# An algorithm for two coloring of hypergraphs 

Gábor Hegedűs


#### Abstract

Let $r>1$ be a fix integer. Let $\mathcal{H}$ be an arbitrary $r$-uniform hypergraph. We give an algorithmic, elementary proof of the fact, that there exists a 2-coloring $f: V(\mathcal{H}) \rightarrow\{r, b\}$ of $V(\mathcal{H})$ with at most $2^{1-r} \cdot|\mathcal{H}|$ monochromatic edges. Our algorithm uses only $O(|\mathcal{H}|)$ steps.

Let $m(n, r)$ denote the minimal number of edges of an $r$-uniform hypergraph on $n$ points, which is not 2-colorable. As an application, we obtain the following bounds for $m(n, r)$ :


$$
\left(1-\frac{1}{2^{r-1}}\right)\binom{n}{r} \leq m(n, r) \leq\left(1-\frac{1}{r^{2} \cdot 2^{r}-1}\right)\binom{n}{r}
$$

## 1 Introduction

First we introduce some notation. Let $n$ be a positive integer and $[n]$ stand for the set $\{1,2, \ldots, n\}$.

Let $X$ be a set, $k>0$ be a positive integer. We denote by $\binom{X}{k}$ the family of all $k$ element subsets of $X$.

In [3] P. Erdős proved the following Theorem with simple probabilistic arguments.

Theorem 1.1 Let $r>1$ be a fix integer. Let $\mathcal{H}$ be an arbitrary $r$-uniform hypergraph. Then there exists a 2-coloring $f: V(\mathcal{H}) \rightarrow\{r, b\}$ of $V(\mathcal{H})$ with at most $2^{1-r} \cdot|\mathcal{H}|$ monochromatic edges.

In these notes we prove Theorem 1.1 using a simple, elemantary constructive algorithm. Our algorithm uses only $O(|\mathcal{H}|)$ steps.

Let $m(n, r)$ denote the minimal number of edges of an $r$-uniform hypergraph on $n$ points, which is not 2 -colorable. We obtain the following bounds for $m(n, r)$ using Theorem 1.1 and an upper bound for the Turán density of an arbitrary hypergraph.

## Theorem 1.2

$$
\begin{equation*}
\left(1-\frac{1}{2^{r-1}}\right)\binom{n}{r} \leq m(n, r) \leq\left(1-\frac{1}{r^{2} \cdot 2^{r}-1}\right)\binom{n}{r} . \tag{1}
\end{equation*}
$$

## 2 The algorithm

## Proof of Theorem 1.1:

Let $\mathcal{H}$ be an arbitrary $r$-uniform hypergraph and define $V:=V(\mathcal{H})$.
For each 3-coloring $c: V \rightarrow\{r, b, g\}$ we define a nonnegative weight $w(\mathcal{H}, c) \in \mathbb{R}$.

Let $h \in \mathcal{H}$ be a fixed edge. First we define the weight $w(h, c) \in \mathbb{R}$.

1. If there exist two points $v_{1}, v_{2} \in h, v_{1} \neq v_{2}$ such that $c\left(v_{1}\right)=r$, $c\left(v_{2}\right)=b$, then let $w(h, c):=0$.
2. If $c(v)=g$ for each $v \in h$, then let $w(h, c):=2^{1-r}$.
3. If

$$
h=\bar{g} \cup \bar{r}
$$

gives a disjoint decomposition of the set $h$ such that $c(v)=r$ for each $v \in \bar{r}$ and $c(v)=g$ for each $v \in \bar{g}$ and $|\bar{r}| \geq 1$, then let $w(h, c):=2^{|\bar{r}|-r}$.
4. Similarly, if

$$
h=\bar{g} \cup \bar{b}
$$

gives a disjoint decomposition of the set $h$ such that $c(v)=b$ for each $v \in \bar{b}$ and $c(v)=g$ for each $v \in \bar{g}$ and $|\bar{b}| \geq 1$, then let $w(h, c):=2^{|\bar{b}|-r}$.

Define

$$
\begin{equation*}
w(\mathcal{H}, c):=\sum_{h \in \mathcal{H}} w(h, c) . \tag{2}
\end{equation*}
$$

Let $G: V \rightarrow\{r, b, g\}$ denote the 3-coloring of the set $V$ for which $G(v)=g$ for each $v \in V$.

