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Abstract

An instance of a constraint satisfaction problem (CSP) is variable

k-consistent if any subinstance with at most k variables has a solution.
For a fixed constraint language L, ρk(L) is the largest ratio such that
any variable k-consistent instance has a solution that satisfies at least
a fraction of ρk(L) of the constraints. We provide an expression for
the limit ρ(L) := limk→∞ ρk(L), and show that this limit coincides
with the corresponding limit for constraint k-consistent instances, i.e.,
instances where all subinstances with at most k constraints have a
solution. We also design an algorithm that for an input instance and
a given ε either computes a solution that satisfies at least a fraction
of ρ(L)− ε constraints or finds a set of inconsistent constraints whose
size only depends on ε. Most of our results apply both to weighted
and to unweighted instances of the constraint satisfaction problem.

1 Introduction

Constraint satisfaction problems (CSPs) form an important computational
model for problems arising in many areas of computer science. This is wit-
nessed by an enormous interest in the computational complexity of the prob-
lem and its variants [2–6,9–11,13,14,16,17,21,30]. However, sometimes not
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all the constraints of an input instance need to be satisfied, but it suffices to
satisfy a large fraction of them. A natural notion in this context is the notion
of local consistency. An CSP instance is variable (constraint) k-consistent
if any subinstance with at most k variables (constraints) has a solution. In
this paper, we focus on the effect of local consistency on the quality of an
optimal solution with respect to the number of constraints that can be simul-
taneously satisfied. There is an interesting connection between this question
and the notion of tree-duality, which has been studied in graph theory [16]
and recently in logic [24].

Let us remark that there are several other notions of local consistency
that are different from the notion that we analyze, such as the notion of
k–consistency introduced by Freuder [13], or the notion of relational k-
consistency studied by Dechter and van Beek [5]. However, we do not address
any of these notions in this paper.

1.1 Previous Results

The notion of local consistency considered in this paper can be traced back
to the early 1980’s. Lieberherr and Specker [25,26] studied the corresponding
problem for CNF formulas: they require that any k clauses of a given formula
can be satisfied and asked what fraction of the clauses can be satisfied. In
their papers, they settled the cases k = 1, 2, 3. A simpler proof of their results
was later found by Yannakakis [31]. The case k = 4 was settled in [22]. There
is an interesting connection between this problem and Usiskin numbers [29].
Locally consistent CNF formulas are also discussed in Chapter 20 of the
monograph [20].

The asymptotic behavior of locally consistent CNF formulas when k ap-
proaches infinity was first addressed by Huang et al. [18] and further studied
by Trevisan [28]. Trevisan [28] was the first to define the notion of local
consistency for general CSPs with constraints being Boolean predicates. For
a set Π of Boolean constraints, let ρk(Π) be the maximum ρ such that a
fraction of at least ρ constraints can be satisfied for any k-consistent input.
Note that in [28] negations of the arguments of the constraints are allowed,
i.e., the domain is not just a two-element set, but it is the Boolean field.

In this scenario, limk→∞ ρk(Π) = 21−` for a set Π of all predicates of
arity ` [28]. The ratios ρk(Π), k ≥ 1, for a set Π consisting of a single
predicate of arity at most three were determined by Dvořák et al. [7]. The
asymptotic behavior of ρk(Π) for fixed sets Π of predicates was studied in [23],
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and limk→∞ ρk(Π) was expressed as the minimum of a certain functional
on a convex set of polynomials derived from Π. Efficient algorithms for
locally consistent CSPs with constraints that are Boolean predicates were
also designed [7, 8, 23].

1.2 Our Results

In the conference version of this paper, we studied CSPs with a single binary
constraint type [1]. We further develop the methods used there to address the
problem in full generality and provide an analysis for all constraint languages.
In other words, the constraint language can now contain several types of
constraints, which are not necessarily binary.

We now briefly summarize our results. Formal definitions of the men-
tioned quantities are given in Section 2, and the rigorous statements of the
achieved results can be found in the subsequent sections.

Let L be a fixed constraint language. Then ρv,k(L) denotes the largest
ratio such that any variable k-consistent instance has a solution that satisfies
at least a fraction of ρv,k(L) of the constraints. Let ρv(L) be the limit of
ρv,k(L) for k tending to infinity. In Section 3, we introduce a parameter
π(L) of the constraint language L, and later show that ρv(L) equals π(L).
Similarly, we introduce ρc,k(L) as the largest ratio such that any constraint
k-consistent instance has a solution that satisfies at least a fraction of ρc,k(L)
of the constraints. We show that the limit of this quantity also equals π(L).
Unless the language L contains a unary constraint, the result applies to
both weighted and unweighted instances. In case that L contains a unary
constraint, our results apply only to weighted instances.

Next, we develop techniques to find solutions that satisfy many con-
straints of an instance. In Section 4, we design an efficient algorithm that
either constructs a solution of an input instance that satisfies at least the frac-
tion of ρv(L)− ε of the constraints or finds an inconsistent set of constraints
of size bounded by a function that only depends on ε.

In Section 5, we address the difference between weighted and unweighted
instances of the CSP. Note that we do not allow to repeat the same constraint
in unweighted instances to simulate weights. We show that if the constraint
language does not contain a unary constraint, then weighted and unweighted
locally consistent problems have the same extremal behavior.

Finally, in Section 6, we use our results to derive the results obtained in
the conference version of this paper for constraint languages with a single
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binary constraint type. Results for such constraint languages are of partic-
ular interest, since the constraint satisfaction problem then corresponds to
the (directed) graph homomorphism problem. In particular, we prove that
ρ(L) = 1 if and only if ρ(L) = 1 if and only if L has tree duality. The concept
of tree-duality for (directed) graphs is well-studied in graph theory [16].

