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Abstract

Let r > 1 be a fix integer. Let H be an arbitrary r-uniform hyper-
graph. We give an algorithmic, elementary proof of the fact, that there
exists a 2-coloring f : V (H) → {r, b} of V (H) with at most 21−r · |H|
monochromatic edges. Our algorithm uses only O(|H|) steps.

Let m(n, r) denote the minimal number of edges of an r-uniform
hypergraph on n points, which is not 2-colorable. As an application,
we obtain the following bounds for m(n, r):

(1 −
1

2r−1
)

(

n

r

)

≤ m(n, r) ≤ (1 −
1

r2 · 2r − 1
)

(

n

r

)

.

1 Introduction

First we introduce some notation. Let n be a positive integer and [n] stand
for the set {1, 2, . . . , n}.

Let X be a set, k > 0 be a positive integer. We denote by
(

X

k

)

the family
of all k element subsets of X.

In [3] P. Erdős proved the following Theorem with simple probabilistic
arguments.

Theorem 1.1 Let r > 1 be a fix integer. Let H be an arbitrary r-uniform

hypergraph. Then there exists a 2-coloring f : V (H) → {r, b} of V (H) with

at most 21−r · |H| monochromatic edges.

In these notes we prove Theorem 1.1 using a simple, elemantary construc-
tive algorithm. Our algorithm uses only O(|H|) steps.

Let m(n, r) denote the minimal number of edges of an r-uniform hyper-
graph on n points, which is not 2-colorable. We obtain the following bounds
for m(n, r) using Theorem 1.1 and an upper bound for the Turán density of
an arbitrary hypergraph.

1



Theorem 1.2

(1 −
1

2r−1
)

(

n

r

)

≤ m(n, r) ≤ (1 −
1

r2 · 2r − 1
)

(

n

r

)

. (1)

2 The algorithm

Proof of Theorem 1.1:

Let H be an arbitrary r-uniform hypergraph and define V := V (H).
For each 3-coloring c : V → {r, b, g} we define a nonnegative weight

w(H, c) ∈ R.
Let h ∈ H be a fixed edge. First we define the weight w(h, c) ∈ R.
1. If there exist two points v1, v2 ∈ h, v1 6= v2 such that c(v1) = r,

c(v2) = b, then let w(h, c) := 0.
2. If c(v) = g for each v ∈ h, then let w(h, c) := 21−r.
3. If

h = g ∪ r

gives a disjoint decomposition of the set h such that c(v) = r for each v ∈ r
and c(v) = g for each v ∈ g and |r| ≥ 1, then let w(h, c) := 2|r|−r.

4. Similarly, if
h = g ∪ b

gives a disjoint decomposition of the set h such that c(v) = b for each v ∈ b

and c(v) = g for each v ∈ g and |b| ≥ 1, then let w(h, c) := 2|b|−r.
Define

w(H, c) :=
∑

h∈H

w(h, c). (2)

Let G : V → {r, b, g} denote the 3-coloring of the set V for which G(v) = g
for each v ∈ V .

By the definition of the weight function w

w(H, G) = |H| · 21−r. (3)
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Proposition 2.1 Let c : V → {r, b, g} be a fixed 3-coloring and v ∈ V be

an arbitrary point such that c(v) is green. Then let cred denote the following

coloring: cred(v) := r and cred(v
′) := c(v′) for each v′ ∈ V \ {v}. Similarly,

let cblue denote the following coloring: cblue(v) := b and cblue(v
′) := c(v′) for

each v′ ∈ V \ {v}.
Then

w(H, c) =
w(H, cred) + w(H, cblue)

2
. (4)

Proof.

It is enough to prove that

w(h, c) =
w(h, cred) + w(h, cblue)

2
(5)

for each h ∈ H.
Let h ∈ H be a fixed edge.
1. Suppose that v /∈ h. Then

w(h, cred) = w(h, cblue) = w(h, c).

We can assume in the following that v ∈ h.
2. Suppose that for each v′ ∈ h, c(v′) = g. Then

w(h, cred) = w(h, cblue) = w(h, c) = 21−r.

3. Suppose that there exist v1, v2 ∈ h, v1 6= v2 such that c(v1) = r and
c(v2) = b. Then

w(h, c) = w(h, cblue) = w(h, cred) = 0.

4. Suppose that
h = r ∪ g (6)

gives a disjoint decomposition of the set h such that c(v ′) = r for each v′ ∈ r
and c(v′) = g for each v′ ∈ g. Let d := |r| ≥ 1. Then

w(h, c) = 2d−r,

w(h, cblue) = 0
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and
w(h, cred) = 2d−r+1.

5. Finally, suppose that
h = b ∪ g (7)

gives a disjoint decomposition of the set h such that c(v ′) = b for each v′ ∈ b
and c(v′) = g for each v′ ∈ g. Let d := |b| ≥ 1. Then

w(h, c) = 2d−r,

w(h, cblue) = 2d−r+1

and
w(h, cred) = 0.

