
Computing representations of matroids of

bounded branch-width

Daniel Král’∗

Abstract

For every k ≥ 1 and two finite fields F and F ′, we design a polyno-
mial-time algorithm that given a matroid M of branch-width at most
k represented over F decides whether M is representable over F ′ and
if so, it computes a representation of M over F ′. The algorithm also
counts the number of non-isomorphic representations of M over F ′.
Moreover, it can be modified to list all such non-isomorphic represen-
tations.

1 Introduction

Algorithmic matroid theory has attracted recently a lot of attention of re-
searchers in particular in the area of algorithm for matroids with small width.
Matroids are combinatorial structures that generalize the notions of graphs
and linear independence of vectors. Similarly, as in the case of graphs, some
hard problems (that cannot be solved in polynomial time for general ma-
troids) can be efficiently solved for (representable) matroids of small width.
Though the notion of tree-width generalizes to matroids [14], a more natural
width parameter for matroids is the notion of branch-width. Let us postpone
a formal definition of this width parameter to Section 2 and just mention
at this point that the branch-width of matroids is linearly related with their

∗Institute for Theoretical Computer Science (ITI), Faculty of Mathematics and Physics,
Charles University, Malostranské náměst́ı 25, 118 00 Prague, Czech Republic. E-mail:
kral@kam.mff.cuni.cz. Institute for Theoretical Computer Science is supported by the
Ministry of Education of the Czech Republic as project 1M0545.

1

tree-width, in particular, the branch-width of a graphic matroid is bounded
by twice the tree-width of the corresponding graph.

The results obtained so far suggest that the algorithmic results general-
ize from graphs to matroids representable over finite fields but not to ma-
troids that can be represented only over an infinite field or which are not
representable at all. This is consistent with the structural results on ma-
troids [5–9] that also suggest that matroids representable over finite fields
are close to graphic matroids (and thus graphs) but general matroids can be
quite different.

In the global perspective, one would like to be able for a matroid (with or
without its representation) to decide whether it has a bounded branch-width,
whether it is representable over a particular finite field and to compute one
of its (possibly more) representations. In particular, the following problems
naturally arise in this area:

1. Is it possible for k ≥ 1 to decide in polynomial time whether a branch-
width of a given matroid M is bounded by k and, if so, to find a
branch-decomposition of M of small branch-width?

2. Is it possible for a field F and k ≥ 1 to decide in polynomial time
whether a matroid of branch-width at most k is representable over F?

3. What problems (otherwise intractable) are polynomial-time solvable
for matroids representable over finite fields that have bounded branch-
width?

Another issue is how the matroid M is presented to an algorithm: it can
be given as represented by an oracle, which is simply a function that for
a given subset of elements of M determines whether it is independent, or
by a representation over a field F which can be either finite or infinite (see
Section 2 for more details on matroid representations). The complexity of
algorithms for matroids is measured in terms of the number n of elements of
an input matroid.

Let us now survey the status of the problems mentioned in the previous
paragraph. The first problem is solved in a very satisfactory way: Oum
and Seymour [15, 16] constructed for fixed k ≥ 1 an O(n4)-algorithm which
computes a branch decomposition of an oracle-given matroid with width at
most 3k−1 or certifies that the branch-width of the input matroid is greater
than k. Moreover, for fixed k ≥ 1 and a fixed finite field F, it can be tested

2

in polynomial-time whether a branch-width of a matroid represented over F

is at most k [11] and an optimal branch decomposition can be constructed.
Since it is possible to compute a good branch decomposition (if it exists) of
any matroid in polynomial time, we can always assume that the matroid is
presented with its decomposition.

Let us now focus on the status of the second problem. Seymour [20]
showed that there is no sub-exponential algorithm to test whether an oracle-
given matroid is binary, i.e., representable over GF(2). His result straight-
forwardly generalize to any finite field and holds even if the input matroid
has a bounded branch-width. On the other hand, if the matroid is repre-
sented over rationals Q, it can be tested in polynomial-time whether it is
binary [19]. Since it is well-known that if a matroid is binary, it has a unique
representation over GF(2) and it is easy to find such a representation, we
conclude that the answer to the second question is positive for F = GF(2)
even if the branch-width of M is not restricted. On the other, for every
finite field F 6= GF(2),GF(3) and every k ≥ 3, the problem is NP-hard [13]
for matroids with branch-width at most k.

