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Abstract

Explicit construction of Ramsey graphs has remained a challenging
open problem for a long time. Frankl–Wilson [8], Alon [1] and Grol-
musz [11] gave the best explicit constructions of graphs on 2n vertices
with no clique or independent set of size c

√
n log n. We present here

simpler constructions using L-intersecting families, codes and permu-
tations. In the proof we use the polynomial subspace method.

We describe also an explicit construction which, for some fixed
absolute constant c > 0, produces for every integer s > 1 and all

m < s
s, a graph on at least m

c log s

log log s vertices containing neither a
clique of size s nor an independent set of size m.

1 Introduction

First we introduce some notation. Let n be a positive integer and [n] stand
for the set {1, 2, . . . , n}.

Let X be a set, k > 0 be a positive integer. We denote by
(

X
k

)
the family

of all k element subsets of X.
Let s > 0 be a fix integer and ki > 0 be arbitrary integers for 1 ≤ i ≤ s.

The Ramsey number R(k1, . . . , ks) is the smallest integer n such that in any
s-coloring of the edges of a complete graph on n vertices Kn, there exists
an 1 ≤ i ≤ s such that there is a homogeneouos Kki

in the ith color (i.e.
a complete subgraph on ki vertices all of whose edges are colored with the
ith color). In [13] F. P. Ramsey showed that R(k1, . . . , ks) is finite for any s
integers k1, . . . , ks. P. Erdős in [7] obtained by probabilistic arguments the
following non–constructive lower bound for the diagonal Ramsey numbers
R(k, k):
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Theorem 1.1 If
(

n
k

)
· 21−(k

2) < 1, then R(k, k) > n. Thus R(k, k) > b2k/2c
for all k ≥ 3.

One of the striking applications of the Frankl–Wilson theorem [8] for

prime moduli was an explicit construction of graphs of size exp( c log2 k
log log k

) with-
out homogeneous complete subgraph Kk. These are the largest explicit
Ramsey–graphs known to date. V. Grolmusz in [10] gave an alternative
construction of explicit Ramsey graphs of the same logarithmic order of mag-
nitude. This construction is easily extandable to the case of several colors.

V. Grolmusz proved the following Theorem:

Theorem 1.2 For r ≥ 2, t ≥ 3, there exists an explicitly constructible r–
coloring of the edges of the complete graph on exp(cr

(log t)r

(log log t)r−1 ) vertices such

that no color contains a complete graph on t vertices. Here cr = c/p2r
r ≈

c(r ln r)−2r, where pr is the rth prime, and c > 0 is an absolute constant.

N. Alon in [1] obtained also an other explicit construction of Ramsey
graphs. He used this construction disproving a conjecture of Shannon about
Shannon capacity.

In these notes we give simpler Ramsey graph constructions using L-
intersecting families, codes and permutations.

In [2] N. Alon and P. Pudlák obtained explicit constructions for the off-
diagonal Ramsey numbers R(m, s), where s is fixed and m tends to infinity.
They proved the following result.

Theorem 1.3 There exists an ε > 0 and an explicit construction of graphs
such that for every s and every sufficiently large m the construction produces

a graph on at least mε
√

log s/ log log s vertices containing neither a clique of
size s nor and independent set of size m. This shows, constructively, that

R(s,m) > mε
√

log s/ log log s.

Our main result improves their construction in the case m < ss:
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Theorem 1.4 There exists an absolute constant c > 0 and an explicit con-
struction of graphs such that for every s and every m with m < ss the con-
struction produces a graph on at least mc log s/ log log s vertices containig neither
a clique of size s nor an independent set of size m. This shows, construc-
tively, that

R(s,m) > mc log s/ log log s.

2 L-intersecting families

Let q = pα, α ≥ 1 be a fixed prime power. Suppose that 1 < q < n. Define

F(q, `) := {A ⊆ [n] : |A| ≡ ` (mod q)}.

Since
∪q−1

`=0F(q, `) (1)

gives a disjoint decomposition of 2[n], hence there exists an 0 ≤ ` ≤ q − 1
such that |F(q, `)| ≥ 2n

q
.

