DUALITIES IN FULL HOMOMORPHISMS
RICHARD N. BALL, JAROSLAV NESETRIL AND ALES PULTR

ABSTRACT. In this paper we study dualities of graphs and, mo-
re generally, relational structures with respect to full homomor-
phisms, that is, mappings that are both edge- and non-edge-pre-
serving. The research was motivated, a.o., by results from logic
(concerning first order definability) and Constraint Satisfaction
Problems. We prove that for any finite set of objects B (finite
relational structures) there is a finite duality with B to the left.
It appears that surprising richness of these dualities leads to in-
teresting problems of Ramsey type; they are which are explicitly
analyzed in the simplest case of graphs.

INTRODUCTION

We will illustrate the motivation and the type of results to be pre-
sented by the simple example of finite binary relations (i.e. directed
graphs). Given such relations G = (X, R) and G' = (X', R') a mapping
f: X — X' is said to be a homomorphism G — G’ if

(z,y) € R= (f(z), f(y)) € R

Homomorphisms capture many combinatorial properties of graphs and
relations, see [7]. Of particular interest is the following class defined
for a fixed relation B:

{G | there is an f : G — B}.

In the particular case when B is the complete graph (symmetric, with-
out loops) with k vertices this is the class of all k-colorable graphs;
consequently, more generally, for a relation B we speak of the class
of all B-colorable relations, or the B-color class. Considering more
general objects (n-ary relations, relational systems) we obtain this way
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representations of the so called Constraint Satisfaction Problem. This
is why we denote the above class by

CSP(B).

CSP(B) can be represented in a complementary way by forbidding
(instead of requiring) homomorphisms, namely as

Forb(A) = {G | thereisno f: A — G with A € A}

(it suffices to take A = {A | there is no f : A — B}). We are interested
in the cases when such an A can be chosen finite. This cannot be done
for every B (consider for example the class of all 3-colorable graphs; the
set of minimal forbidden relations is then infinite and coincides with so
called 4-critical graphs), but it is not quite a rare phenomenon. If we
have such a finite A we speak of a finite duality

Forb(A) = CSP(B).

We also say that B has finite duality. Finite dualities were defined in
[13]. They are being intensively studied from the logical point of view,
and also in the optimization (mostly CSP) context. The following has
been recently proved (as a combination of results of [2, 12]):

Theorem. Let B be a finite binary relation. Then the following
statements are equivalent.

(i) The class CSP(B) is first order definable;
(ii) B has finite duality; explicitly, there exists a finite set A such
that Forb(A) = CSP(B);
(iii) Forb(A) = CSP(B) for a finite set A of finite oriented trees.

In fact similar theorems hold for more general finite relational struc-
tures. Thus, finite dualities for finite relational structures are well
characterized, and it can be shown that they abound.

In a sharp contrast with that, there are no finite dualities for (gen-
eral) finite algebras. It has been recently shown [9] that there are no
such dualities at all. Namely, one has

Theorem. For every finite set A of finite algebras of a given type
(ny)ier and every other finite algebra B there exists a finite algebra A

such that A € Forb(A) and A ¢ CSP(B).

(This concerns the standard homomorphisms f : (X, (@;)ier) —
AP e
) i /i€

(X', (a})ier) satisfying

(%) r=0oa;(x1,...,0,) = f(2) =a(f(z1),..., f(x))).)
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This is a striking difference. The aim of this paper is to study the
situation of the relations and relational systems with a type of ho-
momorphisms that are structurally closer to the homomorphisms of
algebras then to the standard ones, but, surprisingly, admit plenty of
finite dualities. Homomorphisms of algebras automatically satisfy more
than (x): for instance if f is one-one, this requirement is equivalent to

(ox)  w =gz, wn,) & f() = o(fla),- -, flan))-)

Now given finite relations G = (X, R) and G’ = (X', R') a mapping
f: X — X' is said to be a full homomorphism G — G’ (see [7]) if

(z,y) € Re (f(x), f(y) € R

(similarly for m-ary relations and relational systems, see 1.2 below).
The category of all relations and all their full homomorphisms is much
more restrictive than the category of all homomorphisms but on the
other hand it is more sensitive to the scheme of dualities as seen from
the following theorem (a special case of our main result on general
relational systems proved in Section 3).

Theorem. For every relation B there exists a finite duality

FOI‘bfu” (.A) = CSPfu” (B)

(The classes Forby,(A) and CSPy,(B) are defined in a complete
analogy with the classes above, only with full homomorphisms instead
of the general ones.)