2 Notation and Definitions

A constraint language is a pair L = (D,U) such that D is a finite domain
and U = {U1, . . . , Uk} is a finite set of relations on D, i.e., Ui ⊆ Dri for some
positive integer ri. The value of ri is the arity of the relation Ui. Relations
of U are called constraint types.

An instance of a constraint satisfaction problem with the constraint lan-
guage (D,U) is a pair (X,R) such that X is the set of variables and R =
{R1, . . . , Rm} is the set of constraints. Each Ri is an ordered rj-tuple of the
(not necessarily distinct) elements of X, and Ri is associated with one of the
k constraint types. Inspired by terminology in graph theory, we say that an
instance is simple if each constraint in R contains each variable at most once.
We say that a mapping ϕ : X → D satisfies a constraint Ri = (x1, . . . , xrj )
of constraint type Uj if (ϕ(x1), . . . , ϕ(xrj )) ∈ Uj. Mappings ϕ from X to D
will be called solutions of an instance; an exact solution is a solution that
satisfies all the constraints of the instance.

A weighted instance is an instance such that each constraint Ri is assigned
a non-negative weight w(Ri). The total weight w0 of an instance is the sum of
the weights of all its constraints. The weight w(ϕ) of a solution ϕ : X → D
is the sum of the weights w(Ri) of the satisfied constraints Ri, i.e., those
constraints (x1, . . . , xrj ) with (ϕ(x1), . . . , ϕ(xrj )) ∈ Uj. An optimum solution
is a solution of maximum weight. Finally, if all the constraints are assigned
the same weight, the instance is called uniform; uniform instances correspond
to unweighted ones.

An important class of constraint satisfaction problems are those corre-
sponding to graph homomorphism problems. If G and H are graphs, then
a homomorphism from G to H is a mapping ϕ : V (G) → V (H) where
ϕ(u)ϕ(v) ∈ E(H) for every edge uv ∈ E(G). The same definition applies
both to undirected and directed graphs. The problem of deciding an existence
of a homomorphism to a graph H corresponds to the constraint language
(D,U) where D = V (H) and U consists of a single binary constraint type U1
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such that (u, v) ∈ U1 if and only if uv ∈ E(H). The instance (X,R) corre-
sponding to an input graph G consists of |V (G)| variables xv corresponding
to vertices v ∈ V (G), and R contains a binary constraint (xu, xv) for every
edge uv ∈ E(G). It is easy to see that exact solutions of the constructed
instance of CSP are in one-to-one correspondence with homomorphisms from
G to H.

As in the case of graphs and graph homomorphisms, one may view general
constraint satisfaction problems as homomorphism problems for relational
structures [21]. Let (X,R) and (X ′,R′) be two instances with the same
constraint language L. A mapping ψ : X → X ′ is a homomorphism from
(X,R) to (X ′,R) if for every constraint (x1, . . . , xr) = Ri ∈ R of type Ui,
there is a constraint R′

i = (ψ(x1), . . . , ψ(xr)) ∈ R′ of type Ui. If such a
homomorphism exists, we say that (X,R) is homomorphic to (X ′,R). It is
not hard to see that if (X,R) is homomorphic to (X ′,R′) and (X ′,R′) has
an exact solution ϕ′, then (X,R) has also an exact solution—set ϕ(x) =
ϕ′(ψ(x)) for every x ∈ X.

In this paper, we address locally consistent constraint satisfaction prob-
lems. An instance (X,R) of a constraint satisfaction problem is variable
k-consistent if (X ′,R′) has an exact solution for every set X ′ of at most k
elements of X and R′ containing all the constraints of R that include only
the variables of X ′. Similarly, an instance is constraint k-consistent if (X,R′)
has an exact solution for every subset R′ ⊆ R with at most k elements.

Let L be a constraint language. We define ρwv,k(L) to be the largest ratio
α such that every vertex k-consistent instance with the language L with
total weight w0 has a solution of weight at least αw0. Similarly, ρwc,k(L)
is the largest such ratio for constraint k-consistent instances. Analogously,
we define ratios ρv,k(L) and ρc,k(L) for uniform instances with the language
L (these ratios correspond to the unweighted case). Finally, we define the
notation for the limit values:

ρwv (L) = lim
k→∞

ρwv,k(L) .

Similarly, we use ρwc (L), ρv(L) and ρc(L).
An important notion in our considerations is the concept of the set struc-

ture for a constraint language [4, 11]. It is the counterpart of set graphs
studied in the area of graph homomorphisms [16]. If L = (D,U) is a con-
straint language, then the set structure 2L of L is an instance of L with 2|D|−1
variable xA, each corresponding to a non-empty subset A ⊆ D. An ri-tuple
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{1, 2, 3}

{2, 3}

{1, 3}

{1, 2}

{1}

{2}

{3}

Figure 1: An example of the set structure of a constraint language. The
domain of the language is D = {1, 2, 3}, and the language contains two
relations R1 and R2, where R1 is the unary relation {x | x 6= 1}, and R2 is
the binary relation {[x, y] | x = y + 1 (mod 3)}. The relation R1 is depicted
by dashed circles and R2 by arrows in the figure.

(xA1 , . . . , xAri
) forms a constraint of type Ui ∈ U if it satisfies the following:

for every j, 1 ≤ j ≤ ri, and every yj ∈ Aj, there exist yj′ ∈ Aj′, 1 ≤ j ′ ≤ ri
and j ′ 6= j, such that (y1, . . . , yri) ∈ Ui. Note that the set structure 2L is in
general not simple. An example of the set structure of a constraint language
can be found in Figure 1. The importance of the concept of the set structure
arises from the fact that if the set structure 2L has an exact solution, then
the CSP for L can be solved in polynomial time [11, 17].

