Affine subspaces
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Abstract

Let W denote the n-dimensional vector space over the finite field
Fy. Define

7 :={x+S: z+#0and S is a linear subspace of W}

as the set of translated affine subspaces of W, which are not linear
subspaces. We prove here a Bollobas—type upper bound with respect
to the set of translated affine subspaces 7. We give also a simple set
of pair of translated affine subspaces, which shows that our result is
almost sharp.

1 Introduction

First we introduce some notations.
In the following let ¢ = r“ be a fixed prime power, n > 0 be a nonnegative
integer. Let I denote the n-dimensional vector space over the finite field IF,.
Let
S :={S CF,: Sis a linear subspace of W}

denote the set of linear subspaces of the vector space W. Define
7 :={z+S: x#0and S € S}

as the set of translated affine subspaces of W, which are not linear subspaces.
Let
L:={LeS: dimL=1}

denote the set of all lines of the vector space W.
B. Bollobéas proved in 1966 the following result.



Theorem 1.1 Let Ay,..., A, and By,...,B,, be two families of sets such
that A; N B;j =0 only if i = j. Then

= 1
—— s =L
2 (AFTB)

In particular if |A;| = r and |B;| = s for each 1 < i < m, then

m < <r+s).
r

The following strengthening of the uniform version of Bollobas’s theorem
called the Skew Bollobas’s theorem was proved by L. Lovasz.

Theorem 1.2 IfF ={A,..., A} is an r-uniform family and G = {By, . . .,
B} is an s-uniform family such that

for each 1 <1< m and
(b) A;nB; #0
whenever i < j (1 <i,7 <m), then

m < (r—l—s)
r

Lovasz also proved the following generalization of Bollobéas’s theorem for
subspaces of a linear space:

Theorem 1.3 Let F be an arbitrary field and W be an n-dimensional linear
space over the field F.

LetUs, ..., U, €8 denote r-dimensional subspaces of W and Vi, ...,V,, €
S denote s-dimensional subspaces of W. Assume that

(a) U;NV; ={0}

for each 1 <i<m and
(b) U; NV # {0}
whenever 1 < j (1 <1i,j <m). Then

m < <r+s>'
r



Our main result is the following modification of Lovasz’s Theorem:

Theorem 1.4 Let Uy,...,U,, € T and V1,...,V,, € T be translated affine
subspaces of an n-dimensional linear space W over the finite field ¥, where
q # 2. Assume that
(CL) UZ N ‘/z - @

for each 1 <1 <m and
whenever i < j (1 <i,57 <m). Then

q" -1
qg—1

m < + 1.
In the proof we use the combination of Grobner basis reduction and the
polynomial subspace method.

2 The proof of the main result

2.1 Grobner bases and standard monomials

We recall now some basic facts concerning Grobner bases in polynomial rings.
A total order < on the monomials (words) Mon is a term order, if 1 is
the minimal element of <, and uw < vw holds for any monomials u, v, w
with 4 < v. There are many interesting term orders. We define now the
lexicographic (lex) and the deglex term orders. Let u = 9. xin and
v = xy'zy - - x/" be two monomials. Then u is smaller than v with respect
to lex (u <je; v in notation) iff 4, < ji holds for the smallest index k such
that iy # ji. Similarly, v is smaller than v with respect to deglex (u <geg v
in notation) iff either degu < degwv, or degu = degv and u <., v. Note
that we have z,, < z,_1 < ... < x1, for both lex and deglex. The leading
monomial Im(f) of a nonzero polynomial f € S is the largest (with respect
to <) monomial which appears with nonzero coefficient in f when written as
a linear combination of different monomials.

Let I be an ideal of S. A finite subset G C I is a Grobner basis of I
if for every f € I there exists a ¢ € G such that Im(g) divides Im(f). In
other words, the leading monomials of the polynomials from G generate the
semigroup ideal of monomials {lm(f) : f € I}. Using that < is a well

founded order, it follows that G is actually a basis of I, i.e., G generates [
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as an ideal of S. It is a fundamental fact (cf. [3, Chapter 1, Corollary 3.12]
or [1, Corollary 1.6.5, Theorem 1.9.1]) that every nonzero ideal I of S has a
Grobner basis.

A monomial w € S is called a standard monomial for I if it is not a
leading monomial of any f € I. Let Sm(=<, I) stand for the set of all standard
monomials of I with respect to the term-order < over FF. It follows from the
definition and existence of Grébner bases (see [3, Chapter 1, Section 4]) that
for a nonzero ideal I the set Sm(=<, /) is a basis of the F-vector-space S/I.
More precisely, every g € S can be written uniquely as g = h+ f where f €
and h is a unique F-linear combination of monomials from Sm(<, I).