The paper is organized as follows. In Section 1 we review the ba-
sic definitions. We treat our problems in a fairly general categorical
setting; this also explains our detailed exposition in this introduction.
In Section 2 we consider the dualities still in the abstract way, and in
Section 3 we prove our main result (3.3). In Sections 4 an 5 we deal
with the binary relations and then with the even more special classes
of undirected graphs; in particular we have a procedure that produces
(albeit not very effectively) finite “left hand sides” to the CSP(B)’s,
or even the CSP’s of finite systems By, ..., Bg.

1. PRELIMINARIES

1.1. We will be concerned with very special categories of a combi-
natorial nature. In particular, we will typically assume the following
properties.
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(bi-LocFin) The category is bi-locally finite, that is, for any object A
there are (up to isomorphism) only finitely many monomorph-
isms B — A and only finitely many epimorphisms A — B.

(wFac) The category has a weak (epi-mono) factorization, that is, ev-
ery morphism f can be written as f = m-e with m a monomor-
phism and e an epimorphism.

(Ch) The category has choice, that is, every epimorphism is a retrac-
tion.

Only basic facts and notions from category theory (monomorphisms,

epimorphisms, retractions and coretractions, products) are assumed;
see, for instance, the opening chapters of [10].

1.2. An n-ary relation on a set X is a subset R C X", and a mapping
f: X — Y is a homomorphism with respect to R, S if

(@1, z) €ER = (f(@1),..., flan)) €5
The mappings with the (much) stronger property

(x1,...,2p) €ER <& (f(z1),...,f(x,)) €8

will be called full homomorphisms.

A (finite) type is a finite collection A = (n);er of natural numbers,
and a relational structure of type A on X is a collection R = (R;)ier
where the R; are ng-ary relation on X; (X, R) is then referred to as
a relational object. A (full) homomorphism f : (X, R = (R¢)ter) —
(Y, S = (Si)ier) is a mapping that is a (full) homomorphism with
respect to Ry, Sy for each t € T.

The category of all relational objects of type A and full homomor-
phisms will be denoted by

Relfu” (A) .

The category of undirected graphs (resp. connected undirected graphs)
with full homomorphisms will be viewed as a full subcategory of
Relpn((2)); that is, the set of edges is represented as a symmetric
antireflexive binary relation. It will be denoted by

Graphg,, resp. ConnGraphy,.

Note that the mentioned categories satisfy all the properties from 1.1.

1.3. With a category C we will associate the preordered class C =
(C,—) of the objects from C with the preorder

A—B =4 df:A— BinC(C.
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Thus, for a set A of objects of C,
TA=4{CeC|FJAc A A—-C}, |A=4{CeC|JAcA C— A}

We will write
A~B if A—Band B — A

and speak of ~-equivalence classes or simply of equivalence classes.
The fact that there is no f : A — B will be indicated by

A B,

1.4. An object A of a category C is said to be reduced, or a core, if
each f: A — A is an isomorphism.

Lemma. Let C satisfy (bi-LocFin), (wFac), and (Ch). Then

1. the sets C(A, B) of morphisms A — B are (up to isomorphism)
finite, and

2. an object A in C is reduced iff there is no proper (that is, non-
isomorphic) retraction out of A.

Proof. 1 is trivial.

2: If Aisreduced and r : A — B is a retraction, with r-m : B — B
identical, then we have that m-r : A — A is an isomorphism and hence
also 7.

Now suppose that f : A — A is not an isomorphism. If when
factored as f = me, m monic and e epic, e is not an isomorphism
then we have found a proper retraction out of A. So suppose that
e is an isomorphism, so that f is a monomorphism. By 1 there are
integers n, k > 0 such that f"** is equivalent to ", say f"h = frt*
for an isomorphism h. Since f™ is a monomorphism, ¥ = 1. But then
f is both the left factor of an epimorphism and the right factor of a
monomorphism, and hence is itself both. And in a category with (Ch),
that implies that f is an isomorphism. [

1.5. Proposition. If a category C satisfies (bi-LocFin), (wFac),
and (Ch) then each ~-equivalence class contains (up to isomorphism)
exactly one core object.

Proof. 1f two reduced objects A and B are equivalent then then they
are, trivially, isomorphic.

Now let A be any object. Consider the class M of all the coretrac-
tions m : A,, — A and (pre)order it by m < n iff there is an f such
that m = nf. By (bi-LocFin), M is, up to isomorphism, finite and
hence there is an m € M minimal in <. Then A,, cannot admit a
proper retraction A,, — B, for such a B would be smaller in <, and
hence it is reduced by 1.4. [
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1.6. Proposition. Let C satisfy (bi-LocFin), (wFac) and (Ch).
Then

1. if A is reduced then every A — B is a monomorphism, and

2. for every A and every property P satisfied by A there exists an
Ag — A minimal in — such that it still satisfies P.

