
Single Source Multiroute Flows and Cuts

on Uniform Capacity Networks∗

Henning Bruhn† Jakub Černý‡ Alexander Hall§
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Abstract

For an integer h ≥ 1, an elementary h-route flow is a flow along h
edge disjoint paths between a source and a sink, each path carrying
a unit of flow, and a single commodity h-route flow is a non-negative
linear combination of elementary h-route flows. An instance of a single

source multicommodity flow problem for a graph G = (V, E) consists
of a source vertex s ∈ V and k sinks t1, . . . , tk ∈ V ; we denote it
I = (s; t1, . . . , tk). In the single source multicommodity multiroute flow

problem, we are given an instance I = (s; t1, . . . , tk) and an integer
h ≥ 1, and the objective is to maximize the total amount of flow
that is transferred from the source to the sinks so that the capacity
constraints are obeyed and, moreover, the flow of each commodity is
an h-route flow.

We study the relation between classical and multiroute single source
flows on networks with uniform capacities and we provide a tight
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alex.hall@inf.ethz.ch

¶Department of Applied Mathematics, Faculty of Mathematics and Physics,
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bound. In particular, we prove the following result. Given an instance
I = (s; t1, . . . , tk) such that each s − ti pair is h-connected, the maxi-
mum classical flow between s and the ti’s is at most 2(1− 1/h)-times
larger than the maximum h-route flow between s and the ti’s and this
is the best possible bound for h ≥ 2. This, as we show, is in contrast
to the situation of general multicommodity multiroute flows that are
up to k(1 − 1/h)-times smaller than their classical counterparts.

As a corollary, we establish a max-flow min-cut theorem for the
single source multicommodity multiroute flow and cut. An h-discon-

necting cut for I is a set of edges F ⊆ E such that for each i, the
maximum h-route flow between s− ti is zero. We show that the maxi-
mum h-route flow is within 2(h−1) of the mininimum h-disconnecting
cut, independently of the number of commodities; we also describe a
2(h − 1)-approximation algorithm for the minimum h-disconnecting
cut problem.

1 Flows, Multiroute Flows and Cuts

A classical flow is (roughly) a non-negative linear combination of unit flows
along paths. Classical flow theory is not much interested in the number of
the paths or in interactions among them. It is plausible, for example, that
there is an edge in the network that is used by every path of a given flow; a
failure of this single edge results in a loss of the entire flow. This property
of the classical flow is undesirable in some applications and motivated the
definition of a multiroute flow. For a given integer h ≥ 1, the multiroute flow
(or an h-route flow) is a flow that is decomposable into a non-negative linear
combination of elementary h-route flows where an elementary h-route flow
is a flow along h edge disjoint paths between the source and the sink, each
path carrying a unit of flow [18]. Closely related to this is the concept of h-
balanced flows. A flow of size M between two vertices is h-balanced if the flow
on every edge is at most M/h. Clearly, every h-route flow is an h-balanced
flow; the opposite (non-obvious) claim is also true: every h-balanced (acyclic)
flow is an h-route flow [1, 4, 18].

A necessary and sufficient condition for the existence of an h-route flow
between two vertices is that the vertices are h-connected. A corollary of
the equivalence of h-route flows and h-balanced flows is that on a uniform
capacity networks with an h-connected source s and sink t, every maxi-
mum s − t-flow is an h-route flow. However, for multicommodity flows and
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h-route flows, this relation is no longer valid. We investigate the relation be-
tween flows and h-route flows for a special case of multicommodity problems,
namely for single source problems. An instance of a single source multicom-
modity flow problem for a graph G = (V,E) consists of a source vertex s ∈ V
and k sinks t1, . . . , tk ∈ V ; we denote it I = (s; t1, . . . , tk). We show that for
networks with uniform capacities and for instances I = (s; t1, . . . , tk) such
that s and ti are h-connected, for each i = 1, . . . , k, the maximum classical
flow between s and ti’s is at most 2(1−1/h) times larger than the maximum
h-route flow between s and ti’s; this bound is the best possible for h ≥ 2.
The result is in contrast with the situation of general multicommodity flows:
we describe an example with k commodities where the maximum classical
flow is k(1 − 1/h)-times larger than the maximum h-route flow.

The other subject of the paper is cuts for h-route flows. For the classical
flow, a cut is a subset of edges whose removal disconnects the source and
the sink (or every source-sink pair, in a case of the multicommodity flow).
Analogously, we define cuts for h-route flows. A subset F ⊆ E of edges is
called an h-disconnecting cut for an instance of the multicommodity flow if
no source-sink pair is h-connected in (V,E \ F ). The h-disconnecting cuts
correspond to integral solutions of a dual of a natural linear programming
formulation of the multiroute flow problem (see below). We establish a max-
flow min-cut theorem for the single source multiroute flow and the minimum
disconnecting cut problems on networks with uniform capacities. In partic-
ular, we show that the max-flow for the problem is within 2(h − 1) of the
min-cut. As a corollary of this relation we get a 2(h − 1)-approximation
algorithm for the h-disconnecting cut problem.