In our proofs, we often use probabilistic arguments involving Markov’s
inequality and Chernoff’s inequality. We recall these two well-known results
from probability theory for the reader’s convenience, and refer to [15] for
further details.

Proposition 1. Let X be a non-negative random variable with expected value
E. The following holds for every α ≥ 1:

Prob(X ≥ α) ≤
E

α
.

Proposition 2. Let X be a random variable for the sum of N zero-one
independent random variables each of which is equal to 1 with probability p.
Then the following holds for every 0 < δ ≤ 1:

Prob(X ≥ (1 + δ)pN) ≤ e−
δ2pN

3 and Prob(X ≤ (1 − δ)pN) ≤ e−
δ2pN

2 .
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3 Upper Bounds on ρ

In this section, we prove upper bounds on the limits ρwv (L), ρwc (L), ρv(L) and
ρc(L). (And in the next section we will prove the matching lower bounds.)
To achieve our goal, we have to construct a locally consistent instance with
constraint language L. One way of proving that a given instance is locally
consistent is to show that it is homomorphic to 2L and that it does not have
short cycles. A cycle of an instance (X,R) is a cyclic sequence of constraints
R1, . . . , Rk ∈ R, k ≥ 1, with arity at least two such that any two consecutive
constraints share at least one variable. In case that k = 1 we additionally
require that at least two variables in R1 coincide. The number k of constraints
is called the length of the cycle. Cycles of length 1 are also called loops. Note
that no cycle can contain a unary constraint. A cycle is minimal if no proper
subset of its constraints forms a cycle. A CSP instance (X,R) is acyclic if
it does not contain a cycle. In particular, acyclic instances do not contain
loops.

An instance is homomorphic to the set structure if and only if the so-called
arc-consistency procedure detects a contradictory set of constraints in the
instance [4, 12]. Together with the well-known fact that the arc-consistency
procedure solves acyclic instances of the constraint satisfaction problem (see
[6,14] for stronger results on bounded tree-width instances), this implies the
following lemma.

Lemma 3. Let (X,R) be an acyclic CSP instance with constraint language
L. If (X,R) is homomorphic to 2L, then (X,R) has an exact solution.

Next, we show how Lemma 3 can be applied to show that an instance
with no short cycles is locally consistent:

Lemma 4. Let (X,R) be an instance of CSP(L). If (X,R) is homomorphic
to 2L and (X,R) does not have a cycle of length at most k, then (X,R) is
both variable and constraint k-consistent.

Proof. First, we show that (X,R) is constraint k-consistent. LetR1, . . . , Rk ∈
R be k constraints from the instance. Since (X,R) does not have a cycle of
length at most k, the instance (X,R′) with R′ = {R1, . . . , Rk} is acyclic. It
is easy to observe that (X,R′) is homomorphic to 2L, since (X,R) is homo-
morphic to 2L, and since R′ ⊆ R. By Lemma 3, there is an exact solution
of (X,R′).
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Next, we show that (X,R) is variable k-consistent. Let X ′ ⊆ X be any
subset of X with k variables, and let R′ ⊆ R be the set of all the constraints
of (X,R) that contain only the variables of X. If (X ′,R′) contains a cycle, it
also contains a minimal cycle. The length of a minimal cycle cannot exceed
|X ′| = k. Since (X,R) does not have a cycle of length at most k, (X ′,R′)
is acyclic. Again, we know that (X,R′) is homomorphic to 2L and it has an
exact solution by Lemma 3.

Our bounds on ρwv (L), ρwc (L), ρv(L), and ρc(L) are given in terms of the
following parameter π(L) of a constraint language L = (D,U).

Definition 1. The following quantity is denoted by π(L).

min
w

max
p:X×D→[0,1]

∑

Ri=(x1,...,xri
)∈R

w(Ri) ·
∑

(d1 ,...,dri
)∈Uj

ri
∏

k=1

p(xAk
, dk) (1)

where the minimum is taken over all weight functions w : R → [0,∞) on
the constraints of the set structure 2L = (X,R) with total weight w0 = 1, the
maximum is taken over all functions p : X ×D → [0, 1] that satisfy

∑

d∈D

p(x, d) = 1

for every variable x ∈ X of the set structure 2L. Finally, Uj is the constraint
type of the constraint Ri.

It is easy to verify that both the minimum and the maximum in (1) are
attained: for fixed w, the sum over all constraints in the set structure in
(1) is a continuous function in p which is defined on a compact set. Hence,
the maximum is attained. Moreover, the maximum is again a continuous
function in w, and since w is also from a compact set, the minimum is
attained as well. Note that the inner quantity of the expression (1) equals
the expected weight of a solution ϕ : X → D of 2L that assigns a value d ∈ D
to the variable x ∈ X with probability p(x, d). Hence, π(L) is equal to the
maximum expected weight of a solution ϕ for the “worst” constraint weights
w.

Also observe that 2L = (X,R) for a constraint language L = (D,U) has
an exact solution if and only if π(L) = 1. Indeed, if 2L has an exact solution
ϕ : X → D, then the maximum in (1) is attained for

p(x, d) =

{

1 if ϕ(x) = d, and
0 otherwise,

8



since the product
∏ri

k=1 p(xAk
, dk) in the definition equals one for all the

constraints Ri ∈ R, and thus the inner part of (1) also equals w0 = 1.
Hence, π(L) = 1. On the other hand, if π(L) = 1, then consider the weight
function w that assigns 1/m to each constraint of R where m = |R|. Since
π(L) = 1, there exists a function p in (1) such that the expected weight of a
solution ϕ : X → D of 2L that assigns a variable x ∈ X a value d ∈ D with
probability p(x, d) is equal to w0. It follows that 2L has an exact solution.