Proof. 1. Set, by (wFac),

f=4 " B)
By (Ch) e is a retraction an by 1.4 it is an isomorphism.

2. By 1 and (bi-LocFin) we have, in —, under each object only
finitely many ~-classes. Hence we have minimal objects with any prop-
erty Q(B) that is satified by some object (here: Q(B) =“B — A and
P(B)”). O

1.6.1. Remark. Note that in the categories from 1.2, monomor-
phisms are precisely the embeddings of induced objects. Thus, search-
ing for objects smaller then a given one can be restricted to its subob-
jects.

2. DUALITIES AND RAMSEY LISTS

2.1. Let A be a subclass of obj C, the class of objects of C. Write
X—-A for dJAc A, X — A,
A—X for JAe A, A— X,
X +A for VAc A X + A,
A+ X for VAe A A+ X.

Set
Forb(A)={X | A+ X}, CSPB)={X|X — B}
and N(A)={X| X + A}.
Note. Forb(A) resp. CSP(B) are, of course, understood in the
category discussed. Thus, if we are in the categories of full homomor-

phisms, they designate the classes Forbg,(.A) resp. CSPgqy(B) from
the Introduction.

A finite duality in C is a couple A, B of finite subsets of obj C such
that

A+ X iff X — B, thatis, Forb(A)= CSP(B).

2.2. Proposition. We have
NB)+ X iff X—B
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and
A+ X iff X — Forb(A).
In other words,
Forb(N(B)) = CSP(B) and Forb(A)= CSP(Forb(A)).

Proof. The desired condition A4 4 X iff X — B coincides in the
general setting of a preordered class (P, <) with the equality

P\ 1A= |B.

Now we have Forb(A) = P\ A and N(B) = P\ |[B. Thus P\ (T
N(B)) = P\ (P\ |B) =|B, and P\ 1A= [(P\ 1A) =|Forb(A). O

2.3. An object A will be called critical with respect to a class of
objects B if

e it is reduced,

e A4 B, and

o if A/ — A4 A then A — B.
Thus, since we can restrict ourselves to reduced objects, by 1.6 the
third condition amounts to requiring that every proper subobject A’ of
A minorizing an element of B.

Set
M (B) ={X € N(B) | X critical w.r.t. B}.

We have

2.3.1. Proposition. IfC is a category satisfying (bi-LocFin), (wFa)
and (Ch), then
MB) + X iff X—B

Proof. Use 2.2 and 1.6.1: there is an A € N(B) with A — X iff
there is such an A in Ny(B). O

2.4. The Propositions in 2.2 and 2.3.1 are not necessarily finite
dualities, since neither Forb(A) nor N (A) nor Ny(A) is necessarily
finite just because A is finite. However, we will see that in the categories
we are interested in, a finite B can always be extended to a finite duality

Forb(A) = CSP(B). This leads to the following definition.

2.5. A collection of reduced objects A = {A;,...,A,} is said to be
a Ramsey list, or, briefly, to be Ramsey, if there is a finite F C obj C
such that for each core X that is not isomorphic with an object from
F, some of the A; is isomorphic to a subobject of X. (The reader can
consult [11] and [5] for general background of Ramsey theory.)
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2.5.1. Proposition. Let C satisfy (bi-LocFin), (wFac) and (Ch).
Then a finite A is Ramsey iff Forb(A) is a finitely generated downset,
that is iff there 1s a finite duality

A+ X iff X —B.

Proof. If there is such a duality then it suffices to take for F the set
of all subobjects of the elements of B.
On the other hand, if A is Ramsey then A - X iff

X —Forb(A)=X—-{X|AbX}=X—-{X|A+Xand XeF}. O

3. THE CATEGORY OF RELATIONAL SYSTEMS

3.1. Convention. In this section we will deal with the finite dual-
ities in Relg, (A). Just to avoid too many indices we will present the
proof in 4.3 as if for one n-ary relation. If one reads n; for n and R;
for every relation constituting the relational system, and if one does
everything simultaneously, one obtains correctly the general result.

3.2. If B = (X, R) is an object of Relg (A) write X = Xp, R = Rp.

Proposition. Let B be a finite set of objects of Relgy(A). Let
A = (ny)er and let m > max, n,. Then, with possibly finitely many
exceptions, every A critical with respect to B can be embedded into an
object of Relay(A) carried by X™ where

X:XBU{QJ}

for some B € B and w ¢ Xp.