1.1 Related Results

Kishimoto and Takeuchi [19] and later Aggarwal and Orlin [1] studied single
commodity multiroute flows (cf. [4, 11, 12]). They provided the character-
ization of h-route flows as h-balanced flows and also proved a duality of
multiroute flows and multiroute cuts (for different cuts than those consid-
ered in this paper). Multiroute flows and integral variants of multiroute flows
have applications in communication and routing problems (e.g., [3, 17, 9] and
references therein).

Another direction of research focuses on flows under the restriction that
each commodity is allowed to use only a limited number of paths: the edge
disjoint paths problem and the unsplittable flow problem allow one path per

3



commodity [6, 7, 8, 16, 20, 22, 23, 24, 31]; the h-splittable flow problem
allows at most h, not necessarily disjoint, paths per commodity [5, 21, 28,
27]; particular attention has been given to single source unsplittable flow
problems [10, 13, 22, 30]. Though there is a certain similarity between the
h-splittable flows and the h-route flows (in fact, they may even coincide
for some instances), there is also a substantial difference. Whereas the h-
splittable flows may split, the h-route flows have the obligation to split.

Relations between flows and cuts have been studied for over half a cen-
tury. Menger [29] observed that the maximum number of edge disjoint paths
between a pair of vertices is equal to the size of the minimum subset of edges
whose removal disconnects the pair. Ford and Fulkerson [14] proved the cel-
ebrated theorem about the duality of (single-commodity) flows and cuts in
networks. Though an exact duality does not hold for multicommodity flows
and cuts, there are several theorems establishing an approximate duality
(with the gap of order log k) for different variants of the problem (Leighton
and Rao [25], Aumann and Rabani [2], Linial, London and Rabinovich [26],
Garg, Vazirani and Yannakakis [15]).

1.2 Preliminaries

As indicated in the title, in this paper we deal with networks with uniform
capacities. For simplicity, we assume throughout the paper, without loss
of generality, that every edge has capacity one. The number of vertices is
denoted n and the number of edges m; we allow multi-edges. The letter k
denotes the number of commodities and the letter h the number of routes
in the elementary multiroute flow. For an instance I of the multicommodity
flow problem, we use Fh(I) for the size of the maximum h-route flow for the
instance I. For a given flow, an empty edge is an an edge unused by the
flow. We will deal with minimum cost flows several times. In such cases we
consider the uniform cost function (i.e., cost(e) = 1, ∀e ∈ E).

Consider a network G = (V,E). Let s1, . . . , sk be k sources and t1, . . . , tk
be k sinks of a multicommodity flow problem; we call the sources and sinks
also terminals. Define Qi as the set of all elementary h-route flows between
si and ti and let Q =

⋃k
i=1 Qi. The maximum h-route flow problem can be

stated as the following linear program (the variable f(q) represents the size
of the flow along the h-system q, that is, a flow of size f(q)/h along each of
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the h paths of q):

max
∑

q∈Q

f(q) (1)

∑

q∈Q:e∈q

f(q)/h ≤ 1 ∀e ∈ E

f(q) ≥ 0 ∀q ∈ Q .

The dual program corresponds to the fractional relaxation of the the mini-
mum h-disconnecting cut problem:

min h ·
∑

e∈E

x(e) (2)

∑

e∈q

x(e) ≥ 1 ∀q ∈ Q

x(e) ≥ 0 ∀e ∈ E .

By setting integrality constraints on the variables x, we get an integer linear
programming formulation of the minimum h-disconnecting cut problem.

2 Relating Flows and Multiroute Flows

2.1 A lower Bound

Theorem 2.1 For every pair of integers h, k ≥ 2 there exist an undirected
graph G and an instance I = (s; t1, . . . , tk) of the single source multicom-
modity flow problem such that for each i, s and ti are h-edge-connected, and,
at the same time,

F1(I) ≥
(

2 −
2

h

)

· Fh(I).

Proof. The set of vertices of the graph G consists of k + 2 distinct vertices
s, v, t1, . . . , tk. The set of edges contains h − 1 parallel edges between s and
ti, and an edge between ti and v, for i = 1, . . . , k.

Consider the instance I = (s; t1, . . . , tk). An elementary h-route flow
between s and ti, for i = 1, . . . , k, has to use two edges from the set F =
{{tiv} : i = 1, . . . k}. Thus, the total h-route flow for the instance I is
upper bounded by h · |F |/2, that is, Fh(I) ≤ hk/2. On the other hand,
F1(I) = k(h − 1). This yields the desired bound. ut
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Figure 1: The graph G for the lower bound

In the next subsection we show that for h-route flows with a single source,
this is the worst that can happen.