By the definition of the weight function $w$

$$
\begin{equation*}
w(\mathcal{H}, G)=|\mathcal{H}| \cdot 2^{1-r} . \tag{3}
\end{equation*}
$$

Proposition 2.1 Let $c: V \rightarrow\{r, b, g\}$ be a fixed 3-coloring and $v \in V$ be an arbitrary point such that $c(v)$ is green. Then let $c_{\text {red }}$ denote the following coloring: $c_{r e d}(v):=r$ and $c_{r e d}\left(v^{\prime}\right):=c\left(v^{\prime}\right)$ for each $v^{\prime} \in V \backslash\{v\}$. Similarly, let $c_{\text {blue }}$ denote the following coloring: $c_{\text {blue }}(v):=b$ and $c_{\text {blue }}\left(v^{\prime}\right):=c\left(v^{\prime}\right)$ for each $v^{\prime} \in V \backslash\{v\}$.

Then

$$
\begin{equation*}
w(\mathcal{H}, c)=\frac{w\left(\mathcal{H}, c_{\text {red }}\right)+w\left(\mathcal{H}, c_{\text {blue }}\right)}{2} \tag{4}
\end{equation*}
$$

## Proof.

It is enough to prove that

$$
\begin{equation*}
w(h, c)=\frac{w\left(h, c_{r e d}\right)+w\left(h, c_{b l u e}\right)}{2} \tag{5}
\end{equation*}
$$

for each $h \in \mathcal{H}$.
Let $h \in \mathcal{H}$ be a fixed edge.

1. Suppose that $v \notin h$. Then

$$
w\left(h, c_{\text {red }}\right)=w\left(h, c_{b l u e}\right)=w(h, c)
$$

We can assume in the following that $v \in h$.
2. Suppose that for each $v^{\prime} \in h, c\left(v^{\prime}\right)=g$. Then

$$
w\left(h, c_{r e d}\right)=w\left(h, c_{b l u e}\right)=w(h, c)=2^{1-r}
$$

3. Suppose that there exist $v_{1}, v_{2} \in h, v_{1} \neq v_{2}$ such that $c\left(v_{1}\right)=r$ and $c\left(v_{2}\right)=b$. Then

$$
w(h, c)=w\left(h, c_{b l u e}\right)=w\left(h, c_{r e d}\right)=0
$$

4. Suppose that

$$
\begin{equation*}
h=\bar{r} \cup \bar{g} \tag{6}
\end{equation*}
$$

gives a disjoint decomposition of the set $h$ such that $c\left(v^{\prime}\right)=r$ for each $v^{\prime} \in \bar{r}$ and $c\left(v^{\prime}\right)=g$ for each $v^{\prime} \in \bar{g}$. Let $d:=|\bar{r}| \geq 1$. Then

$$
\begin{aligned}
& w(h, c)=2^{d-r} \\
& w\left(h, c_{b l u e}\right)=0
\end{aligned}
$$

and

$$
w\left(h, c_{r e d}\right)=2^{d-r+1}
$$

5. Finally, suppose that

$$
\begin{equation*}
h=\bar{b} \cup \bar{g} \tag{7}
\end{equation*}
$$

gives a disjoint decomposition of the set $h$ such that $c\left(v^{\prime}\right)=b$ for each $v^{\prime} \in \bar{b}$ and $c\left(v^{\prime}\right)=g$ for each $v^{\prime} \in \bar{g}$. Let $d:=|\bar{b}| \geq 1$. Then

$$
\begin{gathered}
w(h, c)=2^{d-r} \\
w\left(h, c_{\text {blue }}\right)=2^{d-r+1}
\end{gathered}
$$

and

$$
w\left(h, c_{r e d}\right)=0
$$

Our algorithm proceeds as follows: First order arbitrarily the points of $v \in V: v_{1}, \ldots, v_{|V|}$. For each $0 \leq i \leq|V|$ we define a 3 -coloring $c_{i}: V \rightarrow$ $\{r, b, g\}$.