Let A := F(q, `) and define a 2-colored complete graph with vertex set
A. Let K be a complete graph with vertex set A. We color an edge {U, V }
by blue iff |U ∩ V | ≡ ` (mod q), and red otherwise.

Theorem 2.1 Let ` be an integer and q = pα, α ≥ 1, a prime power.
Suppose that 2(q − 1) ≤ n. Assume that F = {A1, . . . , Am} is a family of
subsets of [n] such that

(a) |Ai| ≡ ` (mod q) for i = 1, . . . ,m

(b) |Ai ∩ Aj| 6≡ ` (mod q) for 1 ≤ i, j ≤ m, i 6= j.

Then

m ≤
(

n

q − 1

)

.

Theorem 2.2 (Deza–Frankl–Singhi) Let ` be an integer and q = pα, α ≥ 1,
a prime power. Assume that G = {A1, . . . , Am} is a family of subsets of [n]
such that

(a) |Ai| ≡ ` (mod q) for i = 1, . . . ,m

and
(b) |Ai ∩ Aj| ≡ ` (mod q) for 1 ≤ i, j ≤ m, i 6= j.
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Then

m ≤
bn

q
c

∑

i=0

(
n

i

)

.

Suppose that K contains a homogeneous red complete graph C of r ver-
tices. Then the sets, corresponding to the vertices of C, give a family F of r
sets, such that the size of each set is congruent with r modulo `, but the size
of the intersection of any two elements of this set-system is not congruent
with ` modulo q. Consequently, by Theorem 2.1,

r ≤
(

n

q − 1

)

. (2)

Now suppose that K contains a homogeneous blue complete graph D of
k vertices. Then the sets, corresponding to the vertices of D, give a family
G of k sets, such that the size of each set and the size of the intersection of
any two elements are congruent with ` modulo q. Theorem 2.2 yields to the
bound

k ≤
bn

q
c

∑

i=0

(
n

i

)

. (3)

If q = 2, then we can apply the following Lemma:

Lemma 2.3 Let G = {A1, . . . , Am} be a family of subsets of [n] such that

(a) |Ai| ≡ 0 (mod 2) for i = 1, . . . ,m

and
(b) |Ai ∩ Aj| ≡ 0 (mod 2) for 1 ≤ i, j ≤ m, i 6= j.

Then
m ≤ 2bn/2c.

Then Lemma 2.3 gives that if K contains a homogeneous blue complete
graph D of k vertices, then k ≤ 2bn/2c, hence this gives a constructive proof
of the bound R(n, 2bn/2c) > 2n−1.
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3 Codes

Let p be a prime, r > 1 be an integer, n := pr − 1. Let A := 2[n] be an
arbitrary down–set. Define an r-colored complete graph with vertex set A.

Let K be a complete graph with vertex set A.
An r-coloring of the edges of K by colors 0, 1, . . . , r − 1:
an edge {U, V }, U, V ∈ A, has color k iff |U4V | ≡ 0 (mod pk) and

|U4V | 6≡ 0 (mod pk+1).

Theorem 3.1 Let 0 ≤ k < r be integers, p be a prime, n := pr − 1. Assume
that G = {A1, . . . , Am} ⊆ A is a family of subsets of [n] such that

(a) |Ai4Aj| ≡ 0 (mod pk) for 1 ≤ i, j ≤ m, i 6= j (4)

and
(b) |Ai4Aj| 6≡ 0 (mod pk+1) for 1 ≤ i, j ≤ m, i 6= j. (5)

Then

m ≤ |A ∩
(

n

≤ p − 1

)

|.

Proof.

Let vj = (vj1, . . . , vjn) ∈ A ⊆ {0, 1}n denote the characteristic vector of
Aj. Consider the polynomials:

Fj(x1, . . . , xn) :=

p−1
∏

`=1

(
n∑

i=1

((1− vji)xi + (1− xi)vji)− `pk ∈ Q[x1, . . . , xn] (6)

and denote by Fj the reduction of Fj by a deglex Gröbner basis for the ideal
I := I(V (A)). Clearly Fj(v) = Fj(v) for each v ∈ A. It is easy to verify that

Fj(vj) = Fj(vj) =

p−1
∏

`=1

|Aj4Aj| − `pk = pk(p−1) · (
p−1
∏

`=1

(−`)).