Proof. Consider an A critical with respect to B. For every a € A
there is a B, € B such that A\{a} — B,. If Ais sufficiently large, there
are distinct aq, ..., a,, such that the B,, coincide. Denote B = B, the
common value.

Since A is reduced, it suffices to find a full homomorphism from A
into an object as stated.

Recall the convention 3.1. For every ¢« = 1,...,m there is a full
homomorphism

fi i A\ {a;} — B.
Set
Xpr =X (=XpU{w}) and X,+ =X,
and define

(3

by setting f;"(x) = fi(z) if z # a;, and f;" (a;) = w.

ff:XA*_)XB*
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Now put
(Y1, .- Yn) € RB;r iff either (y1,...,yn) € Rg oratleast oneof they;’s is w.
Further define the relation for A by
(21, 20) € Rys M (f7(21), .., fi7(2n)) € Rps,
thus making each
fim A — Bf
a full homomorphism. Furthermore, it is obvious that the maps
fitA— B

defined by the same formula are homomorphisms, albeit not full, and
hence we have a homomorphism

f:A—>1T[B;r
i=1

defined by requiring p; - f = ﬁ for the natural projections.
Now this f is full. Indeed, let (f(z1),..., f(z,)) be in the relation
of the product. Then for every 1,

(fi7(@1), s fi () = (pif (21), ., pif (z0)) € Ry

Since m > n there exists an ¢ such that none of the z;’s is a;, hence

(fiJr(xl)o R fl+($n)) = (fz(xl)a ey fz(xn)) S RB

Since f; is full, the statement follows. [

3.3. Thus, Ny(B) is finite and we obtain as an immediate conse-
quence

Theorem. In Relg, (A) there exists for every finite set of objects B
a finite system of objects A and a finite duality

A+ X gff X—B.

3.4. Let us briefly discuss the inverse problem: given a finite A, does
there exists a finite B such that Forb(A) = CSP(B)? The answer is
in general negative. For instance, in connected graphs there are only
four such A containing less then three objects — see 5.3.1 and 5.4.

Nevertheless, we can isolate a necessary condition. The key to this
is a definition of an “unavoidable” set of “complete systems”.

Let (X,<) be a linearly ordered set. Let (ay,...,ax), (b1,...,b)
be two k—tuples of elements of X. We say that these tuples are
equivalent if there exists a monotone (with respect to <) mapping ¢ :
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{ai,...,ax} — {b1,..., by} such that ¢(a;) = b; for every i = 1,... k.
This equivalence will be denoted by ~. The equivalence classes of ~
are called types (of the arity k). A type o’ is the mirror image of o if
o’ corresponds to the tuple (ag,...,a;).

Let ¥ be a set of order types (a type-set). By K> we denote the
following relational object (X, R):

X ={1,...,n} and the relation structure consists from all tuples of
X with a type 0 € ¥ (with respect to natural ordering of X). KZ is
called a complete object (with type set X2).

The type-set ¥ and the complete object K> are said to be trivial
if (for every n) the object K> is full homomorphism equivalent to the
singleton complete object Ki°. Note that there are many trivial type-

sets (271 in Relq(A) with |A| = |T).

Lemma. Let ¥, % be sets of types. Then K> — K> iff one of the
following possibilities occur:
(i) X =Y is a trivial type-set;
(il) m < n and either ¥ = X' or X' is the mirror image of ¥.
Proof follows by observing that from any non-trivial type-set ¥ we can
reconstruct the ordering of X (for any complete object K5 on X). O

Finally, we say that a set = of type sets is a majorizing set (in
Relq(A)) if for every non-trivial type-set X (of relations in Relg (A))
there exists a set X/ € = such that either ¥ = ¥/ or 3’ is the mirror
image of X..

We have the following

Proposition. For a finite set A of objects of Relgy (A) the following
holds:

(i) If there exists B € Relgy(A) such that Forb(A) = CSP(B);
then A contains a set of non-trivial complete objects with ma-
jorizing set of set-types.

(ii) For every set A with majorizing order types there ezists a finite
set A" of non-trivial objects such that Forb(AUA") = CSP(B)
for some B.

Proof. (i): Suppose the contrary. This equivalently means that there
exists a type set X distinct from all the non-trivial set-types of all
complete (arbitrarily ordered) objects in A. As any subobject of any
complete object K> is again complete object with the same set-type
we obtain that, using preceding lemma, that there is no finite duality
with B.

