Affine subspaces

Gábor Hegedűs

Abstract

Let W denote the n-dimensional vector space over the finite field \mathbb{F}_{q}. Define $$
\mathcal{T}:=\{\underline{x}+S: \underline{x} \neq \underline{0} \text { and } S \text { is a linear subspace of } W\}
$$ as the set of translated affine subspaces of W, which are not linear subspaces. We prove here a Bollobás-type upper bound with respect to the set of translated affine subspaces \mathcal{T}. We give also a simple set of pair of translated affine subspaces, which shows that our result is almost sharp.

1 Introduction

First we introduce some notations.
In the following let $q=r^{\alpha}$ be a fixed prime power, $n \geq 0$ be a nonnegative integer. Let W denote the n-dimensional vector space over the finite field \mathbb{F}_{q}.

Let

$$
\mathcal{S}:=\left\{S \subseteq \mathbb{F}_{q}^{n}: S \text { is a linear subspace of } W\right\}
$$

denote the set of linear subspaces of the vector space W. Define

$$
\mathcal{T}:=\{\underline{x}+S: \underline{x} \neq \underline{0} \text { and } S \in \mathcal{S}\}
$$

as the set of translated affine subspaces of W, which are not linear subspaces.
Let

$$
\mathcal{L}:=\{L \in \mathcal{S}: \operatorname{dim} L=1\}
$$

denote the set of all lines of the vector space W.
B. Bollobás proved in 1966 the following result.

Theorem 1.1 Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be two families of sets such that $A_{i} \cap B_{j}=\emptyset$ only if $i=j$. Then

$$
\sum_{i=1}^{m} \frac{1}{\binom{\left|A_{i}\right|+\left|B_{i}\right|}{\left|A_{i}\right|}} \leq 1
$$

In particular if $\left|A_{i}\right|=r$ and $\left|B_{i}\right|=s$ for each $1 \leq i \leq m$, then

$$
m \leq\binom{ r+s}{r}
$$

The following strengthening of the uniform version of Bollobás's theorem called the Skew Bollobás's theorem was proved by L. Lovász.

Theorem 1.2 If $\mathcal{F}=\left\{A_{1}, \ldots, A_{m}\right\}$ is an r-uniform family and $\mathcal{G}=\left\{B_{1}, \ldots\right.$, $\left.B_{m}\right\}$ is an s-uniform family such that

$$
\text { (a) } A_{i} \cap B_{i}=\emptyset
$$

for each $1 \leq i \leq m$ and

$$
\text { (b) } A_{i} \cap B_{j} \neq \emptyset
$$

whenever $i<j(1 \leq i, j \leq m)$, then

$$
m \leq\binom{ r+s}{r}
$$

Lovász also proved the following generalization of Bollobás's theorem for subspaces of a linear space:

Theorem 1.3 Let \mathbb{F} be an arbitrary field and W be an n-dimensional linear space over the field \mathbb{F}.

Let $U_{1}, \ldots, U_{m} \in \mathcal{S}$ denote r-dimensional subspaces of W and $V_{1}, \ldots, V_{m} \in$ \mathcal{S} denote s-dimensional subspaces of W. Assume that

$$
\text { (a) } U_{i} \cap V_{i}=\{\underline{0}\}
$$

for each $1 \leq i \leq m$ and

$$
\text { (b) } U_{i} \cap V_{j} \neq\{\underline{0}\}
$$

whenever $i<j(1 \leq i, j \leq m)$. Then

$$
m \leq\binom{ r+s}{r}
$$

Our main result is the following modification of Lovász's Theorem:
Theorem 1.4 Let $U_{1}, \ldots, U_{m} \in \mathcal{T}$ and $V_{1}, \ldots, V_{m} \in \mathcal{T}$ be translated affine subspaces of an n-dimensional linear space W over the finite field \mathbb{F}_{q}, where $q \neq 2$. Assume that

$$
\text { (a) } U_{i} \cap V_{i}=\emptyset
$$

for each $1 \leq i \leq m$ and

$$
\text { (b) } U_{i} \cap V_{j} \neq \emptyset,
$$

whenever $i<j(1 \leq i, j \leq m)$. Then

$$
m \leq \frac{q^{n}-1}{q-1}+1
$$

In the proof we use the combination of Gröbner basis reduction and the polynomial subspace method.