We are now ready to state the main theorem of this section.

Theorem 5. Let L = (D,U) be a constraint language. The following holds:

ρwv (L) ≤ π(L) and ρwc (L) ≤ π(L) .

If L does not contain any unary constraint type, we also have

ρv(L) ≤ π(L) and ρc(L) ≤ π(L) .

Proof. For a fixed integer k ≥ 1 and a positive real 0 < ε < 1/10, we
construct a simple weighted instance (X,R) with total weight w0 that is
both variable and constraint k-consistent, all the non-unary constraints of R
have weight one, and every solution ϕ has weight at most (π(L) + ε)w0. The
existence of such instances yields all the statements of the theorem.

Let N be a sufficiently large integer that we fix later. Let further (X0,R0)
be the set structure 2L, let wL be the weight function that minimizes the value
of (1), and let wL,0 = 1 be the total weight of the constraints of 2L. Recall
that X0 contains 2|D| − 1 variables xA, each corresponding to a non-empty
subset A ⊆ D (see Definition 1). The instance (X,R) that we are going
to construct contains N · (2|D| − 1) variables xA,k for k = 1, . . . , N . If R0

contains a constraint Ri = (xA1 , . . . , xAri
) of type Ui with arity ri ≥ 2, then

we include the ri-tuple of variables (xA1,k1, . . . , xAri ,kri
) as a constraint of type

Ui and weight one to R with probability wL(Ri)N
1+1/2k−ri . Such constraints

(xA1,k1, . . . , xAri ,kri
) are said to correspond to Ri. If R0 contains a constraint

Ri = (xA) of type Ui, then R contains a constraint Ri = (xA,k) of type Ui
and weight wL(Ri)N

1/2k with probability one, for k = 1, . . . , N .
Let (X,R) be the instance that we obtain in this way, and let w0 be

the total weight of the constraints of (X,R). The instance (X,R) is almost
surely neither simple nor variable or constraint k-consistent. We show that
(X,R) does not have a solution of weight at least (π(L) + ε/2)w0 with high
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probability, and later show that (X,R) can be pruned to be locally consis-
tent with removing only a small fraction of the constraints. An analogous
argument applies to unary constraint types.

We now prove that if N is sufficiently large, then

Prob(w0 ≥ (1 − ε/4)wL,0N
1+1/2k) ≥ 7/8 .

We apply Chernoff’s inequality (Proposition 2) separately to every set of
constraints of (X,R) corresponding to the same constraint Ri ∈ R0 of 2L. If
ri ≥ 2 is the arity of Ri, then there are N ri constraints that can be included to
R and each of them is included with probability wL(Ri)N

1+1/2k−ri . Hence,
the probability that the total weight of such constraints is less then (1 −
ε/4)wL(Ri)N

1+1/2k is at most

e−
ε2wL(Ri)N

1+1/2k

32 .

Since there are finitely many constraints Ri ∈ R0, there is with probabil-
ity at least 7/8 no constraint Ri ∈ R0 such that the weight of constraints
corresponding to Ri is less than (1 − ε/4)wL(Ri)N

1+1/2k (if N is sufficiently
large). Since wL,0 =

∑

Ri∈R0
wL(Ri), the total weight w0 of all the constraints

of (X,R) is at least (1 − ε/4)wL,0N
1+1/2k with probability at least 7/8.

Next, we show that with probability at least 7/8, every solution ϕ of
(X,R) has weight at most (π(L) + ε/4)wL,0N

1+1/2k. For simplicity, we first
assume that L does not have unary constraint types. Let us fix a solution
ϕ : X → D for the rest of this paragraph. We define a function p : X0×D →
[0, 1] as follows: the value p(xA, d) is equal to the number of variables xA,k
with ϕ(xA,k) = d divided by N . We infer from the construction of (X,R)
that for every constraint Ri = (xA1 , . . . , xAri

) ∈ R0 of type Ui ∈ U with arity
ri ≥ 2, there are

N ri
∑

(d1,...,dri)∈Ui

ri
∏

k=1

p(xAk
, dk)

constraints satisfied by ϕ that can be included to (X,R). We will call such
constraints good. Moreover, we additionally mark επ(L)N ri/8 constraints
corresponding to Ri to be good (if there are not enough additional con-
straints, mark as many of them as possible – the reader is welcome to check
that our arguments work smoothly in this case, too). Since each good con-
straint is included to (X,R) with probability wL(Ri)N

1+1/2k−ri , the expected
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number of good constraints corresponding to Ri is

wL(Ri)N
1+1/2k





επ(L)

8
+

∑

(d1 ,...,dri)∈Ui

ri
∏

k=1

p(xAk
, dk)



 .

Hence, the probability that the number of good constraints corresponding to
Ri is greater than

(1 + ε/8)wL(Ri)N
1+1/2k





επ(L)

8
+

∑

(d1,...,dri)∈Ui

ri
∏

k=1

p(xAk
, dk)



 (2)

is at most

e−
ε2wL(Ri)N

1+1/2k
(

επ(L)/8+
∑

(d1,...,dri )∈Ui

∏ri
k=1

p(xAk
,dk)

)

192 ≤ e−
ε3π(L)wL(Ri)N

1+1/2k

1536

by Chernoff’s inequality (Proposition 2). Since the weight function wL is
fixed, the value of π(L) is constant independently from the instance, and
there are only finitely many constraints in R0, the probability that there
exists Ri ∈ R0 such that the number of good constraints corresponding to
Ri is greater than the above expression is exponentially small in N 1+1/2k.