Then clearly
Fj(vj) ≡ 0 (mod pk(p−1)),

but
Fj(vj) 6≡ 0 (mod pk(p−1)+1).
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If i 6= j, then

Fj(vi) = Fj(vi) =

p−1
∏

`=1

(|Ai4Aj| − `pk) =

p−1
∏

`=1

pk(
|Ai4Aj|

pk
− `)

= pk(p−1)

p−1
∏

`=1

(
|Ai4Aj|

pk
− `).

Since |Ai4Aj| 6≡ 0 (mod pk+1), hence there exists 1 ≤ ` ≤ p − 1 such
that

|Ai4Aj|
pk

≡ ` (mod p),

therefore
p−1
∏

`=1

(
|Ai4Aj|

pk
− `) ≡ 0 (mod p)

i.e.,
Fj(vi) ≡ 0 (mod pk(p−1)+1)

for each j 6= i.
We need for the following observation.

Proposition 3.2 Let A be an m × m matrix with integer entries. If some
prime power q = pα divides each off-diagonal entry but it does not divide any
of the diagonal entries then A is nonsingular.

We thus found that the m×m matrix F := (Fj(vi))1≤i,j≤m is nonsingular
by Proposition 3.2, because pp(k−1)+1 divides each off-diagonal entry but it
does not divide any of the diagonal entries of F . From Proposition 2.7 of
[4] (Determinant Criterion) it follows that the polynomials F1, . . . , Fm are
linearly independent functions over Q.

Moreover, being reduced polynomials with respect to a Gröbner basis, the
Fi are linear combination of standard monomials for I and deg(Fi) ≤ p − 1,
because deg(Fi) = p − 1 and the deglex reductions can not increase the
degree. Since A was a down–set, hence Sm(≺deg,A) = A. We infer that the
linearly independent polynomials {F1, . . . , Fm} are in the Q-space spanned
by {xA : A ∈ A}, and hence

m ≤ |A ∩
(

n

≤ p − 1

)

|,
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which was to be proved.

Suppose that K contains a homogeneous complete graph Ck of `k vertices
in color k. Then the sets, corresponding to the vertices of Ck, give a family
Fk of `k sets with the properties (a) and (b). Consequently, by the previous
Theorem,

`k ≤
p−1
∑

i=0

(
n

i

)

.

Hence we obtain the constructive bound:

R(

p−1
∑

i=0

(
pr − 1

i

)

, . . . ,

p−1
∑

i=0

(
pr − 1

i

)

︸ ︷︷ ︸

r

) > 2pr−1.

4 Generalized metric spaces

Definition 4.1 We say that a pair (F , d) is a generalized metric space,
where d : F × F → Z is a function with the properties:

(i) d(f, f) = 0 for each f ∈ F ,

(ii) d(f, g) ∈ N for each f, g ∈ F
and

(iii) d(f, g) = d(g, f) for each f, g ∈ F .

Construction:

Let p be a prime, r > 1 be an integer, n := pr − 1. Suppose that (F , d)
is a bounded generalized metric space and d(f, g) ≤ n for each f, g ∈ F .

We define an r-colored complete graph with vertex set F .
Let K be a complete graph with vertex set F .
We give an explicit r-coloring of the edges of K by colors 0, 1, . . . , r − 1:
an edge {f, g}, f, g ∈ F , has color k iff d(f, g) ≡ 0 (mod pk) and d(f, g) 6≡

0 (mod pk+1).
Examples

(1) Let F :=
(
[m]
n

)
and d(f, g) := n − |f ∩ g| for each f, g ∈ F . Clearly

(F , d) is a generalized metric space and d(f, g) ≤ n for each f, g ∈ F .
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An edge {f, g}, f, g ∈ F has color k iff |f ∩ g| ≡ −1 (mod pk) and
|f ∩ g| 6≡ −1 (mod pk+1).