(ii): Let = be a majorizing set of set-types. Let n be the maximal
order (universum size) of an object in A. Assume Forb(.A) is non
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empty and let B € Forb(A). Put A" = Ny(B). A’ is a finite set by 3.3
and clearly Forb(AU A’) = CSP(B). O

Remark: We may choose B as the disjoint union of nontrivial com-
plete objects K> | for K> € A together with the trivial forbidden ob-
jects in A. Then the complete objects in Forb(.A) and Forb(A U A’)
coincide. The structure of the non-complete Ramsey lists is more com-
plex and it will be investigated in the next sections.

On the other side, by iterating the Ramsey’s theorem we see easily
that every large object of Relg,(A) contains a large complete subsys-
tem. The condition (i) of the Lemma is responsible for the difficulty in
characterizing Ramsey lists. Let us finally remark that the properites
of classes N (A) are closely related to the intensively studied Ramsey-
type problems, particularly to Erdés - Hajnal problem; see [1].

4. ONE BINARY RELATION

The proof of Proposition 3.2 presents a finite system of objects con-
taining the desirable NVy(B). Tt is, however, very large; listing the actual
No(B) would be very hard.

In this section we will consider the simple (but important) case of
one binary relation. Here, the listing is more feasible. In the next
paragraph we will then discuss Ramsey lists in classical graphs and
provide several concrete examples.

4.1. We will write Relg, for Relq((2)). The objects of Relg, can
be interpreted as oriented graphs with possible loops.

4.2. The object B+. Let B be an object of Rels,. Choose two
distinct elements w,w’ ¢ Xp x {0,{0},{1},{0,1}} and set
Xp+ = (Xp x {0,{0},{1},{0,1}}) U{w,w'},
Rpi = {(zu,yv) | zRpy, u,v C {0,1}} U{(v',0')}U
U{(z{0},w), (x{0},w) | x € Xp}U
U{(w,z{1}), (W, z{1}) | x € Xp}U
U {(z{0,1},w), (w, z{0,1}), ({0, 1},&), (o', 2{0,1}) | x € Xp}.

4.3. Proposition. Let A € Ny(B) in Relgy. Then thereis a B € B
such that A — B+ (and A is isomorphic to a subobjectof B+ ).

Proof. Choose an a € X4 and consider the object C' carried by
Xa \ {a}, with the relation inherited from A. Then, as A is core, C'



12 RICHARD N. BALL, JAROSLAV NESETRIL AND ALES PULTR

is in — strictly smaller than A and hence there is a B € B and a
morphism

f:C— B.
Define a mapping
g:A— B+
by setting
W' if aRpa,
9la) = {w otherwise,
and for z € C,

f(x)D if v ¢ aRaU Raa,
f(x){0} if = € Raa\ aRy,
f(x){1} if 2 € aRs\ Raa,
f(x){01} if z € RaaNaRy.

Let xRay. If 2,y # a then f(x)Rpf(y) and hence g(x)Rpig(y). If
rRaa then g(z) is f(x){0} or f(x){0,1}, in both cases ---Rpiw =
g(a) or ---Rpyw = g(a). Similarly for aRy.

Now let g(z)Rpyg(y). If g(x),9(y) # w,w’ then z,y # a and
f(@)uRpy f(y)v, hence f(x)Rpf(y) and finally zRay. Let g(z) = w
or g(xr) = w' (so that x = a) and ¢(y) # w,w’. Then ¢g(y) = zu with
0 € u, and xR a. Similarly if g(z) = w or g(y) = v’ and g(x) # w,w’.
when ¢g(x) = zu with 1 € u, and aRax. The only remaining case is
g(x) = g(y) =w'; Then © =y = a and aRga. U

g(x) =

4.4. Thus constructed B+ can be applied to determining the Ram-
sey lists of finite B in categories such as

e Graphg,, of classical graphs, that is, symmetric antireflexive
(X, R),

e ConnGraphg,, of connected classical graphs,

e OrGraphy,, of oriented graphs, that is, antisymmetric antire-
flexive (X, R),

e 'Tour, of tournaments, that is, antisymmetric antireflexive
(X, R) in which for any two distinct x,y either xRy or yRz,

e Posets, of posets, that is, transitive antisymmetric (X, R),

and their variants with xRz allowed.
In fact, we typically do not even need to search the whole of the

B+ since (unlike B+ itself) the images g[A] stay in the category in
question. Thus,

e in the antireflexive cases we can drop the w’,
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e in the symmetric case we can do with Xp x {0, 2} instead of

the whole of X5 x J(2),
e in the antisymmetric cases the Xp x {0}, {0}, {1}} will do.