A general answer to the third problem for matroids represented over
finite fields was given in [10, 12]: all MSOL-definable1 properties can be
tested in polynomial time for matroids represented over a fixed finite field
with bounded branch-width. These result match analogous results [1–4] for
graphs.

A property that can be defined in MSOL is whether a given matroid is
representable over a fixed finite field. Hence, the answer to the first half of
the second question is positive if the matroid is given by its representation
over a finite field (note that the answer is negative if the matroid is given by
an oracle or by its representation over Q as we explained earlier). Another
way how to see that a representatibility over a fixed finite field F can be
solved in polynomial time for matroids represented over another fixed finite
field F ′ is to realize that the class of matroids representable over F is minor-
closed and the matroids representable over F ′ with bounded branch-width
are well-quasi-ordered [9]. Note that it is still open whether for every finite
field F, there exists a finite set of forbidden minors for F-representatibility (a
famous conjecture of Rota [18] asserts this to be the case).

The aim of this note is to provide the answer for the other half of the
second question in case that the input matroid is represented over a finite

1MSOL stands for monadic second-order logic.

3

field F. In particular, we show that there is a polynomial-time algorithm
that for fixed finite fields F and F′ and a fixed integer k ≥ 1 decides whether
a given matroid M represented over F with branch-width at most k can be
represented over F′ and if so, it finds its representation over F′. Our algorithm
can be modified to compute the number of non-isomorphic representations
of M over F′ and to list all such non-isomorphic representations.

The algorithm is divided into two steps—in the first step, we compute
certain auxiliary bipartite graphs that fully determine the structure of a given
matroid. This is the only place where a representation of M over F is used.
In the second step, we use the auxiliary graphs capturing the structure of M
to verify the existence and in the positive case to construct a representation
of M over F ′. Our algorithm similarly as algorithms of [10–12] implicitly
involves rooted configurations as introduced in [9], and “structural finiteness”
on cuts represented in the branch decomposition.

2 Definitions

In this section, we formally introduce all the notions used throughout the pa-
per. We also refer the reader to the monographs [17,21] for further exposition
on matroids. A matroid M is a pair (X, I) where I ⊆ 2X . The elements of X
are called elements of M and the sets contained in I are called independent
sets. The set I is required to contain the empty set, to be hereditary, i.e., for
every X ′ ∈ I, I must contain all subsets of X ′, and to satisfy the exchange
axiom: if X ′ and X ′′ are two sets of I such that |X ′| < |X ′′|, then there exists
x ∈ X ′′ such that X ′ ∪{x} ∈ I. The rank of a set X ′, denoted by rank X ′, is
the size of the largest independent subset of X ′ (it can be inferred from the
exchange axiom that all inclusion-wise maximal independent subsets of M
have the same size). In the rest, we often understand matroids as sets of el-
ements equipped with a property of “being independent”. Consistently with
this view, |M| denotes the number of elements of M and rank M denotes
the size of the largest independent set of M.

Let us now introduce further notation related to matroids. If X ′ is a set
of elements of M, then M\X ′ is the matroid obtained from M by deleting
the elements of X ′, i.e., the elements of M\ X ′ are those not contained in
X ′ and a subset X ′′ of such elements is independent in the matroid M\X ′ if
and only if X ′′ is independent in M. The matroid M/X ′ which is obtained
by contraction of X ′ is the following matroid: the elements of M/X ′ are

4

those not contained in X ′ and a subset X ′′ of such elements is independent
in M/X ′ if and only if X ′ ∪X ′′ is independent in M. Finally, a loop of M
is an element e of M such that rank {e} = 0 and a bridge is an element such
that rank M\ {e} = rank M− 1. A separation (A,B) is a partition of the
elements of M into two disjoint sets and a separation is called a k-separation
if rank A + rank B = rank M + k.