Since there are at most |D|(2|D|−1)·N = eO(N) choices of ϕ, there exists a
sufficiently large N such that the number of good constraints corresponding
to each Ri ∈ R0 is with probability at least 7/8 bounded from above by
(2) for every solution ϕ. Summation over all Ri ∈ R0 yields that the total
number of satisfied constraints is at most

(1 + ε/8)N 1+1/2k
∑

Ri=(x1,...,xri)∈R

wL(Ri) ·
∑

(d1,...,dri )∈Uj

ri
∏

k=1

p(xAk
, dk)

+ (1 + ε/8)
επ(L)

8
N1+1/2k

∑

Ri∈R

wL(Ri) .

By the definition of π(L), the number of satisfied constraints is at most

(1 + ε/8)N 1+1/2kπ(L)wL,0 +
επ(L)

8
wL,0N

1+1/2k =

(1 + ε/4)N 1+1/2kπ(L)wL,0
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with probability at least 7/8. An analogous conclusion can be obtained if
the language L might contain unary constraint types.

We conclude that with probability at least 3/4, the weight of the optimum
solution of (X,R) is at most

(1 + ε/4)N 1+1/2kπ(L)wL,0

and the total weight w0 of the constraints of (X,R) is at least

(1 − ε/4)N 1+1/2kwL,0 .

Our next goal is to show that, with high probability, we can remove all cycles
of length at most k from the instance (X,R) without significantly decreasing
the total weight of all the constraints. Observe now that the instance (X,R)
is homomorphic to (X0,R0) through the homomorphism ψ : X → X0 defined
as ψ(xA,i) = xA. Hence, the image of a cycle of (X,R) through ψ is a cycle of
(X0,R0) (of the same or shorter length). Fix a cycle R1, . . . , R` of (X0,R0)
of length ` ≤ k. Since Ri and Ri+1 share at least one variable, the number of

possible preimages of the cycle is at most N
∑`

i=1 ri−` where ri is the arity of
Ri. Consider one of these preimages R′

1, . . . , R
′
`. The probability of including

R′
i to (X,R) is

wL(Ri)N
1+1/2k−ri ≤ wL,0N

1+1/2k−ri .

Hence, the expected number of cycles of (X,R) that are preimages of the
cycle R1, . . . , R` is at most

N
∑`

i=1 ri−` ·
∏̀

i=1

wL,0N
1+1/2k−ri = w`L,0N

`/2k ≤ w`L,0N
1/2 .

If M is the number of constraints of R0, then the number of cycles of (X0,R0)
of length at most k does not exceed (M + 1)k and the expected number of
cycles of (X,R) is thus at most

(M + 1)kwkL,0N
1/2 .

Hence, Markov’s inequality (Proposition 1) implies that the total weight of
constraints of (X,R) contained in a cycle of length at most k is at most (if
N is sufficiently large)

2k(M + 1)kwk+1
L,0 N

1/2 ≤
ε

4
wL,0N

1+1/2k
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with probability at least 1/2. The inequality holds, since for fixed k all terms
in the expression (including ε) except for N are constant.

Remove now all the constraints of (X,R) that are contained in a cycle
of length at most k. Let (X ′,R′) be the resulting instance and let w′

0 be
its total weight. We infer from our previous claims that with probability at
least 1/4, the weight of an optimum solution of (X ′,R′) does not exceed

(1 + ε/4)N 1+1/2kπ(L)wL,0

and the total weight w′
0 of the constraints of (X ′,R′) is at least

(1 − ε/2)N 1+1/2kwL,0 .

Hence, with probability at least 1/4, the weight of an optimum solution of
(X ′,R′) is at most

1 + ε/4

1 − ε/2
π(L)w′

0 ≤ (1 + ε)π(L)w′
0 .

This inequality holds since we have assumed that ε < 1/10. Because the
instance (X ′,R′) does not contain a cycle of length at most k and is homo-
morphic to 2L, it is vertex and constraint k-consistent by Lemma 4.

4 Algorithmic Results

In this section, we design our linear-time algorithm for a fixed constraint
language L, and prove the lower bounds on the limits.

Theorem 6. Let L = (D,U) be a fixed constraint language. There exists an
algorithm that for an input instance (X,R) with total weight w0 and a given
real number ε > 0,

• either constructs a solution ϕ of weight (π(L) − ε)w0, or

• finds a set of at most f(ε) constraints of R that cannot be simultane-
ously satisfied

where f(ε) is a function that only depends on ε. The running time of the
algorithm is linear in |X|+ |R| and polynomial in 1/ε (for a fixed constraint
language L).

13



Proof. Let us briefly describe the main steps of the algorithm and we then
focus on each step separately. The parameter r used in the description of the
algorithm is the maximum arity of a constraint of R.

• First, we construct sets Ri ⊆ R, i = 1, . . . , 2|D|r/ε, such that the
instance (X,R \ Ri) is homomorphic to 2L for every i. If the algo-
rithm fails to construct the sets, then it exhibits a set of at most f(ε)
inconsistent constraints.

• Next, we remove the set Ri with the least weight from the instance.
We show that this decreases the total weight of the instance by at most
εw0/2.

• We compute a function p : X × D → [0, 1] such that if x ∈ X is
assigned a value d ∈ D with probability p(x, d), then the expected
weight of satisfied constraints is at least (π(L) − ε)w0.

• Finally, using standard derandomization techniques, we find a solution
ϕ : X → D of weight at least (π(L) − ε)w0.