Our algorithm proceeds as follows: First order arbitrarily the points of
v ∈ V : v1, . . . , v|V |. For each 0 ≤ i ≤ |V | we define a 3-coloring ci : V →
{r, b, g}.

The initial step: let c0 := G, where G(v) := g for each v ∈ V .
Let 1 ≤ i ≤ |V | be fixed. Suppose that we have defined a coloring

ci−1 : V → {r, b, g} such that ci−1(vj) ∈ {r, b} for each 1 ≤ j ≤ i − 1 < |V |
and ci−1(vk) = g for each k ≥ i. Now our aim is to define a new coloring
ci : V → {r, b, g} such that ci(vj) ∈ {r, b} for each 1 ≤ j ≤ i and ci(vk) = g
for each k > i.

Define the colorings cred and cblue as in Proposition 2.1. Proposition 2.1
implies that

w(H, c) =
w(H, cred) + w(H, cblue)

2
. (8)

Hence either w(H, cred) ≤ w(H, c) or w(H, cblue) < w(H, c).
First suppose that w(H, cred) ≤ w(H, c). Then define ci := cred.
Now suppose that w(H, cblue) < w(H, c). Then let ci = cblue.
Clearly ci(vj) ∈ {r, b} for each 1 ≤ j ≤ i and ci(vk) = g for each k > i.
This algorithm yields finally to a 2-coloring C := c|V | : V → {r, b}. We

claim, that if we color the points of the base set V (H) with this coloring C,
then we get at most 21−r · |H| monochromatic edges.

Namely by the definition of the weight function w(H, C),

w(H, C) = |{h ∈ H : h is a monochromatic edge in the coloring C}|. (9)
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This is clear, since

w(H, C) =
∑

h∈H

w(h,C)

and w(h,C) = 1, if h is a monochromatic edge, w(h,C) = 0 otherwise,
because C was a 2-coloring.

It is easy to verify from the definition of the coloring ci : V → {r, b, g}
that

w(H, ci) ≤ w(H, ci−1)

for each 1 ≤ i ≤ |V |, hence

w(H, C) = w(H, c|V |) ≤ w(H, c0) = w(H, G). (10)

We proved in (3) that

w(H, G) = |H| · 21−r. (11)

The equations (9), (10) and (11) proves the Theorem.

3 Application

Given an r-uniform hypergraph F , the Turán number of F is the maximum
number of edges in an r-uniform hypergraph on n vertices that do not contain
a copy of F . We denote this number by ex(n,F). It is not hard to show that
the limit π(F) = limn→∞ ex(n,F)/

(

n

r

)

exists. It is usually called the Turán

density of F .
A general upper bound on Turán densities was obtained by de Caen [1],

who showed

π(K(r)
s ) ≤ 1 −

(

s − 1

r − 1

)−1

,

where K
(r)
s denotes the complete r-uniform hypergraph on s vertices. Sido-

renko gave a construction in [10] (see also [11]) showing that π(K
(r)
s ) ≤

1 − ( r−1
s−1

)r−1. For a general hypergraph Sidorenko [8] obtained a bound for
the Turán density in terms of the number of edges.

Theorem 3.1 Let F be an arbitrary hypergraph, which has f edges. Then

π(F) ≤
f − 2

f − 1
. (12)
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Proof of Theorem 1.2:

First we prove the upper bound.
P. Erdős proved in [2] that there exists a H ⊆

(

[n]
r

)

r-uniform hypergraph
with

|H| = (1 + o(1))
e · ln 2

4
r22r

and χ(H) > 2. Let G be an arbitrary r-uniform hypergraph with more
than (1 − 1

r2·2r−1
)
(

n

r

)

edges. We can apply Theorem 3.1 for F := H and

f := (1 − 1
r2·2r

)
(

n

r

)

. We get that there exists a copy of H in G, which shows
that G is not 2-colorable.

Now we prove the lower bound.
By Theorem 1.1 there exists a 2-coloring f :

(

[n]
r

)

→ {r, b} of the complete

r-uniform hypergraph
(

[n]
r

)

with at most 21−r
(

n

r

)

monochromatic edges. Fix
such a coloring. Remove from this colored hypergraph all monochromatic
edges. Then this coloring shows that after the removing we get a 2-colorable
hypergraph with at least

(

n

r

)

(1 − 21−r) edges.

The algorithmic proof of Theorem 1.1 can be used to prove the following
more general result.

Theorem 3.2 Let H be an arbitrary r-uniform hypergraph. Then there ex-

ists an s-coloring of H with at most |H| · s1−r monochromatic edges.

The modification of the proof of the lower bound in (1) gives the following
Corollary.

Corollary 3.3 There exists an r-uniform s-colorable hypergraph H on n
points which has at least (1 − s1−r)

(

n

r

)

edges.
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[2] P. Erdős, On a combinatorial problem II, Acta Math. Acad. Sci. Hun-

gar. 15 445–447 (1964)

6
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