As mentioned in Introduction, matroids generalize the notion of linear
independence of vectors. If F is a (finite or infinite) field, a mapping ϕ :
M → Fd from the element set of M to a d-dimensional vector space over F

is a representation of M if a set {e1, . . . , ek} of elements of M is independent
in M if and only if ϕ(e1), . . . , ϕ(ek) are linearly independent vectors in Fd.
For a subset X of the elements of M, ϕ(X) denotes the linear subspace of
Fd generated by the images of the elements of X. In particular, dim ϕ(X) =
rank X. Two representations ϕ1 and ϕ2 of M are isomorphic if there exists
an isomorphism ψ of vector spaces ϕ1(M) and ϕ2(M) such that ψ(ϕ1(e)) is
a non-zero multiple of ϕ2(e) for every element e of M. Next, we introduce
additional notation for vector spaces over a field F. If U1 and U2 are two
linear subspaces of a vector space over F, U1 ∩ U2 is the linear space formed
by all the vectors lying in both U1 and U2, and U1 ∪ U2 is the linear space
formed by all the linear combinations of the vectors of U1 and U2, i.e., the
linear hull of U1 ∪ U2.

A branch decomposition of a matroid M is a tree with all inner vertices of
degree three and the leaves corresponding to the elements of M. Each edge e
of the tree naturally splits the elements of M into two disjoint subsets X e

1
and

Xe

2
(the elements of each subset correspond to the leaves of the two subtrees

obtained by removing e). The width of the branch decomposition is the
maximum over all e of rank Xe

1
+rank Xe

2
− rank M. If ϕ is a representation

of M over a field F, the width of the branch decomposition is also equal
to the maximum of dim ϕ(Xe

1
) ∩ ϕ(Xe

2
) taken over all the edges e of the

tree. The branch-width of a matroid M is the smallest width of a branch
decomposition of M.

In our considerations, it turns out to be useful to consider rooted branch
decompositions of M. A rooted branch decomposition of M is obtained from
a branch decomposition of M by subdividing one of the edges of the tree
and introducing a new vertex of degree one adjacent to the obtained vertex
of degree two. We now root the tree at the new vertex of degree one and
add a new element e0 to M. The element e0 is a loop and is associated with
the root of the tree. Throughout the paper, the vertices of the tree forming

5

the rooted branch decomposition are referred as nodes, nodes of degree one
different from the root are leaves and those of degree three are inner nodes.
Note that each inner node has two children and a unique parent. Let us
remark that adding a loop to M does not change any properties of M that
we are interested in, in particular, the branch-width of M is preserved as
well as its representatibility over any particular field F.

3 Structural observations

In this section, we establish some properties of matroids of bounded branch-
width that can be represented over a finite field. We start with a lemma
that has been implicitly used in most of algorithms for matroids of bounded
branch-width, e.g., in those computing the Tutte polynomial. Since the proof
of this lemma is a simple application of basic linear algebra facts, we decided
to leave it to the reader.

Lemma 1. Let (A,B) be a separation of a matroid M and let ϕ : M → Fd,
d = rank M, be a representation of M over a field F. Let further C be the
linear subspace ϕ(A) ∩ ϕ(B). For every subsets A′ ⊆ A and B′ ⊆ B, the
following holds:

rank A′ ∪ B′ = (dim ϕ(A′) − dim ϕ(A′) ∩ C) +

(dim ϕ(B′) − dim ϕ(B′) ∩ C) +

dim (ϕ(A′) ∩ C) ∪ (ϕ(B′) ∩ C) .

If (A,B) is a separation of a matroid M, we say that subsets A1, A2 ⊆ A
are B-indistinguishable if for every B ′ ⊆ B,

rank B′ ∪ A1 − rank A1 = rank B′ ∪ A2 − rank A2 .

Note that subsets A1 and A2 are B-indistinguishable if and only if the identity
on the elements of B is an isomorphism between the matroids (M/A1) \
(A \ A1) and (M/A2) \ (A \ A2). Also note that the relation of being B-
indistinguishable is an equivalence relation and thus we can talk about classes
of B-indistinguishable subsets of A.