The object B+ from 4.2 typically does not stay in the category C
in question but this does not impede the validity of the reasoning in
4.4 — with one exception. This concerns ConnGraphy,,: while the
properties of the whole of B+ are not relevant, it is essential that the
object C'= A\ {a} does stay in C. Now unlike all the other categories
above, ConnGraph;s, does not have the property that every subset of
an object carries an object. But luckily enough, in every connected A
with more than one vertex there is an a such that A\ {a} is connected.
Thus, we can use the proof of 4.3 again, only the a € A cannot be
chosen arbitrarily.

Consequently we have

4.4.1. Proposition. Let C be any of the categories from 4.1. Let
A € No(B) in C. Then there is a B € B such that A is isomorphic to
a subobject of B+.

4.5. Note. Already in 3.3 (resp. 3.2) we had a finite collection of
objects containing all the elements of NVy(B) as subobjects. Thus, one
can say that we could list NVp(B) by means of a finite search; but of
course the number of cases and individual checkings is prohibitive and
one can seldom expect satisfactory results obtained by brutal force. In
the binary case just discussed, and particularly in the case of classical
graphs to be dealt with in the next section, the starting B+’s are sim-
pler and we will be able to produce the lists in several basic cases. The
existence of an efficient search procedure is an open problem, though.

5. RAMSEY LISTS IN SYMMETRIC GRAPHS

5.1. First, observe that in the cases of Graphy,, and ConnGraph,
the B+ from 4.2 and 4.3 can be reduced to the B+’ defined as follows.
Choose an element w ¢ B x {0,1} and set

Xpw = (B x {0,1}) U {w}.
Rp. ={(zi,yj) | zRpy, i,j = 0,1} U{(z],w), (w,z1) | x € Xp}.

5.1.1 Now we can find all the elements of Ny(B) in among the sub-
graphs of the B4+ with B € B. Such a search is not very effective, and
requires a lot of checking. For simple B’s, however, it does yield the
lists fairly smoothly.

A more effective procedure remains an open problem.
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5.1.2. Note that in our case an object is core iff

Rr=Ry = x=y.

5.2. Some particular graphs. We will use the following symbols
for particular graphs (here, “ij” indicates that “both (7, j) and (j,1)
are in the relation”)

o K, =({0,1,...,n—1},{ij | i # j}) is the complete graph with

n vertices,
e P, is the n-path ({0,1,... ,n}, {01,12,...,(n — 1)n}),
e (), is the n-cycle ({0,1,...,n—1},{01,12,...,(n —1)0}),
e Y = ({0,1,2,3}, {01,12,23, 13})
o« T=({0,1,2,3,4,5}, {01, 12,23, 34, 25}),
o A—({0,1,2.3,4,5). {01, 12.23,34.45, 14}),
o and B = ({0,1,2,3,4,5}, {01, 12,23, 34, 45, 14,05}).

5.3. Lemma. FEvery Ramsey list in ConnGraphyg,, contains a
complete graph K, and a path P,,.

Proof. All complete graphs are core. Hence some of the A; has to
exclude a complete graph K. Thus, A; — K and hence A; = K,
since all subgraphs of a complete graph are complete.

Similarly with the paths, where all connected subgraphs of paths are
paths, and the only one that is not core is P,. [

5.3.1. Corollary. In ConnGraphy,,, the only one-element Ram-
sey lists are { K1} (={Py}) and { Ky} (={P1}).

5.4. Proposition. There are only two two-element Ramsey lists in
ConnGraphyg,,, namely { K3, Ps} and {K3, P,}.

Proof. By 5.3, a two element list is a {K,, P,} with n,m > 3.
Consider the graphs

Sk:({a,bi,cz' ‘ izl,...,k},{abi,aci,bici ‘ Zzl,,k})

where a, by, cq, bg, Co, . .. are distinct elements. S, are core and infinitely
many, and if n > 3 and m > 4 we have K,,, P,, b Sk. Thus, {K3, Ps}
and {K3, Py} are the only alternatives left. The first is dual to {P;}
and the second to {P3, A} which is easy to check. [

5.5. While by 4.3 for every finite B there is a finite .4 such that
A+ X iff X — B, the reverse does not hold, and indeed the finite
A for which we can have a finite B to form a duality are rare.

Still, we have infinitely many three-element Ramsey lists.
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Proposition. We have the duality in ConnGraphy,,
{Kpni1, P, Y}y b X iff X — K,.