(2) Let A := {0, 1, . . . , q − 1} ⊆ Q. The Hamming distance dH(a, b)
between two words a = (a1, . . . , an) and b = (b1, . . . , bn) in An is the number
of coordinates i, 1 ≤ i ≤ n, with ai 6= bi. Let F := An and define d(a, b) :=
dH(a, b).

Clearly (F , d) is a generalized metric space and d(f, g) ≤ n for each
f, g ∈ F .

An edge {f, g}, f, g ∈ F , has color k iff dH(f, g) ≡ 0 (mod pk) and
dH(f, g) 6≡ 0 (mod pk+1).

(3) Let Pn denote the set of all permutations

Pn = {f : [n] → [n] : f is a bijection }.

Let Fix(f) ∈ N denote the number of fixpoints of a permutation. Then

d(f, g) := n − Fix(f · g−1)

is the Hamming distance of f and g for each f, g ∈ Pn, f 6= g.
Clearly (F , d) is a generalized metric space and d(f, g) ≤ n for each

f, g ∈ F .
An edge {f, g}, f, g ∈ F has color k iff Fix(f · g−1) ≡ −1 (mod pk) and

Fix(f · g−1) 6≡ −1 (mod pk+1).

Definition 4.2 Let (F , d) be a generalized metric space. A polynomial rep-
resentation of F over a field F is an assignment of a polynomial

Pf (x1, . . . , xn) ∈ F[x1, . . . , xn]

and a vector wf ∈ Fn to f ∈ F such that

Pf (wg) = d(f, g) for each f, g ∈ F .

We say that a generalized metric space (F , d) is representable with poly-
nomials over a finite alphabet A ⊆ F if {wf : f ∈ F} ⊆ An ⊆ Fn.

Examples

(1) F :=
(
[m]
n

)
. Let f ∈ F , define wf := vf = (v1, . . . , vn) ∈ {0, 1}m ⊆ Qm

the characteristic vector of f and

Pf (x1, . . . , xm) := n −
m∑

i=1

vixi ∈ Q[x1, . . . , xm].
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Then Pf (vg) = n − |f ∩ g| = d(f, g). Clearly A = {0, 1}.
(2) F := An. By Lagrange interpolation, for each integer a ∈ A there

exists an ε(a, x) ∈ Q[x] polynomial such that

ε(a, b) :=

{
0 if b = a
1 if b 6= a

for all b ∈ A. Let f = (f1, . . . , fn) ∈ An, then wf := f ∈ An and define

Pf (x1, . . . , xn) :=
n∑

i=1

ε(fi, xi) ∈ Q[x1, . . . , xn].

Clearly

Pf (g) =
n∑

i=1

εi(fi, gi) = dH(f, g) = d(f, g)

for each f, g ∈ F .
(3) F = Pn. We assign for each f ∈ Pn an n × n permutation matrix

Af ∈ Mat(Q, n) with the following rule:

Af [i, j] :=

{
1 if f(i) = j
0 otherwise,

where 1 ≤ i, j ≤ n. We can consider also this matrix Af ∈ Mat(Q, n) as a
vector vf ∈ {0, 1}n2 ⊆ Qn2

.
By the definition of the matrix Af ,

Tr(Af ) = Fix(f),

and clearly A is a group homomorphism from Pn to Mat(Q, n):

Af · Ag = Af ·g.

Consider the following polynomial in the variables (x11, . . . , xnn):

Pf (x11, . . . , xnn) := n −
n∑

i=1

n∑

j=1

Af−1 [i, j] · xji ∈ Q[x11, . . . , xnn]. (7)

Then it is easy to see that

Pf (vg) = n − Tr(Af−1 · Ag) = n − Tr(Af−1·g)

= n − Fix(f−1 · g) = dH(f, g) = d(f, g) (8)

for each f, g ∈ Pn.
Define A := {0, 1}.
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Theorem 4.3 Let (G, d) be a generalized metric space and {(Pg, wg) : g ∈
G} be a polynomial representation of (G, d) with codes over the alphabet A ⊆
Q. Assume that F = {f1, . . . , fm} is a subfamily of G such that

(a) d(fi, fj) ≡ 0 (mod pk) for 1 ≤ i, j ≤ m, i 6= j

and
(b) d(fi, fj) 6≡ 0 (mod pk+1) for 1 ≤ i, j ≤ m, i 6= j

Define

Qf :=

p−1
∏

`=1

(Pf − ` · pk) ∈ Q[x1, . . . , xn]

and let Qf denote the reduction of Qf via the polynomials {∏a∈A(xi−a) : 1 ≤
i ≤ n}. Then

m ≤ dimQ({Qf : f ∈ F}).