Here and hereafter, we assume for simplicity that ε is the inverse of an integer.
Let us start with the first step. In addition to the constraint sets Ri,

we construct functions ψi : X → 2D such that the mapping that assigns
x ∈ X the variable xψi(x) of 2L is a homomorphism from (X,R \ Ri) to 2L.
Initially, set ψ1(x) = D for every x ∈ X. Once ψi has been constructed, set
ψi+1 = ψi and add the constraints (x1, . . . , xk) ∈ R of type Uj to Ri where for
some dj′ ∈ ψi(xj′), there is no choice of d1, . . . , dk with (d1, . . . , dk) ∈ Uj and
dj′′ ∈ ψi(xj′′) for j ′′ 6= j. If there are such elements dj′ ∈ ψi(xj′), the value
dj′ is also removed from the set ψi+1(xj). It is straightforward to verify that
the mapping assigning x ∈ X the variable xψi(x) of 2L is a homomorphism
from (X,R \Ri) to 2L unless ψi(x) = ∅ for some x.

In order to simplify our further exposition let us also define a function
Ψi : X → 2R, i = 0, . . . , 2|D|r/ε. With this function we want to represent
for each variable x a set of constraints that implies that in any exact solution
the value for x is from ψi(x). Initially, Ψ0 = ∅. Whenever a value dj′ is
removed from ψi(xj) because the assignment xj = dj′ cannot be extended to
a constraint Rj at some stage of the algorithm, Ψi(xj) is defined to be the
union of {Rj} and the set Ψi−1(xj′′) for all the variables xj′′ contained in Rj.
If the value dj′ is removed from ψi(xj) because of several constraints, the
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union is taken only for one such constraint. If several variables are removed
from ψi(xj) at the same time, the union is taken for a single (arbitrarily
chosen) constraint for each removed variable. If there is no value removed
from ψi(xj), Ψi(xj) is equal to Ψi−1(xj).

We show that the constraints contained in Ψi−1(xj) force the value of
a variable xj to be one of the values contained in ψi(xj), i.e., any exact
solution of the instance (X,Ψi−1(xj)) assigns xj a value contained in ψi(xj).
The proof is by induction on i. If i = 1, there is nothing to prove since
ψ1(xj) = D. For i > 1, if ψi(xj) = ψi−1(xj), then Ψi−1(xj) = Ψi−2(xj) and
the claim follows by induction. If ψi(xj) ⊂ ψi−1(xj), then there is a value
dj ∈ ψi−1(xj) that was removed from it because of a constraint Rj′ ∈ R. The
constraints contained in the sets Ψi−2(xj′′) for variables contained in Rj′ force
the values of these variables to be in ψi−1(xj′′), however, this is incompatible
with assigning the value dj to xj. Hence, the union of Ψi−2(xj′′) and {Rj′}
force the variable xj′′ not to be assigned the value dj. We conclude that
the constraints contained in Ψi−1(xj) force the value of xj to be one of the
elements contained in ψi(xj).

If there exist i and x such that ψi(x) = ∅, then the constraints contained
in Ψi−1(x) restrict the values of x to those of ψi(x) = ∅, i.e., the subinstance
(X,Ψi−1(x)) has no exact solution. The algorithm returns the set Ψi−1(x) of
inconsistent constraints—next, we bound its size.

We prove that a set Ψi(x) contains at most (|D|r + 1)i constraints by
induction on i. The bound clearly holds for i = 0 since the sets Ψ0(x) are
empty. Each set Ψi(x) is a union of at most |D|r different sets Ψi−1(x′) with
at most |D| additional constraints, i.e., its size does not exceed

|Ψi(x)| ≤ |D| + |D|r(|D|r+ 1)i−1 ≤ (|D|r + 1)i .

Hence, the size of the set of inconsistent constraints returned by the algorithm
does not exceed (|D|r + 1)2|D|r/ε, which is a function that only depends on
ε (recall that the constraint language L is fixed). Let us remark that the
bound on the size of the sets of inconsistent constraints can be decreased by
a finer analysis. In the actual implementation of this step of the algorithm,
we do not compute the sets Ψi(x) explicitly, however, for each removal of a
value d ∈ D from ψi(x), we mark which of the input constraints caused the
removal of d and compute the set Ψi(x) (in linear time in the input size) only
when it is supposed to be returned.

Suppose now that the algorithm does not output a set of contradictory
constraints, i.e., we assume that ψi(x) 6= ∅ for all i = 1, . . . , 2|D|r/ε and
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x ∈ X. Observe that each constraint Rj ∈ R is contained in at most |D|r
sets Ri: each time a constraint Rj is included into a set Ri, the cardinality
of the set ψi(x) of one of the variables x contained in Rj is decreased by one.
Since Rj contains at most r variables and the sets ψ1(x) contain |D| elements
each, Rj is included in at most |D|r sets Rj. Hence, the total sum of weights
of constraints contained in all the sets Ri is at most |D|rw0. Since there are
2|D|r/ε sets Ri, there exists a set Ri0 such that the sum of the weights of
the constraints contained in Ri0 is at most εw0/2. Fix such an index i0 for
the rest of the proof.

Recall that the instance (X,R\Ri0) is homomorphic to 2L and the homo-
morphism maps a variable x ∈ X to xA for A = ϕi0(x). Next, we define values
p(A, d) for non-empty subsets A ⊆ D and d ∈ D such that

∑

d∈D p(A, d) = 1
for every A. Let E(p) be the expected weight of the satisfied constraints if
each variable x ∈ X is assigned randomly and independently a value d ∈ D
with probability p(ϕi0(x), d). Let E0 be the maximum value of E under the
constraints that 0 ≤ p(A, d) ≤ 1 and

∑

d∈D p(A, d) = 1. Since the number
of variables on which the function E(p(A, d)) depends is finite, it is possible
to find, in time polynomial in 1/ε, a function p0 such that E(p0) is at least
(1− ε/2)E0. By the definition of π(L), we have that E0 ≥ π(L)w′

0 where w′
0

is the total weight of constraints of (X,R \ Ri0). Hence, the value of E(p0)
is at least

(1 − ε/2)π(L)w′
0 ≥ (1 − ε/2)2π(L)w0 ≥ (π(L) − ε)w0 .