The initial step: let $c_{0}:=G$, where $G(v):=g$ for each $v \in V$.
Let $1 \leq i \leq|V|$ be fixed. Suppose that we have defined a coloring $c_{i-1}: V \rightarrow\{r, b, g\}$ such that $c_{i-1}\left(v_{j}\right) \in\{r, b\}$ for each $1 \leq j \leq i-1<|V|$ and $c_{i-1}\left(v_{k}\right)=g$ for each $k \geq i$. Now our aim is to define a new coloring $c_{i}: V \rightarrow\{r, b, g\}$ such that $c_{i}\left(v_{j}\right) \in\{r, b\}$ for each $1 \leq j \leq i$ and $c_{i}\left(v_{k}\right)=g$ for each $k>i$.

Define the colorings $c_{r e d}$ and $c_{b l u e}$ as in Proposition 2.1. Proposition 2.1 implies that

$$
\begin{equation*}
w(\mathcal{H}, c)=\frac{w\left(\mathcal{H}, c_{\text {red }}\right)+w\left(\mathcal{H}, c_{\text {blue }}\right)}{2} \tag{8}
\end{equation*}
$$

Hence either $w\left(\mathcal{H}, c_{\text {red }}\right) \leq w(\mathcal{H}, c)$ or $w\left(\mathcal{H}, c_{\text {blue }}\right)<w(\mathcal{H}, c)$.
First suppose that $w\left(\mathcal{H}, c_{\text {red }}\right) \leq w(\mathcal{H}, c)$. Then define $c_{i}:=c_{\text {red }}$.
Now suppose that $w\left(\mathcal{H}, c_{\text {blue }}\right)<w(\mathcal{H}, c)$. Then let $c_{i}=c_{\text {blue }}$.
Clearly $c_{i}\left(v_{j}\right) \in\{r, b\}$ for each $1 \leq j \leq i$ and $c_{i}\left(v_{k}\right)=g$ for each $k>i$.
This algorithm yields finally to a 2-coloring $C:=c_{|V|}: V \rightarrow\{r, b\}$. We claim, that if we color the points of the base set $V(\mathcal{H})$ with this coloring $C$, then we get at most $2^{1-r} \cdot|\mathcal{H}|$ monochromatic edges.

Namely by the definition of the weight function $w(\mathcal{H}, C)$,

$$
\begin{equation*}
w(\mathcal{H}, C)=\mid\{h \in \mathcal{H}: h \text { is a monochromatic edge in the coloring } C\} \mid . \tag{9}
\end{equation*}
$$

This is clear, since

$$
w(\mathcal{H}, C)=\sum_{h \in \mathcal{H}} w(h, C)
$$

and $w(h, C)=1$, if $h$ is a monochromatic edge, $w(h, C)=0$ otherwise, because $C$ was a 2 -coloring.

It is easy to verify from the definition of the coloring $c_{i}: V \rightarrow\{r, b, g\}$ that

$$
w\left(\mathcal{H}, c_{i}\right) \leq w\left(\mathcal{H}, c_{i-1}\right)
$$

for each $1 \leq i \leq|V|$, hence

$$
\begin{equation*}
w(\mathcal{H}, C)=w\left(\mathcal{H}, c_{|V|}\right) \leq w\left(\mathcal{H}, c_{0}\right)=w(\mathcal{H}, G) . \tag{10}
\end{equation*}
$$

We proved in (3) that

$$
\begin{equation*}
w(\mathcal{H}, G)=|\mathcal{H}| \cdot 2^{1-r} . \tag{11}
\end{equation*}
$$

The equations (9), (10) and (11) proves the Theorem.

## 3 Application

Given an $r$-uniform hypergraph $\mathcal{F}$, the Turán number of $\mathcal{F}$ is the maximum number of edges in an $r$-uniform hypergraph on $n$ vertices that do not contain a copy of $\mathcal{F}$. We denote this number by $\operatorname{ex}(n, \mathcal{F})$. It is not hard to show that the limit $\pi(\mathcal{F})=\lim _{n \rightarrow \infty} \operatorname{ex}(n, \mathcal{F}) /\binom{n}{r}$ exists. It is usually called the Turán density of $\mathcal{F}$.