Proof.

It is enough to show, that {Qf : f ∈ F} are linearly independent poly-
nomials over Q.

Since

Qf (vf ) = Qf (vf ) =

p−1
∏

`=1

(Pf (vf )−`·pk) =

p−1
∏

`=1

(d(f, f)−`·pk) = pk(p−1)·(
p−1
∏

`=1

(−`)),

(9)
hence

Qf (vf ) ≡ 0 (mod pk(p−1)), (10)

but
Qf (vf ) 6≡ 0 (mod pk(p−1)+1). (11)

If f 6= g, then

Qf (vg) =

p−1
∏

`=1

(Pf (vg) − ` · pk) =

p−1
∏

`=1

(d(f, g) − ` · pk) = (12)

=

p−1
∏

`=1

pk · (d(f, g)

pk
− `) = pk(p−1) ·

p−1
∏

`=1

(
d(f, g)

pk
− `). (13)
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Since d(f, g) 6≡ 0 (mod pk+1), hence there exists an 1 ≤ ` ≤ p − 1 such
that

d(f, g)

pk
≡ ` (mod p).

This means that
p−1
∏

`=1

(
d(f, g)

pk
− `) ≡ 0 (mod p),

i.e.,
Qf (vg) = Qf (vg) ≡ 0 (mod pk(p−1)+1) (14)

for each f 6= g.
We need for the following observation.

Proposition 4.4 Let A be an m × m matrix with integer entries. If some
prime power q = pα divides each off-diagonal entry but it does not divide any
of the diagonal entries then A is nonsingular.

We thus found that the m × m matrix Q := (Qj(vi))1≤i,j≤m is nonsingular
by Proposition 4.4, because pp(k−1)+1 divides each off-diagonal entry but it
does not divide any of the diagonal entries of Q. From Proposition 2.7 of [4]
(Determinant Criterion) it follows that the polynomials {Qf : f ∈ F} are
linearly independent functions over Q.

Suppose that K contains a homogeneous complete graph Ck of `k vertices
in color k. Then the elements, corresponding to the vertices of Ck, give a
family Fk of `k elements with the properties (a) and (b). Consequently, by
the previous Theorem,

`k ≤ dimQ{Qf : f ∈ F}.

Examples

(1) Clearly Qf are multilinear polynomials of degree at most p− 1, since
Pf were linear polynomials, therefore dimQ{Qf : f ∈ F} ≤ ∑p−1

i=0

(
m
i

)
.

Hence we get the following constructive bound:

R(

p−1
∑

i=0

(
m

i

)

, . . . ,

p−1
∑

i=0

(
m

i

)

︸ ︷︷ ︸

r

) >

(
m

pr − 1

)

.
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(2) As a polynomial in the variables x1, . . . , xn, Qf has the property that
each term is a monomial in which at most p − 1 distinct indeterminates xi

enter. As functions from An to the field Q, all Qf , f ∈ F lie in the span of the
∑p−1

i=0 (q−1)i
(

n
i

)
monomial functions in which at most p−1 distinct variables

xi enter and the exponent of each xi is at most q − 1. This is because if any
indeterminate xj occurs in term of Qf (x) with exponent e > q − 1, we can
reduce it modulo

∏

a∈A(xj − a), that is, we can replace xe
j by a polynomial

in xj of degree less then q that represent the same function on A. Hence
dimQ{Qf : f ∈ F} ≤

∑p−1
i=0 (q − 1)i

(
n
i

)
.

Thus yields to the constructive bound:

R(

p−1
∑

i=0

(q − 1)i

(
n

i

)

, . . . ,

p−1
∑

i=0

(q − 1)i

(
n

i

)

︸ ︷︷ ︸

r

) > qn.