In particular, if the value of each variable x ∈ X is set to be d ∈ D with
probability p0(ϕi0(x), d), then the expected weight of satisfied constraints is
at least (π(L) − ε)w0.

The final stage of the algorithm (once the function p0 has been con-
structed) lies in derandomizing the choices of values of the variables x ∈ X.
A standard technique of derandomization using conditional expectations can
be applied in this scenario. We are not going to describe the details of the
entire derandomization process and refer to standard literature on the sub-
ject, e.g., [27]. Let us just remark that the derandomization can be done in
time linear in the size of the input.

There is an immediate corollary of Theorems 5 and 6.

Corollary 7. Let L = (D,U) be a constraint language. Then the following
equalities hold.

ρwv (L) = ρwc (L) = π(L)
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If L does not contain unary constraint types, then

ρv(L) = ρc(L) = π(L) .

5 Unweighted and Weighted Instances

We have seen that ρwv (L) = ρv(L) and ρwc (L) = ρc(L) if the constraint
language L does not contain unary constraint types. It turns out that this
is not just a coincidence, but the following stronger statement holds.

Theorem 8. Let L = (D,U) be a fixed constraint language without unary
constraint types. For every k ≥ 1, the following holds:

ρwv,k(L) = ρv,k(L) and ρwc,k(L) = ρc,k(L) .

Proof. We focus on proving that ρwv,k(L) = ρv,k(L); the proof for the con-
straint k-consistent instances is analogous. Since it is obvious that ρwv,k(L) ≤
ρv,k(L), we have to show that ρwv,k(L) ≥ ρv,k(L). Fix ε > 0. By the defini-
tion of ρwv,k(L), there exists a weighted variable k-consistent instance (X0,R0)
with the weight function w that does not have solution of weight greater than
(ρwv,k + ε/2)w0 where w0 is the total weight of the constraints of (X0,R0).
Our goal is to construct an unweighted instance (X,R) with m constraints
that does not have a solution satisfying more than (ρwv,k − ε)m of its con-
straints. Since the construction is similar to the one presented in the proof
of Theorem 5, we decided to provide all the details only where the two proofs
differ, and sketch the arguments where they are analogous.

Let X0 = {x1, . . . , xn} and let N be a sufficiently large integer. The
instance (X,R) contains n · N variables xi,j, 1 ≤ i ≤ n and 1 ≤ j ≤ N .
For every constraint Rk = (xi1 , . . . , xir) ∈ R of type Uk with r′ ≤ r distinct
variables, a constraint (xi1,j1, . . . , xir,jr) is included to R with probability
w(Rk)N

2−r′ ; we require that if a single variable, e.g., xi1 appears several
times in Rk, then all its occurrences are replaced by the same variable xi1,j1.

Observe that the constructed instance (X,R) is homomorphic to the
original instance (X0,R0) (just map a variable xi,j ∈ X to xi ∈ X0). Hence,
if X ′ ⊆ X is a set of at most k variables of X, the subinstance (X ′,R′) of
(X,R) where R′ are those constraints of R that contain only the variables
of X, is homomorphic to a subinstance of (X0,R0) with at most k variables.
Since the subinstance of (X0,R0) has an exact solution, the subinstance
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(X ′,R′) has also an exact solution. In particular, the instance (X,R) is
variable k-consistent.

An application of Chernoff’s bound (Proposition 2) yields that with prob-
ability at least 3/4 the number of constraints of (X,R) is at least (1−ε/8)w0 ·
N2. The details of the proof are analogous to the proof of Theorem 5.

Fix one out of the |D|nN possible solutions ϕ : X → D of (X,R). Let
p(xi, d) for xi ∈ X0 and d ∈ D be the number of variables xi,j, 1 ≤ j ≤ N ,
with ϕ(xi,j) = d divided by N . By the choice of (X0,R0), the expected
weight of constraints of R0 that are satisfied when each variable xi ∈ X0

is assigned randomly (and independently of other variables of X0) a value
d ∈ D with probability p(xi, d) is at most the weight of an optimum solution,
which is at most (ρwv,k(L) + ε/2)w0. If p is the probability that a constraint

Rk ∈ R0 is satisfied, there are pN r′ constraints R corresponding to Rk that
can be included to R and that are satisfied by ϕ.

Another application of Chernoff’s bound yield that with probability at
most e−Θ(N2), the number of constraints corresponding toRk that are satisfied
by ϕ and included to R is greater than (1 + ε/8)pw(Rk)N

2. Hence, the
total number of constraints satisfied by ϕ is greater than (1 + ε/8)(ρwv,k(L) +

ε/2)w0N
2 with probability at most e−Θ(N2). Since there are |D|nN choices

of ϕ, the total number of constraints satisfied by any solution ϕ, is at most
(1 + ε/8)(ρwv,k + ε/2)w0N

2 with probability at most 7/8 if N is sufficiently
large.

We conclude that there exists a variable k-consistent instance (X,R) with
at least (1 − ε/8)w0N

2 constraints and the number of constraints that can
be satisfied by a solution ϕ is at most

(1 + ε/8)(ρwv,k + ε/2)w0N
2 ≤ (ρwv,k + ε)m

where m is the number of constraints of (X,R). Since such an instance exists
for every ε > 0, it follows that ρv,k ≤ ρwv,k.

