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Abstract

Let W denote the n-dimensional vector space over the finite field

Fq. Define

T := {x + S : x 6= 0 and S is a linear subspace of W}

as the set of translated affine subspaces of W , which are not linear

subspaces. We prove here a Bollobás–type upper bound with respect

to the set of translated affine subspaces T . We give also a simple set

of pair of translated affine subspaces, which shows that our result is

almost sharp.

1 Introduction

First we introduce some notations.
In the following let q = rα be a fixed prime power, n ≥ 0 be a nonnegative

integer. Let W denote the n-dimensional vector space over the finite field Fq.
Let

S := {S ⊆ F
n
q : S is a linear subspace of W}

denote the set of linear subspaces of the vector space W . Define

T := {x + S : x 6= 0 and S ∈ S}

as the set of translated affine subspaces of W , which are not linear subspaces.
Let

L := {L ∈ S : dim L = 1}

denote the set of all lines of the vector space W .
B. Bollobás proved in 1966 the following result.
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Theorem 1.1 Let A1, . . . , Am and B1, . . . , Bm be two families of sets such

that Ai ∩ Bj = ∅ only if i = j. Then

m
∑

i=1

1
(

|Ai|+|Bi|
|Ai|

) ≤ 1.

In particular if |Ai| = r and |Bi| = s for each 1 ≤ i ≤ m, then

m ≤

(

r + s

r

)

.

The following strengthening of the uniform version of Bollobás’s theorem
called the Skew Bollobás’s theorem was proved by L. Lovász.

Theorem 1.2 If F = {A1, . . . , Am} is an r-uniform family and G = {B1, . . . ,
Bm} is an s-uniform family such that

(a) Ai ∩ Bi = ∅

for each 1 ≤ i ≤ m and

(b) Ai ∩ Bj 6= ∅

whenever i < j (1 ≤ i, j ≤ m), then

m ≤

(

r + s

r

)

.

Lovász also proved the following generalization of Bollobás’s theorem for
subspaces of a linear space:

Theorem 1.3 Let F be an arbitrary field and W be an n-dimensional linear

space over the field F.

Let U1, . . . , Um ∈ S denote r-dimensional subspaces of W and V1, . . . , Vm ∈
S denote s-dimensional subspaces of W . Assume that

(a) Ui ∩ Vi = {0}

for each 1 ≤ i ≤ m and

(b) Ui ∩ Vj 6= {0}

whenever i < j (1 ≤ i, j ≤ m). Then

m ≤

(

r + s

r

)

.
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Our main result is the following modification of Lovász’s Theorem:

Theorem 1.4 Let U1, . . . , Um ∈ T and V1, . . . , Vm ∈ T be translated affine

subspaces of an n-dimensional linear space W over the finite field Fq, where

q 6= 2. Assume that

(a) Ui ∩ Vi = ∅

for each 1 ≤ i ≤ m and

(b) Ui ∩ Vj 6= ∅,

whenever i < j (1 ≤ i, j ≤ m). Then

m ≤
qn − 1

q − 1
+ 1.

In the proof we use the combination of Gröbner basis reduction and the
polynomial subspace method.

2 The proof of the main result

2.1 Gröbner bases and standard monomials

We recall now some basic facts concerning Gröbner bases in polynomial rings.
A total order ≺ on the monomials (words) Mon is a term order, if 1 is
the minimal element of ≺, and uw ≺ vw holds for any monomials u, v, w
with u ≺ v. There are many interesting term orders. We define now the
lexicographic (lex) and the deglex term orders. Let u = xi1

1 xi2
2 · · · xin

n and
v = xj1

1 xj2
2 · · · xjn

n be two monomials. Then u is smaller than v with respect
to lex (u ≺lex v in notation) iff ik < jk holds for the smallest index k such
that ik 6= jk. Similarly, u is smaller than v with respect to deglex (u ≺deg v
in notation) iff either deg u < deg v, or deg u = deg v and u ≺lex v. Note
that we have xn ≺ xn−1 ≺ . . . ≺ x1, for both lex and deglex. The leading

monomial lm(f) of a nonzero polynomial f ∈ S is the largest (with respect
to ≺) monomial which appears with nonzero coefficient in f when written as
a linear combination of different monomials.

Let I be an ideal of S. A finite subset G ⊆ I is a Gröbner basis of I
if for every f ∈ I there exists a g ∈ G such that lm(g) divides lm(f). In
other words, the leading monomials of the polynomials from G generate the
semigroup ideal of monomials {lm(f) : f ∈ I}. Using that ≺ is a well
founded order, it follows that G is actually a basis of I, i.e., G generates I

3



as an ideal of S. It is a fundamental fact (cf. [3, Chapter 1, Corollary 3.12]
or [1, Corollary 1.6.5, Theorem 1.9.1]) that every nonzero ideal I of S has a
Gröbner basis.

A monomial w ∈ S is called a standard monomial for I if it is not a
leading monomial of any f ∈ I. Let Sm(≺, I) stand for the set of all standard
monomials of I with respect to the term-order ≺ over F. It follows from the
definition and existence of Gröbner bases (see [3, Chapter 1, Section 4]) that
for a nonzero ideal I the set Sm(≺, I) is a basis of the F-vector-space S/I.
More precisely, every g ∈ S can be written uniquely as g = h+f where f ∈ I
and h is a unique F-linear combination of monomials from Sm(≺, I).

2.2 The proof

We need in our proof for the following observation.

Proposition 2.1 The intersection of a family of affinee subspaces is either

empty or equal to a translate of the intersection of their corresponding linear

subspaces.