If the matroid M has a representation ϕ : M → Fd over a field F,
Lemma 1 says that two subsets A1 and A2 are B-indistinguishable if for
every subset B′ ⊂ B,

dim (ϕ(B′) ∩ C) ∪ (ϕ(A1) ∩ C) = dim (ϕ(B′) ∩ C) ∪ (ϕ(A2) ∩ C)

6

where C = ϕ(A)∩ϕ(B). In particular, if ϕ(A1)∩C = ϕ(A2)∩C, the subsets
A1 and A2 are B-indistinguishable, but the converse need not to be true. If
|F| is a finite field and C has dimension k, i.e., (A,B) is a k-separation, there
are at most |F|k

2

possible linear subspaces ϕ(Ai) ∩ C and thus the following
holds:

Lemma 2. Let (A,B) be a k-separation of a matroid M that is representable
over a finite field F. There are at most |F|k

2

B-indistinguishable subsets of
A.

4 Algorithm

In this section, we describe our algorithm for computing representations ma-
troids with bounded branch-width over finite fields. The input of the algo-
rithm consists of a rooted branch decomposition with width k of a matroid
M together with its representation ϕ : M → Fd, d = rank M, over a finite
field F. We assume throughout this section that M contains no loops except
for the one corresponding to the root of the decomposition. This clearly
does not decrease the generality of our results since the loops are always
represented by the zero vectors.

As the first step, we compute for each inner node u0 of the decomposi-
tion an auxiliary complete bipartite graph Gu0

that determines the mutual
relation between two parts of the matroid corresponding to the subtrees of
the left and right child of u0. We explain the structure of the graphs Gu0

in more detail in Subsection 4.1 where we also discuss how the graphs are
constructed. In Subsection 4.2, we show how to obtain a representation of M
over any finite field F ′ (if it exists) with the aid of the constructed auxiliary
graphs. Throughout this section, we write Au0

for the set of the elements of
M corresponding to the leaves of the subtree of u0 in the decomposition and
Bu0

for the elements of M not contained in this subtree.

4.1 Computing auxiliary graphs

Fix an inner node u0 of the decomposition and let u1 and u2 be its two
children. One part of the auxiliary bipartite graph Gu0

is formed by vertices
corresponding to the classes of Bu1

-indistinguishable subsets of Au1
and the

other by vertices corresponding to the classes of Bu2
-indistinguishable subsets

7

of Au2
. If A′

1
⊆ Au1

and A′

2
⊆ Au2

, the edge joining the vertices of Gu0
that

correspond to the classes containing A′

1
and A′

2
is labeled with

rank A′

1
+ rank A′

2
− rank A′

1
∪ A′

2
(1)

By the definitions of Bu1
-indistinguishability and Bu2

-indistinguishability,
the value of (1) does not depend on the choice of subsets A′

1
and A′

2
in the

two classes. The edge between the classes containing A′

1
and A′

2
is further

associated with the vertex of the graph Gu′, where u′ is the parent of u, that
corresponds to the class of Bu0

-indistinguishable sets that contains A′

1
∪A′

2
.

Note that a single vertex ofGu′ can be (and usually is) associated with several
different edges of Gu0

.
We now turn our attention to the actual computation of the auxiliary

graphs Gu0
. We first find for every node u0 the list LA

u0
of all linear subspaces

of ϕ(Au0
) ∩ ϕ(Bu0

) that are equal to ϕ(A′) ∩ ϕ(Bu0
) for some A′ ⊆ Au0

. Let
us describe this process in more detail. If u0 is a leaf of the decomposition
and the element e associated with it is a bridge of M, the list LA

u0
consists

only of the zero subspace. If e is not a bridge, then the list LA

u0
consists of

the zero subspace and the linear subspace ϕ({e}). If u0 is an inner node with
two children u1 and u2, then the list LA

u0
is formed by all the linear subspaces

equal to U1 ∪ U2 ∩ ϕ(Bu0
) for some U1 ∈ LA

u1
and U2 ∈ LA

u2
. Since the lists

LA

u0
are formed by linear subspaces of a k-dimensional linear space over F,

|LA
u0
| ≤ |F|k

2

. Hence, the sizes of the lists LA
u0

are bounded by a function of F

and k only and we only perform a constant number of operations with linear
subspaces over F for each node u0 (if the field F and the branch-width k are
fixed). Analogously, we can find the lists LB