A general upper bound on Turán densities was obtained by de Caen [1], who showed

$$
\pi\left(K_{s}^{(r)}\right) \leq 1-\binom{s-1}{r-1}^{-1}
$$

where $K_{s}^{(r)}$ denotes the complete $r$-uniform hypergraph on $s$ vertices. Sidorenko gave a construction in [10] (see also [11]) showing that $\pi\left(K_{s}^{(r)}\right) \leq$ $1-\left(\frac{r-1}{s-1}\right)^{r-1}$. For a general hypergraph Sidorenko [8] obtained a bound for the Turán density in terms of the number of edges.

Theorem 3.1 Let $\mathcal{F}$ be an arbitrary hypergraph, which has $f$ edges. Then

$$
\begin{equation*}
\pi(\mathcal{F}) \leq \frac{f-2}{f-1} \tag{12}
\end{equation*}
$$

## Proof of Theorem 1.2:

First we prove the upper bound.
P. Erdős proved in [2] that there exists a $\mathcal{H} \subseteq\binom{[n]}{r} r$-uniform hypergraph with

$$
|\mathcal{H}|=(1+o(1)) \frac{e \cdot \ln 2}{4} r^{2} 2^{r}
$$

and $\chi(\mathcal{H})>2$. Let $\mathcal{G}$ be an arbitrary $r$-uniform hypergraph with more than $\left(1-\frac{1}{r^{2} \cdot 2^{r}-1}\right)\binom{n}{r}$ edges. We can apply Theorem 3.1 for $\mathcal{F}:=\mathcal{H}$ and $f:=\left(1-\frac{1}{r^{2} \cdot 2^{r}}\right)\binom{n}{r}$. We get that there exists a copy of $\mathcal{H}$ in $\mathcal{G}$, which shows that $\mathcal{G}$ is not 2-colorable.

Now we prove the lower bound.
By Theorem 1.1 there exists a 2-coloring $f:\binom{[n]}{r} \rightarrow\{r, b\}$ of the complete $r$-uniform hypergraph $\binom{[n]}{r}$ with at most $2^{1-r}\binom{n}{r}$ monochromatic edges. Fix such a coloring. Remove from this colored hypergraph all monochromatic edges. Then this coloring shows that after the removing we get a 2 -colorable hypergraph with at least $\binom{n}{r}\left(1-2^{1-r}\right)$ edges.

The algorithmic proof of Theorem 1.1 can be used to prove the following more general result.

Theorem 3.2 Let $\mathcal{H}$ be an arbitrary r-uniform hypergraph. Then there exists an s-coloring of $\mathcal{H}$ with at most $|\mathcal{H}| \cdot s^{1-r}$ monochromatic edges.

The modification of the proof of the lower bound in (1) gives the following Corollary.

Corollary 3.3 There exists an r-uniform s-colorable hypergraph $\mathcal{H}$ on $n$ points which has at least $\left(1-s^{1-r}\right)\binom{n}{r}$ edges.

## References

[1] D. de Caen, Extensions of a theorem of Moon and Moser on complete subgraphs, Ars Combin. 16 (1983), 5-10.
[2] P. Erdős, On a combinatorial problem II, Acta Math. Acad. Sci. Hungar. 15 445-447 (1964)
[3] P. Erdős, Some Remarks on the Theory of Graphs, Bulletin of the American Mathematical Society, 53 292-294 (1947)
[4] P. Erdős, On the Combinatorial Problems Which I Would Most Like to See Solved, Combinatorica 1 25-42 (1981)
[5] P. Frankl, R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 357-368 (1981)
[6] V. Grolmusz, Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs. Combinatorica, 20, 73-88 (2000)
[7] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (2), 264-286 (1929)
[8] A. F. Sidorenko, Extremal combinatorial problems in spaces with continuous measure, Issled. Opertsiii ASU 34 34-40 (1989)
[9] A. F. Sidorenko, An analytic approach to extremal problems for graphs and hypergraphs, Extremal problems for finite sets (Visegrád, 1991), 423-455, Bolyai Soc. Math. Stud., 3, János Bolyai Math. Soc., Budapest, 1994.
[10] A. F. Sidorenko, Systems of sets that have the T-property, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 19-22, 1981
[11] A. F. Sidorenko, What we know and what we do not know about Turán numbers, Graphs and Combin. 11 (1995) 179-199.