Proof of Theorem 1.4:

Let p be an arbitrary, but fixed prime divisor of q − 1. Since q 6= 2,
hence p > 1. We can assign for each subset F ⊆ F

n
q its characteristic vector

vF ∈ {0, 1}qn

⊆ F
qn

p such that vF (t) = 1 iff t ∈ F .
Let vj denote the characteristic vector of Vj.
Consider the polynomials

Pi(x1, . . . , xn) := 1 − (
n

∑

j=1

vFi
(j)xj) ∈ Fp[x1, . . . , xn]

for each 1 ≤ i ≤ m.
Define the following set of polynomials

G := {x2

i − xi : 1 ≤ i ≤ qn} ∪ {xu − xv : ∃L ∈ L, such that u, v ∈ L, u < v}
(1)

and let I be the ideal generated by G.
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It is easy to verify that these polynomials G constitute a deglex Gröbner
basis of the ideal I. Let Pi denote the reduction of Pi via this Gröbner basis
G.

Since 0 /∈ Ui, Vi for each 1 ≤ i ≤ m, therefore |L∩Ui| ≤ 1 and |L∩Vi| ≤ 1
for each line L ∈ L. Hence Pi(vj) = Pi(vj) for each 1 ≤ i, j ≤ m.

We claim that the polynomials {Pi : 1 ≤ i ≤ m} are linearly independent
over Fp. Namely

Pi(vi) = Pi(vi) = 1 − |Ui ∩ Vi| = 1

by condition (a) and

Pi(vj) = Pi(vj) = 1 − |Ui ∩ Vj| = 1 − qk,

where k ≥ 0, because Ui and Vj were translated affine subspaces and using
condition (b). Since

q ≡ 1 (mod p),

thus
1 − qk ≡ 0 (mod p).

Therefore the m×m matrix P = (Pi(vj))1≤i,j≤m is upper triangular over Fp

and in the diagonal we find nonzero elements. This gives that the matrix
is nonsingular and it follows from the Triangular Criterion (Proposition 2.8
in [2]) that the polynomials P1, . . . , Pm are linearly independent functions
over Fp.

On the other hand, being reduced polynomials with respect to a deglex
Gröbner basis of the ideal I, the polynomials Pi are linear combinations of
standard monomials for I and deg(Pi) ≤ deg(Pi) = 1, because the deglex
reductions can not increase the degree.

Clearly

Sm(≺deg, I) = {xu1

1 . . . xun

n : 0 ≤ ui ≤ 1,

and if ∃L ∈ L s.t. i, j ∈ L, i < j, then uj = 0}. (2)

We infer that the linearly independent polynomials {P1, . . . , Pm} are in
the Fp-space spanned by

{xu : deg(xu) ≤ 1 and xu ∈ Sm(≺deg, I)}.
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Since equation (2) gives that

|{xu : deg(xu) ≤ 1 and xu ∈ Sm(≺deg, I)}| ≤
qn − 1

q − 1
+ 1,

hence

m ≤
qn − 1

q − 1
+ 1,

which was to be proved.

Proposition 2.2 Let Fj be arbitrary translated affine subspaces for each 1 ≤
j ≤ m. Let Gj := Fj +αj, where αj /∈ Fj. Then Fi ∩Gj = ∅ iff αj ∈ Fi −Fj.

Proof.

First suppose that αj ∈ 〈Fi, Fj〉. Then we can write αj into the form

αj = fi − fj,

where fi ∈ Fi and fj ∈ Fj. Hence fi = αj + fj ∈ αj + Fj = Gj.

Suppose that Fi ∩ Gj 6= ∅. Let v ∈ Fi ∩ Gj, i.e., v ∈ Fi and v ∈ αj + Fj.
Then there exists fj ∈ Fj such that v = αj +fj. Hence αj = v−fj ∈ Fi−Fj.

In the following we give two system of affine translated subspaces {A1, . . . ,
Am} and {B1, . . . , Bm} of an n-dimensional linear space W over the finite
field Fq, where m = qn−1

q−1
, such that

(a) Ai ∩ Bi = ∅

for each 1 ≤ i ≤ m and
(b) Ai ∩ Bj 6= ∅,

whenever i < j (1 ≤ i, j ≤ m).
Let

H = {H1, . . . , Hm}

be an enumeration of the set of hyperplanes of the vector space F
n
q . Here

m = qn−1

q−1
. Define

Ai := Hi + αi,
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and
Bi := Hi + βi

where αi /∈ Hi, βi /∈ Hi for each 1 ≤ i ≤ m.
It is easy to verify that Ai, Bi ∈ T for each 1 ≤ i ≤ m.
Suppose that βi − αi /∈ Hi for each 1 ≤ i ≤ m, then Ai ∩ Bi = ∅ by the

definition of Ai and Bi.
On the other hand, since βi − αi ∈ Hi − Hj = F

n
q , hence Proposition 2.2

gives that Ai ∩ Bj 6= ∅ for each 1 ≤ i < j ≤ m.
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[5] P. Pudlák, V. Rödl, A combinatorial approach to complexity, Combi-

natorica 12 (1992), 221–226.

[6] L. Lovász, Flats in matroids and geometric graphs, in: Combinatorial

surveys, Proc. 6th British Comb. Conf., Egham 1977, Acad. Press,
London 1977, 45–86.

[7] Zs. Tuza, Application of Set-Pair Method in Extremal Hypergraph
Theory, in “Extremal problems for Finite Sets”, Bolyai Society Math-

ematical Studies 3, János Bolyai Math. Soc., Budapest, 1994, 479–514.

7