2 The proof of the main result

2.1 Gröbner bases and standard monomials

We recall now some basic facts concerning Gröbner bases in polynomial rings. A total order \prec on the monomials (words) Mon is a term order, if 1 is the minimal element of \prec, and $u w \prec v w$ holds for any monomials u, v, w with $u \prec v$. There are many interesting term orders. We define now the lexicographic (lex) and the deglex term orders. Let $u=x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{n}^{i_{n}}$ and $v=x_{1}^{j_{1}} x_{2}^{j_{2}} \cdots x_{n}^{j_{n}}$ be two monomials. Then u is smaller than v with respect to lex ($u \prec_{l e x} v$ in notation) iff $i_{k}<j_{k}$ holds for the smallest index k such that $i_{k} \neq j_{k}$. Similarly, u is smaller than v with respect to deglex $\left(u \prec_{\text {deg }} v\right.$ in notation) iff either $\operatorname{deg} u<\operatorname{deg} v$, or $\operatorname{deg} u=\operatorname{deg} v$ and $u \prec_{l e x} v$. Note that we have $x_{n} \prec x_{n-1} \prec \ldots \prec x_{1}$, for both lex and deglex. The leading monomial $\operatorname{lm}(f)$ of a nonzero polynomial $f \in S$ is the largest (with respect to $\prec)$ monomial which appears with nonzero coefficient in f when written as a linear combination of different monomials.

Let I be an ideal of S. A finite subset $G \subseteq I$ is a Gröbner basis of I if for every $f \in I$ there exists a $g \in G$ such that $\operatorname{lm}(g)$ divides $\operatorname{lm}(f)$. In other words, the leading monomials of the polynomials from G generate the semigroup ideal of monomials $\{\operatorname{lm}(f): f \in I\}$. Using that \prec is a well founded order, it follows that G is actually a basis of I, i.e., G generates I
as an ideal of S. It is a fundamental fact (cf. [3, Chapter 1, Corollary 3.12] or [1, Corollary 1.6.5, Theorem 1.9.1]) that every nonzero ideal I of S has a Gröbner basis.

A monomial $w \in S$ is called a standard monomial for I if it is not a leading monomial of any $f \in I$. Let $\operatorname{Sm}(\prec, I)$ stand for the set of all standard monomials of I with respect to the term-order \prec over \mathbb{F}. It follows from the definition and existence of Gröbner bases (see [3, Chapter 1, Section 4]) that for a nonzero ideal I the set $\operatorname{Sm}(\prec, I)$ is a basis of the \mathbb{F}-vector-space S / I. More precisely, every $g \in S$ can be written uniquely as $g=h+f$ where $f \in I$ and h is a unique \mathbb{F}-linear combination of monomials from $\operatorname{Sm}(\prec, I)$.

2.2 The proof

We need in our proof for the following observation.
Proposition 2.1 The intersection of a family of affinee subspaces is either empty or equal to a translate of the intersection of their corresponding linear subspaces.

Proof of Theorem 1.4:

Let p be an arbitrary, but fixed prime divisor of $q-1$. Since $q \neq 2$, hence $p>1$. We can assign for each subset $F \subseteq \mathbb{F}_{q}^{n}$ its characteristic vector $v_{F} \in\{0,1\}^{q^{n}} \subseteq \mathbb{F}_{p}^{q^{n}}$ such that $v_{F}(t)=1$ iff $t \in F$.

Let v_{j} denote the characteristic vector of V_{j}.
Consider the polynomials

$$
P_{i}\left(x_{1}, \ldots, x_{n}\right):=1-\left(\sum_{j=1}^{n} v_{F_{i}}(j) x_{j}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]
$$

for each $1 \leq i \leq m$.
Define the following set of polynomials
$\mathcal{G}:=\left\{x_{i}^{2}-x_{i}: 1 \leq i \leq q^{n}\right\} \cup\left\{x_{u}-x_{v}: \exists L \in \mathcal{L}\right.$, such that $\left.u, v \in L, u<v\right\}$
and let I be the ideal generated by \mathcal{G}.

