Theorem 1.1: Let ω0 := 1. Denote by

Bi := {x = (x1, . . . , xn) ∈ B : x1 · . . . · xn = ωi} ⊆ B (29)

for each 0 ≤ i ≤ p − 1.
Let T ⊆ B stand for an arbitrary set of vectors of B such that for every

vector u ∈ B there exists a t ∈ T , with u · t = 0.
We must show that |T | ≥ n(p− 1). Define Ti := T ∩Bi for 0 ≤ i ≤ p− 1,

then clearly
T = T0 ∪ . . . ∪ Tp−1

gives a disjoint decomposition of the set T .
Consider the following polynomial in x = (x1, . . . , xn):

P (x1, . . . , xn) :=
∏

v=(v1,...,vn)∈T0

(
n

∑

i=1

vixi) ∈ C[x1, . . . , xn].

Then clearly deg(P ) ≤ |T0|, therefore it is enough to prove that deg(P ) ≥
n(p−1)

p
, because then the same argument can be applied to the sets T1, . . . , Tp−1,

hence |T | =
∑p−1

i=0 |Ti| ≥ n(p − 1).
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Lemma 5.2 Let y, z ∈ B be arbitrary vectors. If y · z = 0 and y ∈ B0, then
z ∈ B0.

Proof. Let y = (y1, . . . , yn) and z = (z1, . . . , zn). Then the numbers
y1z1, . . . , ynzn are pth unit roots. Suppose that these numbers give a cor-
responding permutation of λ0 ω0’s , ..., λp−1 ωp−1’s. Then

n
∑

i=1

yizi = λ0ω0 + . . . + λp−1ωp−1 = 0

and since
∑p−1

i=0 ωi = 0, we get

(λ0 − λp−1)ω0 + . . . + (λp−2 − λp−1)ωp−2 = 0.

Indirectly, suppose that there exists an 0 ≤ i ≤ p − 2 such that λi 6= λp−1.
This means that there exist a polynomial f ∈ Q[y] such that f(ω1) = 0 and
deg(f) ≤ p − 2, which gives a contradiction.

Therefore λ0 = . . . = λp−1 = n
p
. Consider the product A :=

∏n
i=1(yi · zi).

The previous argument gives that A = (1 · ω1 · . . . · ωp−1)
n
p = 1 and A =

∏n
i=1 yi ·

∏n
i=1 zi =

∏n
i=1 zi, because y ∈ B0.

We prove that P (z) = 0 for every z ∈ B0.
Let z ∈ B0 ⊆ B be an arbitrary vector. Then there exist t ∈ T ⊆ B such

that z · t = 0. But Lemma 5.2 implies that t ∈ B0. Hence t ∈ B0 ∩ T = T0,
which means that P (z) =

∏

v∈T0
(v · z) = 0.

Now let q ∈ B1 be an arbitrary vector. Then P (q) 6= 0, because t · q 6= 0
for every t ∈ T0 = B0 ∩ T by Lemma 5.2.

Let F := B0 ⊆ Cn and h := q. Define T := B0 ∪ {q} ⊆ Cn. Consider the
monomial

y ∈ Sm(Q,≺deg) \ Sm(B0,≺deg).

We proved in Theorem 3.1 that deg(P ) ≥ deg(y). By Corollary 4.5

deg(y) ≥ n(p−1)
p

, i.e., deg(P ) ≥ n(p−1)
p

, which was to be proved.
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[11] G. Hegedűs, L. Rónyai, Gröbner bases for complete uniform families,
J. of Algebraic Combinatorics 17(2003), 171–180.

[12] D.E. Knuth, Efficient balanced codes, IEEE Trans. Inform. Theory
vol. IT-32, 51–53, 1986.

17