u0
of all linear subspaces equal to

ϕ(B′) ∩ ϕ(Au0
) for some B′ ⊆ Bu0

.
Our next goal is to recognize Bu0

-indistinguishable sets. By the definition
of Bu0

-indistinguishability, if two different subsets A1, A2 ⊆ Au0
correspond

to the same set of LA

u0
, i.e.,

ϕ(A1) ∩ ϕ(Bu0
) = ϕ(A2) ∩ ϕ(Bu0

) = U ∈ LA

u0
,

then the sets A1 and A2 are Bu0
-indistinguishable. The converse need not

to be true. Still, we can now efficiently test whether two sets A1 and A2

are Bu0
-indistinguishable as follows: let U1 = ϕ(A1) ∩ ϕ(Bu0

) ∈ LA

u0
and

U2 = ϕ(A2)∩ϕ(Bu0
) ∈ LA

u0
. The sets A1 and A2 are Bu0

-indistinguishable if
and only if

dim U1 ∪ U = dim U2 ∪ U (2)

8

for every U ∈ LB

u0
. This condition can be efficiently tested since the size of

LB

u0
is bounded by a function of F and k. Hence, we can partition the list

LA
u0

into classes of linear subspaces that correspond to Bu0
-indistinguishable

sets. Formally, two linear subspaces U1 and U2 of LA

u0
are Bu0

-equivalent if
(2) holds for every B ∈ LB

u0
. Note that two subsets A1 and A2 of Au0

are
Bu0

-indistinguishable if and only if the linear subspaces ϕ(A1) ∩ ϕ(Bu0
) and

ϕ(A2) ∩ ϕ(Bu0
) are Bu0

-equivalent. Clearly, partitioning the lists LA

u0
into

classes of Bu0
-equivalent linear subspaces requires only a constant number of

operations with linear subspaces over F at each node of the tree (under the
assumption that F and k are fixed).

We are now ready to construct our auxiliary bipartite graphs Gu0
. Let u1

and u2 be the two children of u0 and u′ the parent of u0. The vertices of Gu0

are classes of Bu1
-equivalent linear subspaces of LA

u1
and Bu2

-equivalent linear
subspaces of LA

u2
. The edge joining two vertices of Gu0

, one corresponding to
the class containing U1 ∈ LA

u1
and the other to the class containing U2 ∈ LA

u2
,

is labelled with dim U1 + dim U2 − dim U1 ∪ U2 and is associated with the
vertex of Gu′ that corresponds to the class containing the linear subspaces
of LA

u0
that are Bu0

-equivalent U1 ∪ U2 ∩Bu0
. Clearly, computing each of the

auxiliary graphs Gu0
requires a constant number of operations with linear

subspaces over F at each node of the decomposition. Hence, we conclude
that the entire process described in this subsection requires time at most
O(n4) where n is the number of elements of M if we assume that we can
decide the equality of m-dimensional linear spaces over F and compute their
unions and intersections in time O(m3) (note that the rank of M cannot
exceed n).

4.2 Computing representations

Throughout this subsection, we assume that the auxiliary bipartite graphs
Gu0

as described in Subsection 4.1 have been constructed. We would like
to point out that we do not use the original representation of M over F at
all throughout this subsection and use only the auxiliary bipartite graphs to
construct a representation of M over a given finite field F ′.

Let us consider a node u0 of the branch decomposition and let `u0
be the

number of the classes of Bu0
-indistinguishable subsets of Au0

. Note that `u0

is also the number of vertices of Gu′ where u′ is the parent of u0 that form the
part of Gu′ corresponding to Au0

. Let further ku0
= rank Au0

+ rank Bu0
−

rank M.

9

If ϕ is a representation of M\Bu0
in a vector space over F ′ and U is its

ku0
-dimensional linear subspace, the type of a representation ϕ with respect

to U is an `u0
-tuple [L1, . . . ,L`u0

] where Li is the set of all linear subspaces
of U equal to ϕ(A′) ∩ U for some A′ ⊆ Au0

contained in the i-th class
of Bu0

-indistinguishable subsets of Au0
, i = 1, . . . , `u0

. The representation
ϕ is proper with respect to U if the sets Li are mutually disjoint and the
dimensions of linear subspaces contained in the same Li are equal. Observe
that a restriction of any representation ϕ of M to Au0

with U = ϕ(Au0
) ∩

ϕ(Bu0
) is proper with respect to U .