Proof. Let M — K,+ be minimal (core) such that M + K,,. Define
M;, » = 0,1 by setting

M; x {i} = M N (K, x {i})

(thus, the set of vertices of M is (Mg x {0}) U (M; x {1}) U{w}).
I. Let My = 0. Then My = K, and M = K, (else M = K, with
k<nand M — K,).

If My # 0 then M, # () as well, by connectedness.

I1. Let My = {z}. Then we cannot have MyNM; = () since otherwise
x ~ w and M is not core. Thus, x € M; and by connectedness there

has to be another y € M; \ {z} and there is 20, y1, 21, w isomorphic to
Y.

III. Let |My| > 2. If there exist distinct z,y, z with x,y € M, and
z € M, we have z0, 90, 21, w isomorphic to Y.

Thus, we are left with My = {z,y} D My # 0, x # y, say, © € M;.
Then we have the path 20,90, z1,w. [

5.6. Lemma. Fuvery connected graph that contains Cy, that does
not contain Cs, and that is core contains A or B (recall 5.2).

Proof. Represent the 4-cycle as ({1,2,3,4},{12,23,34,41}). One of
the vertices 1,3, say 1, has to be connected with an x not connected
with the other, and to avoid a triangle, it cannot be connected with 2
and 4 either. Similarly we can assume (by symmetry) a y connected
just with with 2. We cannot have x = y in which case there would be

a triangle. Now if z and y are not connected we have A, if they are we
have B. [

5.7. Lemma. Fvery tree that is not core is either a path or T

Proof. 1If it is not a path then there is a vertex x with degree at least
three. If two of its neighbours were leaves, the would be equivalent,
and our tree would not be core. [

5.8. Proposition. For paths we have the dualities
{P;,C5,A,C5} b X iff X — P,
and forn > 4,
{Py1,T,C5,A,B,C5,...,Cin}t + X iff X — P,.

Proof. G 4 P, if and only if it either contains a cycle or is a tree
that cannot be mapped into P,. Since P,,; 4 P, and P,,; — Cj
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for k > n + 3, the C,, with £ > n + 3 are not minimal. This, to-
gether with Lemma 5.6 (for the case of a 4-cycle) accounts for the
C3, A, Cs, ..., Cphis part of the left hand side (all the C3, A, Cs, ..., Cpio
indeed are induced subgraphs of P,+; B contains P, which will be ex-
cluded next).

[t remains to determine the acyclic minimal G 4+ P,. There is, of
course, P,.1, and the only remaining candidate is 7', by lemma . Now
T does not fit into P3+ (and even if fitted, one has Py, — T and hence

it would not be minimal anyway), but fits into any P,+ with n > 3.
O

5.9. By exactly the same reasoning we obtain
Proposition. For cycles we have the dualities
{P, 03, Ay £ X iff X — G,
and for n > 6,
{P,1,T,C5,A,B,Cs5,...,C, 1} + X iff X —C,.

5.10. Remarks. 1. Note the similarities of the “left duals” of the
paths and the cycles. Compare for instance the dualities

{P5,T703,A,B,C5,06}—|—>X lﬁ X—>P4

and

{PG,T, Cg,A,B,Cg,,CG} *|—>X llcf X — 07.

2. In the cycles we have started with the C5 (anomalous by the ab-
sence of T') and proceeded with the more regular C,,, n > 6, in analogy
with the equally anomalous P; proceeded by the equally regular P,,
n > 4.

We have the extra cases of n = 3,4. Now (3 has been dealt with
in 5.5, since C3 = K3, and we could say that C} is of no interest since
it is not core. The latter is, however, just trying to escape the tedious
analysis of X — A and X — B : indeed, in all the formulas above, A
is really the way to treat (and prohibit) the four-cycles (see 5.6), and
should be viewed as such.

3. The duality of X — (5 appeared as one of the characteristics of
monochromes in exact Gallai cliques in [3].

5.11. Another example. Tedious checking of the subgraphs of
A+ (A from 5.2) yields the duality

{P4,03,C5,E}—|—>X ifft X — A.
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E stands for “exotic”. It is
({0,1,2,3,4,5,6,7}, {01, 12,23, 34,45, 14, 17, 26, 46, 67}).
a relatively complex graph (in this context).

5.11.1. Remark. This example indicates that even in simple cases
the listings are not always quite easy. But there is also another impor-
tant phenomenon. In all the previous cases, the objects of Ny(B) had
at most |B| 4+ 1 vertices. Here we have eight vertices to the B’s six,
showing that the size of the critical graphs can increase by more. The
estimate of the sizes of the A € Ny(B) in terms of |B| seems to be an
interesting problem.