(3) Finally, Qf are again multilinear polynomials of degree at most p− 1,

since Pf were linear polynomials, therefore dimQ{Qf : f ∈ F} ≤
∑p−1

i=0

(
n2

i

)
.

Hence we obtain the constructive bound:

R(

p−1
∑

i=0

(
n2

i

)

, . . . ,

p−1
∑

i=0

(
n2

i

)

︸ ︷︷ ︸

r

) > n!.

We give now a construction, which gives natural lower bounds for the
off–diagonal Ramsey numbers R(m, s), m < ss.

Construction 2

Let p be a prime, α ≥ 1, n := pα − 1.
Suppose that (F , d) is a bounded generalized metric space and d(f, g) ≤ n

for each f, g ∈ F .
We define an 2-colored complete graph with vertex set F .
Let K be a complete graph with vertex set F .
We give an explicit 2-coloring of the edges of K by colors red and blue:
an edge {f, g}, f, g ∈ F , has color blue iff d(f, g) ≡ 0 (mod p) and red

otherwise.
Suppose that K contains a homogeneous red complete graph R of r ver-

tices. Then the elements, corresponding to the vertices of R, give a family
F of r elements such that d(f, g) 6≡ 0 (mod p) for each f, g ∈ F .
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Examples

(1) By Theorem 4.3, Qf are multilinear polynomials of degree at most
p − 1, since Pf were linear polynomials, therefore r ≤ ∑p−1

i=0

(
m
i

)
.

(2) The polynomials Qf has the property that each term is a monomial
in which at most p− 1 distinct indeterminates xi enter, and the exponent of
each xi is at most q − 1. Hence r ≤ ∑p−1

i=0 (q − 1)i
(

n
i

)
.

(3) Finally, Qf are multilinear polynomials of degree at most p− 1, since

Pf were linear polynomials, therefore r ≤ ∑p−1
i=0

(
n2

i

)
.

Suppose that K contains a homogeneous blue complete graph B of b
vertices. Then the elements, corresponding to the vertices of B, give a family
G of b elements such that d(f, g) ≡ 0 (mod p) for each f, g ∈ G.

Examples

(1) By Theorem 4.3, Qf are multilinear polynomials of degree at most

pα−1 − 1, since Pf were linear polynomials, therefore b ≤ ∑pα−1−1
i=0

(
m
i

)
.

(2) Each term of the polynomials Qf is a monomial in which at most
p−1 distinct indeterminates xi enter, and the exponent of each xi is at most

q − 1. Hence b ≤
∑pα−1−1

i=0 (q − 1)i
(

n
i

)
.

(3) Finally, Qf are multilinear polynomials of degree at most p− 1, since

Pf were linear polynomials, therefore b ≤ ∑pα−1−1
i=0

(
n2

i

)
.

Hence we obtain the following result.

Theorem 4.5 There exists an explicit construction of graphs such that for
every s and every m with m < ss the construction produces a graph on at least
mc log s/ log log s vertices containig neither a clique of size s nor an independent
set of size m. This shows, constructively, that

R(s,m) > mc log s/ log log s.
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[7] P. Erdős, Some Remarks on the Theory of Graphs, Bulletin of the
American Mathematical Society, 53 292–294 (1947)

[8] P. Frankl, R. M. Wilson, Intersection theorems with geometric conse-
quences, Combinatorica 1 357–368 (1981)

[9] P. Gopalan, Constructing Ramsey Graphs from Boolean Function
Representations, Elect. Colloquium on Comput. Complexity, Report
No. 143 (2005)

[10] V. Grolmusz, Low Rank Co-Diagonal Matrices and Ramsey Graphs,
Electronic J. of Comb. Vol. 7, (2000), No. 1., R15

[11] V. Grolmusz, Superpolynomial size set-systems with restricted inter-
sections mod 6 and explicit Ramsey graphs. Combinatorica, 20, 73–88
(2000)

[12] V. Grolmusz, A Note on Explicit Ramsey Graphs and Modular Sieves,
Combin. Prob. and Computing Vol. 12., (2003) 565–569.

[13] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc.
30 (2), 264–286 (1929)

14