Finally, let us refine the notion of isomorphic representations. Two repre-
sentations ϕ1 and ϕ2 of M\Bu0

are strongly isomorphic with respect to U if
they have the same type [L1, . . . ,L`u0

] and there exists an isomorphism ψ of
the linear spaces ϕ1(Au0

) and ϕ2(Au0
) such that ψ(ϕ1(e)) is a non-zero mul-

tiple of ϕ2(e) for each element e of Au0
. Note that if ϕ1 and ϕ2 are strongly

isomorphic, then they are also isomorphic representations of M\Bu0
, but the

converse need not to be true since the strong isomorphism requires that they
agree on the linear subspaces of U corresponding to Bu0

-indistinguishable
subsets of Au0

.
Let us fix a linear space Uu0

over F ′ of dimension ku0
for each inner node

u0. Our next step is to compute the number of strongly non-isomorphic
representations of M\B0 with respect to Uu0

for each type [L1, . . . ,L`u0
] of

a possible proper representation. The linear subspaces Uu0
are fixed in order

to allow us to be able to define the type of a representation and are not the
actual subspaces ϕ(Au0

)∩ϕ(Bu0
) in the representation of M that we aim to

construct. The numbers of representations of M\Bu0
are computed in the

bottom to top fashion in the branch decomposition as we explain further in
more detail.

Assume first that u0 is a leaf of the branch decomposition and let e be
the element of M corresponding to u0. If e is a bridge of M, then the empty
set and {e} are Bu0

-indistinguishable, ku0
= 0 and `u0

= 1. Hence, there is
a single possible type [L1] of a proper representation of M \ Bu0

in which
L1 is the set containing only the zero subspace of Uu0

and there is a single
(up to a strong isomorphism) representation of M \ Bu0

of this type—any
representation of e with a non-zero vector over F ′.

If e is not a bridge of M, then ku0
= 1 and the empty set and {e} are Bu0

-
indistinguishable. Hence, `u0

= 2 and there is again a single possible type
[L1,L2] of a proper representation of M\Bu0

in which L1 is the set containing
only the zero subspace of Uu0

and L2 the set containing the linear space Uu0
.

10

Clearly, there is a single (up to a strong isomorphism) representation of
M\Bu0

of this type.
Assume now that u0 is an inner node of the branch decomposition and

let u1 and u2 be its two children. We now have to merge the representations
of M\ Bu1

and M\ Bu2
(this is closely related to rooted configurations as

described in [9]). Let U be a superspace of Uu0
of dimension ku1

+ ku2
(note

that ku0
≤ ku1

+ ku2
by submodularity of the rank function). For all possible

identifications of Uu1
and Uu2

with ku1
-dimensional and ku2

-dimensional linear
subspaces of U , we proceed as described in what follows.

We say that two types [L′

1
, . . . ,L′

`u1

] and [L′′

1
, . . . ,L′′

`u2

] are weakly com-

patible if for every U ′ ∈ L′

i′
, 1 ≤ i′ ≤ `u1

and U ′′ ∈ L′′

i′′
, 1 ≤ i′′ ≤ `u2

,

dim U ′ + dim U ′′ − dim U ′ ∪ U ′′

is equal to the label of the edge joining the i′-th vertex and i′′-th vertex of
the two parts of Gu0

. Finally, let Li for i = 1, . . . , `u0
be the set of all linear

subspaces equal to

U ′ ∪ U ′′ ∩ Uu0
for some U ′ ∈ L′

i′
, 1 ≤ i′ ≤ `u1

and U ′′ ∈ L′′

i′′
, 1 ≤ i′′ ≤ `u2

such that the edge between the i′-th and i′′-th vertices of the two parts of
Gu0

is associated with the i-th vertex of the auxiliary graph of the parent of
u0. If all the sets Li, 1 ≤ i ≤ `u0

, are disjoint and the subspaces contained
in each Li have the same dimension, we say that the types [L′

1
, . . . ,L′

`u1

] and

[L′′

1
, . . . ,L′′

`u2

] are strongly compatible.