Let us comment on one difference between the proof of Theorem 5 and
the proof of Theorem 8: in the former proof, we needed to prune the random
instance to remove constraints that contain the same variable several times.
Such constraints could spoil the acyclicity of the constructed instance and
thus its consistency. However, in the latter proof, the constructed instance
is always homomorphic to a locally consistent instance (X0,R0) and thus
locally consistent, too. Such an argument cannot be used in the former
proof, since 2L need not be locally consistent.
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6 Graph Homomorphisms

In this section, we discuss how our results on general CSPs relate to the
results obtained in our conference paper [1] on CSPs corresponding to graph
homomorphisms. In the following, we state all the results for directed graphs.
However, analogous results for undirected graphs follow directly from the
results on directed graphs. As discussed in Section 2, the corresponding CSPs
have a constraint language that contains a single binary constraint type.
Throughout this section, LH stands for the constraint language obtained
from a (directed) graph H through the construction described in Section 2.

One of the main results of [1] is that ρv(LH) = ρc(LH) = 1 if and only
if the graph H has tree duality. A graph H has tree duality iff a graph G is
homomorphic to H when every directed tree homomorphic to G is also ho-
momorphic to H. Examples of graphs with tree duality include orientations
of paths or acyclic tournaments. The set structure 2H of a graph H is again
a graph, and is called the set graph of H. An equivalent characterization of
tree duality asserts that a directed graph H has tree duality if and only if its
set graph 2H is homomorphic to H [4, 11].

The following is then an immediate consequence of Corollary 7.

Theorem 9. Let H be a directed graph. The equalities

ρv(LH) = 1 and ρc(LH) = 1

hold if and only if H has tree duality.

The other types of CSP problems addressed in [1] were those correspond-
ing to graphs H with a directed cycle. If W is the vertex set of a directed
cycle of H, the instance 2LH contains a constraint (xW , xW ) (in graph theory
notation, we say that the set graph 2H contains a loop at the vertex xW ).
Hence, it is possible to consider a weight function w that assigns weight one
to (xW , xW ) and zero weight to the remaining constraints of 2LH . For such
a weight function, the expression that is maximized in (1) is equal to the
fractional relative density of H as defined in [1]:

δ′rel(H) = max
p:V (H)→[0,1]

∑

uv∈E(H)

p(u) · p(v) (3)

where the maximum is taken over all functions p : V (H) → [0, 1] such that
the sum of p(v) is equal to one. Let p0 be the function for which the maximum
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is attained in (3). Since the inner part of (1) is equal to δ ′rel(H) for a particular
choice of w, π(LH) ≤ δ′rel(H). On the other hand, if p(x, v) = p0(v) for every
variable x of 2LH , the most inner sum of (1) is equal to δ′rel(H) for every
constraint of 2L and thus the entire expression is equal to w0δ

′
rel(H). We

conclude that π(LH) = δ′rel(H).
The following result from [1] now follows from Corollary 7:

Theorem 10. If H is a directed graph that contains at least one directed
cycle, then

ρv(LH) = ρc(LH) = δ′rel(H) .

If the constraint language LH consists of a single symmetric binary rela-
tion, i.e., the graph H contains an arc uv for every arc vu and vice versa,
then the following holds (note that such languages correspond to undirected
graphs).

Corollary 11. If H is a symmetric directed graph, then

ρv(LH) = ρc(LH) = 1

if H contains a loop, and otherwise

ρv(LH) = ρc(LH) = 1/ω

where ω is the order of the largest clique of H.

7 Concluding Remarks

It is natural to ask whether Expression (1) in Definition 1 can be simplified.
It does not seem to be the case. The maximization over all functions p, the
innermost sum and the product correspond to the maximization, the sum
and the product in Expression (3) of relative density, respectively. In [1], we
discussed that the definition of relative density does not seem to be replace-
able by a simpler concept (e.g., by the relative density as defined in [19]).
It also seems that the weight function w cannot be avoided, because this
function allows to distinguish the relevant part of the set structure 2L.

An issue that we were not able to settle is whether the equalities ρv(L) =
ρwv (L) and ρc(L) = ρwc (L) also hold for constraint languages that contain
unary constraints. Under the assumption that no repetitions of constraints
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in instances are allowed (which is a reasonable assumption since otherwise we
can simulate the constraint weights by including the same constraint into an
instance several times), we are not aware of any partial result in this direction.
We conjecture that the equalities ρwv (L) = ρv(L) and ρwc (L) = ρc(L) do not
hold in general.

We would also like to make a few remarks on constraint languages with
an infinite number of constraint types (but a finite domain). Such constraint
languages include in particular CNF formulas with unbounded clause size
(clauses are viewed as constraints). Theorems 5 and 6 translate smoothly to
this setting. In (1), we replace the minimum with the infimum and require
the weight function w to be non-zero for only a finite number of constraints
of R. Note that the maximum in (1) is always attained, since for every choice
of w, the CSP instance is finite. If π(L) is defined in this way, the proofs of
Theorems 5 and 6 can be altered as follows. We consider the weight function
wL that is ε-close to π(L) instead of that which minimizes (1), and construct
a k-consistent instance with weight w′

0 and with an optimum solution of
weight at most (1 + ε)2π(L)w′

0. This yields the statements of both Theorem
5 and Theorem 6. On the other hand, we do not know whether Theorem 7
holds in this setting, too. The main obstacle is that the bound on the size of
a set of inconsistent constraints involves the maximum arity of a constraint
of an input instance, which may not be bounded.
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[7] Z. Dvořák, D. Král’, O. Pangrác: Locally Consistent Constraint Sat-
isfaction Problems. In: Proc. of the 31st International Colloquium on
Automata, Languages and Programming (ICALP), LNCS Vol. 3142,
Springer-Verlag Berlin (2004) 469–480.
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[16] P. Hell, J. Nešetřil: Graphs and Homomorphisms. Oxford University
Press, 2004.
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