2.2 The proof

We need in our proof for the following observation.

Proposition 2.1 The intersection of a family of affinee subspaces is either
empty or equal to a translate of the intersection of their corresponding linear
subspaces.

Proof of Theorem 1.4:

Let p be an arbitrary, but fixed prime divisor of ¢ — 1. Since ¢ # 2,
hence p > 1. We can assign for each subset /' C F} its characteristic vector
vp € {0,1}7" C F?" such that vp(t) = 1iff t € F.

Let v; denote the characteristic vector of V;.

Consider the polynomials

n

Pi(w1,. ) = 1= (D vp(f)r;) € Fpla, ... 2]

J=1

foreach 1 <7 <m.
Define the following set of polynomials

Gi={2?—z;: 1<i<q¢"YU{x,—2,: IL € L, such that u,v € L,u < v}

(1)
and let I be the ideal generated by G.



It is easy to verify that these polynomials G constitute a deglex Grébner
basis of the ideal I. Let P; denote the reduction of P; via this Grébner basis
g.

Since 0 ¢ U;, V; for each 1 < i < m, therefore |[LNU;| < 1and |[LNV;| <1
for each line L € £. Hence P;(v;) = P;(v;) for each 1 <i,5 < m.

We claim that the polynomials {P; : 1 <i < m} are linearly independent

over F,. Namely

Pi(vi) = Fi(v)) =1 - |U; NV =1
by condition (a) and
Bi(vj) = Bi(v) =1 - UinVj| =1~ ¢",

where £ > 0, because U; and V; were translated affine subspaces and using
condition (b). Since
¢g=1 (mod p),

thus
1-¢"=0 (mod p).

Therefore the m x m matrix P = (P;(v;))1<ij<m 1S upper triangular over F,
and in the diagonal we find nonzero elements. This gives that the matrix
is nonsingular and it follows from the Triangular Criterion (Proposition 2.8
in [2]) that the polynomials P, ..., P,, are linearly independent functions
over [F,.

On the other hand, being reduced polynomials with respect to a deglex
Grobner basis of the ideal I, the polynomials P, are linear combinations of
standard monomials for I and deg(P;) < deg(P;) = 1, because the deglex
reductions can not increase the degree.

Clearly

Sm(<geg, [) = {27" ...y 0 0 <w; <1,

n

and if 3L € Ls.t. 4,5 € L, i < j, then u; =0}. (2)

We infer that the linearly independent polynomials {Pi,..., P,} are in
the F,-space spanned by

{z": deg(z") <1 and 2" € Sm(=<gey, 1)}



Since equation (2) gives that

"—1
{z": deg(z") < 1 and 2" € Sm(<gey, [)}] < 2 S+ L
q—
hence
q" — 1
m < +1,
q—1
which was to be proved. O

Proposition 2.2 Let F; be arbitrary translated affine subspaces for each 1 <
j <m. Let G; := F;+ «a;, where o; ¢ F;. Then F;NG; =0 iff a; € F; — Fj.

Proof.
First suppose that «; € (F;, F;). Then we can write «; into the form

G =t~ i

where f; € F; and f; € F;. Hence fi = o + fj € a; + F; = G
Suppose that F; N G; # 0. Let v € F;NG,, i.e., v € F; and v € a; + F.
Then there exists f; € F}; such that v = %—%ﬁ. Hence Q; = y—ﬁ € F,—F;.
O

In the following we give two system of affine translated subspaces { Ay, .. .,
A} and {By,..., B} of an n-dimensional linear space W over the finite
field F,, where m = %, such that

(CL) AiﬂBi:Q)
for each 1 <7 < m and
(b) AiﬂBj%@,

whenever i < j (1 <i,7 < m).
Let
H={H,... Hp

be an enumeration of the set of hyperplanes of the vector space Fy. Here
m = %. Define
Ai = H; +
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and

where o; ¢ H;, 8; ¢ H; for each 1 <1i <m.

It is easy to verify that A;, B; € T for each 1 <i < m.

Suppose that §3; — a; ¢ H; for each 1 < i < m, then A, N B; = () by the
definition of A; and B;.

On the other hand, since §5; — a; € H; — H; = I}, hence Proposition 2.2
gives that A; N B; # 0 for each 1 <i < 7 < m.
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