Observe now that representations of M\Bu1
and M\Bu2

form a repre-
sentation of M\ Bu0

if and only if their types are weakly compatible. The
condition of being strongly compatible is then equivalent to having a proper
type with respect to Bu0

. The sum of the products of the numbers of strongly
compatible representations of M\Bu1

and M\Bu2
with the same resulting

(proper) type [L1, . . . ,Lu0
] yields after normalization (we have to divide by

the number of isomorphic identifications of Uu1
and Uu2

with linear subspaces
of U that fix Uu0

) the number of strongly non-isomorphic representations of
M\Bu0

with the type [L1, . . . ,Lu0
].

Since the root ur of the branch decomposition corresponds to a loop, Uur

is the zero space and there is a single type of representations of M \ Bur

associated with ur. This type is [L1] where L1 is a set consisting of the
zero subspace only. The number of strongly non-isomorphic representations
of M\ Bur

of this type is the number of non-isomorphic representations of

11

M. Hence, we have just presented an algorithm for counting the number
of non-isomorphic representations of M over F ′. Note that the number of
all mappings from M to an n-dimensional vector space over F ′, where n
is the number of elements of M, is at most |F ′|n

2

and thus all the num-
bers involved in the computation are O(n2)-bit numbers. In particular, our
algorithm has running time polynomial in n. If we just want to decide the ex-
istence of the representation over F ′, we can replace the numbers of strongly
non-isomorphic representations in our computation with flags indicating their
existence. In this way, we obtain an O(n)-algorithm for computing the ex-
istence of a representation of M over F ′ (note that F ′ and the maximal
branch-width of M are fixed) from the auxiliary graphs Gu0

. Finally, it is
easy to modify the presented algorithm to either output one possible repre-
sentation of M over F ′ (keeping the running time polynomial in n = |M|)
or to output all such non-isomorphic representations (in this case, each rep-
resentation can be output in time polynomial in |M|, but the running time
of the algorithm need not to be polynomial in |M| since the number of such
representations could be exponential in |M|).

4.3 Finale

The results of Subsections 4.1 and 4.2 can be combined to the following:

Theorem 3. For every k ≥ 1 and two finite fields F and F ′, there is a
polynomial-time algorithm that for a given matroid M of branch-width at
most k that is represented over the field F decides whether M can be rep-
resented over F ′ and if so, it computes one of its representation over F ′.
The algorithm also counts the number of non-isomorphic representations of
M over F ′. Moreover, it can be modified to list all such non-isomorphic
representations (in time linearly dependant on the number of such represen-
tations).

5 Concluding remarks

We would like to address a possibility of extending our algorithm to matroids
that are not represented over a finite field. As discussed in Introduction, it
is NP-hard to decide whether a matroid M represented over Q with branch-
width three can be represented over a finite field F, F 6= GF(2),GF(3). A

12

possible extension would thus be to assume that M is guaranteed to be
representable over F:

Problem 1. For every k ≥ 1 and every finite field F, design a polynomial-
time algorithm that for a matroid M represented over Q of branch-width at
most k that is representable over F finds a representation of M over F.

In Problem 1, one can also consider matroids that are given by an oracle,
however, in this setting, we do not believe that such an algorithm could be
designed.

Let us now have a closer look at Problem 1. The algorithm that we pre-
sented in Section 4 has two separate parts. In the first part, we compute
auxiliary bipartite graphs Gu0

and in the second part, we just decide the ex-
istence and eventually compute the representations just using these auxiliary
graphs. Hence, we need the representation of M over a finite field only in
the first part of our algorithm.

In order to compute the auxiliary graphs, we need to be able to rec-
ognize for a k-separation (A,B) of M which subsets A1, A2 ⊆ A are B-
indistinguishable. This test is equivalent to testing whether the matroids
(M/A1) \ (A \ A1) and (M/A2) \ (A \ A2) are isomorphic and the identity
on the elements of B is an isomorphism between them. We ask the reader
to verify that the entire algorithm presented in Subsection 4.1 works even if
each class of Bu0

-equivalent linear subspaces is represented by a single subset
A′ ⊆ A which is Bu0

-indistinguishable from all subsets of A corresponding
to Bu0

-equivalent linear subspaces.
Hence, the algorithm that we designed can be turned into a polynomial-

time algorithm for computing representations of a matroid over a finite field
from its representation over Q if the following algorithm exists:

Problem 2. For every k ≥ 1 and every finite field F, design a polynomial-
time algorithm that decides whether a bijection between the elements of two
matroids M1 and M2 represented over Q, such that the branch-widths of M1

and M2 are at most k and both M1 and M2 are representable over F, is an
isomorphism between M1 and M2.