It is easy to verify that these polynomials \mathcal{G} constitute a deglex Gröbner basis of the ideal I. Let $\overline{P_{i}}$ denote the reduction of P_{i} via this Gröbner basis \mathcal{G}.

Since $\underline{0} \notin U_{i}, V_{i}$ for each $1 \leq i \leq m$, therefore $\left|L \cap U_{i}\right| \leq 1$ and $\left|L \cap V_{i}\right| \leq 1$ for each line $L \in \mathcal{L}$. Hence $\overline{P_{i}}\left(v_{j}\right)=P_{i}\left(v_{j}\right)$ for each $1 \leq i, j \leq m$.

We claim that the polynomials $\left\{\overline{P_{i}}: 1 \leq i \leq m\right\}$ are linearly independent over \mathbb{F}_{p}. Namely

$$
\overline{P_{i}}\left(v_{i}\right)=P_{i}\left(v_{i}\right)=1-\left|U_{i} \cap V_{i}\right|=1
$$

by condition (a) and

$$
\overline{P_{i}}\left(v_{j}\right)=P_{i}\left(v_{j}\right)=1-\left|U_{i} \cap V_{j}\right|=1-q^{k},
$$

where $k \geq 0$, because U_{i} and V_{j} were translated affine subspaces and using condition (b). Since

$$
q \equiv 1 \quad(\bmod p),
$$

thus

$$
1-q^{k} \equiv 0 \quad(\bmod p) .
$$

Therefore the $m \times m$ matrix $P=\left(\overline{P_{i}}\left(v_{j}\right)\right)_{1 \leq i, j \leq m}$ is upper triangular over \mathbb{F}_{p} and in the diagonal we find nonzero elements. This gives that the matrix is nonsingular and it follows from the Triangular Criterion (Proposition 2.8 in [2]) that the polynomials $\overline{P_{1}}, \ldots, \overline{P_{m}}$ are linearly independent functions over \mathbb{F}_{p}.

On the other hand, being reduced polynomials with respect to a deglex Gröbner basis of the ideal I, the polynomials $\overline{P_{i}}$ are linear combinations of standard monomials for I and $\operatorname{deg}\left(\overline{P_{i}}\right) \leq \operatorname{deg}\left(P_{i}\right)=1$, because the deglex reductions can not increase the degree.

Clearly

$$
\begin{align*}
& \operatorname{Sm}\left(\prec_{\text {deg }}, I\right)=\left\{x_{1}^{u_{1}} \ldots x_{n}^{u_{n}}: 0 \leq u_{i} \leq 1,\right. \\
& \tag{2}\\
& \left.\quad \text { and if } \exists L \in \mathcal{L} \text { s.t. } i, j \in L, i<j, \text { then } u_{j}=0\right\} .
\end{align*}
$$

We infer that the linearly independent polynomials $\left\{\overline{P_{1}}, \ldots, \overline{P_{m}}\right\}$ are in the \mathbb{F}_{p}-space spanned by

$$
\left\{\underline{x}^{u}: \operatorname{deg}\left(\underline{x}^{u}\right) \leq 1 \text { and } \underline{x}^{u} \in \operatorname{Sm}\left(\prec_{\operatorname{deg}}, I\right)\right\} .
$$

Since equation (2) gives that

$$
\mid\left\{\underline{x}^{u}: \operatorname{deg}\left(\underline{x}^{u}\right) \leq 1 \text { and } \underline{x}^{u} \in \operatorname{Sm}\left(\prec_{\text {deg }}, I\right)\right\} \left\lvert\, \leq \frac{q^{n}-1}{q-1}+1\right.,
$$

hence

$$
m \leq \frac{q^{n}-1}{q-1}+1,
$$

which was to be proved.