5.12. In the larger category Graphyg,, the system Ny(K,) is simpler
than that of 5.5. It contains an element smaller than both Y and Ps,
namely

P+ P,
where G+ H indicates (and will indicate in the sequel) the categorical
sum (here, the disjoint union) of the two graphs.

Consequently we obtain

Proposition. In Graphg,, we have the dualities
{Kn_|_1,P0—|—P1}*\—>X Zﬁ X—>Kn

Thus, in contrast with Proposition 5.4, if we consider disconnected
graphs, there are infinitely many two-element proper Ramsey lists.

5.13. Duals of paths in Graphs,. While admitting disconnected
graphs simplified the dual Ramsey lists of the complete graphs, in the
case of the paths the situation gets rather more complex. Let us see
what happens.

The ..., T,C5, A, B,Cs,...,C,.o part of the Ramsey list from 5.8
remains intact: each proper subgraph of any of the graphs, connected
or not, can be mapped into P, (for the case with n > 6; for the shorter
paths, the Py+ P+ P; contained in T has to be discussed extra). Thus,
we have to analyze the (possibly disconnected) M C P, ; minimal with
respect to the property M -+ P,.

We have the following obvious observations:

5.13.1. e both of the endpoints of P,.1 are in A, and no two of the
vertices in P,y1 \ A are neighbours (else we obtain a subgraph
of o),
e none of the resulting connected intervals is isomorphic to P
(else the resulting A could be mapped into P, ),
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e at most one of the resulting connected intervals consist of a
single point,

e and the connected intervals constituting A can be arbitrarily per-
muted.

Denote by
S(n)

the collection of the (isomorphism types of) the M C P, minimal with
respect to the property M 4 P, 1 (such M’s will be represented by
means of sums of paths), and by

So(n) resp. Si(n)

the sets of the elements of S(n) containing resp. not containing the
summand F,.
Further denote by

§-(n)

the collection of the M C P, minimal with respect to the combined
property

M + P, 1 and M has not P for a summand.
Note that SY(n) is typically bigger than S;(n): for instance we have
Py € SU(3), P e SP(5)
but not in &;(3) resp. S1(5).
o From 5.13.1 we easily infer that (if n is sufficiently large)

S n) = (PO—I-SD(n—Q))U(P1+81(n—3)),
S9(n) = (Py+8(n—3)) U (P3+S%(n—5) U (P +S7(n — 7))

(where P + S stands for {P + S | S € S}).

Note. In the second formula one stops with the third summand
since all the P, with & > 6 already contain non-trivial sums
without F,. In fact, it seems that for n sufficiently large one
obtains all the cases already in the first summand (the other
two containing just repetitions).
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As examples we can now compute the S(n) for small n (kG indicates
n—times

——~—
G+ ---4+ G ). An easy checking yields:

S(1)={P}=8(1)=8"( ) o(n) =0,

S(2) =0 =38(2) = 5i1(2) = S7(2),

SB)={P+ P} =83 ) 1(3) =0, SD( 3) = {5},
S4)={2P} =84) = (4)> So(4) =

SGB)={F+ B} =38(5), Si(5) = @SD( 5) ={Ps},

S(6) = {Py + 2P} = So(6), S1(6) =0, S7(6) = {P, + Ps},

S(7) ={Py+ Ps, 3P}, So(7) = {Py+ P5}, Si(7) = S5(7) = {3P,}.

Further we can proceed by the formulas above

S8) ={P + P+ Ps},
SH(8) = {P, + P5,2P3},
S09) ={Py+3P},
SY(9) = {2P, + P},
S(10) ={Py+ P+ D5, Po+ 2P, 4P},
S9(10) = {4Py, P+ Ps},
S(11) ={Fy + 2P, + P3},
SY(11) = {2P, + P5, P, + 2Ps},
S(12) ={Py+4P,, Py+ Ps + Ps},
SY(12) = {3P, + Ps, 2Ps},
S(13) ={Py+2P 1+ P5, By+ P, +2P3, 5P},
S9(13) = {5P,, P\ + Ps, 3P},
S(14) ={Py+ 3P, + P3, Py + 2P5},
S(14) = {3P, + P5, 2P + 2P},
S(15) ={Py+5P, B+ P+ Ps+ P, Py +3Ps}
etc. Thus, the resulting Ramsey lists corresponding to the paths do
not seem to be more transparent than those in the connected case.

Note. After this paper was written we learned that some re-
lated results for graphs were independently obtained by P. Hell
and its collaborators. See [6] for a survey of these results.
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