Note that if we dismiss the assumption that M1 and M2 are representable
over F, the algorithm described in Problem 2 does not exist. If it existed,
this would imply that testing representatibility over a fixed finite field F can
be solved in a polynomial time for matroids of bounded branch-width that
are represented over Q which is an NP-hard problem.

13

Acknowledgement

The author would like to thank Jǐŕı Fiala for fruitful discussions on algo-
rithmic matroid theory, in particular on efficient computation of the Tutte
polynomial, at various occasions in the spring of 2002, Ondřej Pangrác for
sharing his insights into matroid theory, and Till Tantau for his computa-
tional complexity remarks.

References

[1] S. Arnborg, J. Lagergren, D. Seese: Easy problems for tree decompos-
able graphs, J. Algorithms 12 (1991), 308–340.

[2] H. Bodlaender: Dynamic programming algorithms on graphs with
bounded tree-width, in: Proc. of ICALP 1988, LNCS. vol. 317, Springer,
Berlin, 1988, 105–119.

[3] B. Courcelle: The monadic second-order logic of graph I. Recognizable
sets of finite graphs, Information and Computation 85 (1990), 12–75.

[4] B. Courcelle: The expression of graph properties and graph transforma-
tions in monadic second-order logic, in: G. Rozenberg (ed.), Handbook
of graph grammars and computing by graph transformations, Vol. 1:
Foundations, World Scientific, 1997, 313–400.

[5] J. Geelen, B. Gerards, G. Whittle: Tangles, tree decomposition and
grids in matroids, preprint.

[6] J. Geelen, B. Gerards, G. Whittle: On Rota’s Conjecture and excluded
minors containing large projective geometries, to appear in Journal of
Combinatorial Theory Ser. B.

[7] J. Geelen, B. Gerards, G. Whittle: Excluding a planar graph from
GF(q)-representable matroids, manuscript.

[8] J. Geelen, B. Gerards, G. Whittle: Inequivalent representations of ma-
troids I: An overview, in preparation.

[9] J. Geelen, B. Gerards, G. Whittle: Branch-width and well-quasi-
ordering in matroids and graphs, J. Combin. Theory Ser. B 84 (2002),
270–290.

14

[10] P. Hliněný: On matroid properties definable in the MSO logic, in: Proc.
of MFCS 2003, LNCS vol. 2747, Springer, Berlin, 2003, 470–479.

[11] P. Hliněný: A parametrized algorithm for matroid branch-width, SIAM
J. Computing 35(2) (2005), 259–277.

[12] P. Hliněný: Branch-width, parse trees and monadic second-order logic
for matroids, J. Combin. Theory Ser. B 96 (2006), 325–351.

[13] P. Hliněný: On matroid representatibility and minor problems, in: Proc.
of MFCS 2006, LNCS vol. 4192, Springer, Berlin, 2006, 505–516.

[14] P. Hliněný, G. Whittle: Matroid tree-width, to appear in European
Journal on Combinatorics.

[15] S. Oum, P. Seymour: Certifying large branch-width, in: Proc. of SODA
2006, SIAM, 2006, 810–813.

[16] S. Oum, P. Seymour: Approximating clique-width and branch-width, to
appear in Journal of Combinatorial Theory, Ser. B.

[17] J. G. Oxley: Matroid theory, Oxford University Press, 1992.

[18] G.-C. Rota: Combinatorial theory, old and new, Actes du Congrès Inter-
national de Mathématiciens, vol. 3, Gauthier-Villars, Paris, 1970, 229–
233.

[19] P. Seymour: Decomposition of regular matroids, J. Combin. Theory Ser.
B 28 (1980), 305–359.

[20] P. Seymour: Recognizing graphic matroids, Combinatorica 1 (1981),
75–78.

[21] K. Truemper: Matroid decomposition, Academic Press, 1992.

15