Proposition 2.2 Let F_{j} be arbitrary translated affine subspaces for each $1 \leq$ $j \leq m$. Let $G_{j}:=F_{j}+\underline{\alpha_{j}}$, where $\underline{\alpha_{j}} \notin F_{j}$. Then $F_{i} \cap G_{j}=\emptyset$ iff $\underline{\alpha_{j}} \in F_{i}-F_{j}$.

Proof.

First suppose that $\underline{\alpha_{j}} \in\left\langle F_{i}, F_{j}\right\rangle$. Then we can write $\underline{\alpha_{j}}$ into the form

$$
\underline{\alpha_{j}}=\underline{f_{i}}-\underline{f_{j}},
$$

where $\underline{f_{i}} \in F_{i}$ and $\underline{f_{j}} \in F_{j}$. Hence $\underline{f_{i}}=\underline{\alpha_{j}}+\underline{f_{j}} \in \underline{\alpha_{j}}+F_{j}=G_{j}$.
 Then there exists $\underline{f_{j}} \in F_{j}$ such that $\underline{v}=\underline{\alpha_{j}}+\underline{f_{j}}$. Hence $\underline{\alpha_{j}}=\underline{v}-\underline{f_{j}} \in \bar{F}_{i}-F_{j}$.

In the following we give two system of affine translated subspaces $\left\{A_{1}, \ldots\right.$, $\left.A_{m}\right\}$ and $\left\{B_{1}, \ldots, B_{m}\right\}$ of an n-dimensional linear space W over the finite field \mathbb{F}_{q}, where $m=\frac{q^{n}-1}{q-1}$, such that

$$
\text { (a) } A_{i} \cap B_{i}=\emptyset
$$

for each $1 \leq i \leq m$ and

$$
\text { (b) } A_{i} \cap B_{j} \neq \emptyset,
$$

whenever $i<j(1 \leq i, j \leq m)$.
Let

$$
\mathcal{H}=\left\{H_{1}, \ldots, H_{m}\right\}
$$

be an enumeration of the set of hyperplanes of the vector space \mathbb{F}_{q}^{n}. Here $m=\frac{q^{n}-1}{q-1}$. Define

$$
A_{i}:=H_{i}+\underline{\alpha_{i}},
$$

and

$$
B_{i}:=H_{i}+\underline{\beta_{i}}
$$

where $\underline{\alpha_{i}} \notin H_{i}, \underline{\beta_{i}} \notin H_{i}$ for each $1 \leq i \leq m$.
It is easy to verify that $A_{i}, B_{i} \in \mathcal{T}$ for each $1 \leq i \leq m$.
Suppose that $\beta_{i}-\alpha_{i} \notin H_{i}$ for each $1 \leq i \leq m$, then $A_{i} \cap B_{i}=\emptyset$ by the definition of A_{i} and B_{i}.

On the other hand, since $\underline{\beta_{i}}-\underline{\alpha_{i}} \in H_{i}-H_{j}=\mathbb{F}_{q}^{n}$, hence Proposition 2.2 gives that $A_{i} \cap B_{j} \neq \emptyset$ for each $1 \overline{\leq} i<j \leq m$.

References

[1] W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, American Mathematical Society, 1994.
[2] L. Babai, P. Frankl, Linear algebra methods in combinatorics, September 1992.
[3] A. M. Cohen, H. Cuypers and H. Sterk (eds.), Some Tapas of Computer Algebra, Springer-Verlag, Berlin, Heidelberg, 1999.
[4] Z. Füredi, Geometric solution of an intersection problem for two hypergraphs, European J. of Comb. 5 (1984) 133-136.
[5] P. Pudlák, V. Rödl, A combinatorial approach to complexity, Combinatorica 12 (1992), 221-226.
[6] L. Lovász, Flats in matroids and geometric graphs, in: Combinatorial surveys, Proc. 6th British Comb. Conf., Egham 1977, Acad. Press, London 1977, 45-86.
[7] Zs. Tuza, Application of Set-Pair Method in Extremal Hypergraph Theory, in "Extremal problems for Finite Sets", Bolyai Society Mathematical Studies 3, János Bolyai Math. Soc., Budapest, 1994, 479-514.