2.2 A tight upper bound

Theorem 2.2 Let G=(V,E) be an undirected graph and let I=(s; t1, . . . , tk)
be an instance of the single source multicommodity flow problem such that for
each i, s and ti are h-connected for a given h ≥ 2. Then

F1(I) ≤ (2 − 2/h) · Fh(I) . (3)

There also exists a half-integral h-route flow of size at least F 1(I)/2.

Proof. We start by constructing the half-integral h-route flow of size (at
least) F1(I)/2. Then we explain how to increase the size of the flow to (at
least) F1(I)/(2 − 2/h).

The proof is by induction on the sum n + m + k where the base case is
proved for graphs G = (V,E) and instances I = (s; t1, . . . , tk) satisfying the
following three assumptions:

A1 For each commodity i, the only minimum s− ti cut is the cut {ti} (we
call it a trivial cut).

A2 In every integral maximum flow for the instance I, each empty edge is
adjacent to at least one of the sinks ti, and, moreover, if an empty edge
is adjacent to exactly one sink, then the degree of the sink is exactly h.

A3 Omitting any of the sinks from the instance I results in a decrease of
the maximum flow (i.e., for every i, if we denote by I−i the instance I
without the sink ti, F(I−i) < F(I)).
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Recall that a single-source classical flow can be viewed as a single com-
modity flow problem and therefore there exists an integral maximum flow
for every instance I; there also exists a minimum cost maximum flow that is
integral.

Base case Let G and I be a graph and an instance as above and consider
an arbitrary integral minimum cost maximum flow for the instance I. By the
characterization of h-route flows as h-balanced flows described in Introduc-
tion, the flow of every commodity with flow h or more is already an h-route
flow. Our aim is, for every commodity with flow less than h, to find new
edge disjoint paths between the source s and the relevant sink and to send
a half unit of flow along each of them while not decreasing the flow of other
commodities much. For this process we start with a particular minimum cost
maximum flow that is described in Observation 2.3.

Given an integral flow for the instance I, we denote, for a non-terminal
vertex v, the number of empty edges adjacent to v by p(v), and we denote
the number of empty edges connecting v and the sink ti by mi(v). By As-
sumption A2, we have

∑k
i=1 mi(v) = p(v) for each non-terminal vertex v.

Observation 2.3 There exists an integral minimum cost maximum flow
such that for every non-terminal vertex v and for every i:

• mi(v) ≤ dp(v)/2e.

Moreover, in every integral minimum cost maximum flow, for every non-
terminal vertex v and for every i, the following holds:

• if mi(v) > p(v)/2 then there exists at least one flow path of a commodity
other than i going through v.

Proof. Consider an arbitrary integral minimum cost maximum flow and
for a non-terminal vertex v denote by r−i(v) the number of flow paths of
commodities other than i passing through v. Note that all empty edges
adjacent to v are connected to a sink of degree exactly h (Assumption A2).
We are going to observe that mi(v) < p(v)/2+r−i(v), for every non-terminal
vertex v and every commodity i.

Assume, for a contradiction, that mi(v) ≥ p(v)−mi(v)+2r−i(v) for some
v and i, and consider the s − ti cut {v, ti}. Due to our assumption, the size
of this cut is smaller than or equal to the size of the trivial s − ti cut {ti}
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Figure 2: An example of a non-terminal vertex v satisfying the first property
of Observation 2.3. Dashed lines represent empty edges and solid lines rep-
resent flow paths. We have p(v) = 6, m1(v) = 3, m2(v) = 3 and r−1(v) = 3.

which is a contradiction with the assumption A1. This completes the proof
of the second part of Observation 2.3.

Now, if there is a non-terminal vertex v and a commodity i with mi(v) >
dp(v)/2e, then there are r−i(v) > mi(v) − p(v)/2 flow paths of other com-
modities passing through v. Choose one of them, say a path p of a commodity
j, and reroute it to ti. To be more precise, the new path goes from the source
s to the vertex v along the original path p, and then it continues to ti along
one of the empty edges connecting v and ti. After the modification, mi(v)
decreases by one and mj(v) increases by one; the cost and the size of the
total flow are not affected. This way we continue until mi(v) ≤ dp(v)/2e for
every i. Notice that the changes done in the flow around v will not destroy
the desired property for any other vertex.

We apply the same rerouting procedure for every other non-terminal ver-
tex v′ for which there exists a commodity i′ such that m′

i(v
′) > dp(v′)/2e.

ut

From now on we denote by F the minimum cost maximum flow from
Observation 2.3. By the choice of F and by the Assumption A2, each empty
edge is adjacent either to two different sinks or to a sink and to a vertex
adjacent to another sink. The idea of the proof of the base case is to exploit
these empty edges to reroute some flow from other commodities to each sink
with flow less than h. If we succeed to provide a non-zero flow along at least
h edges to each sink, we get a non-zero h-balanced flow for each commodity.
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Octopuses will help us to organize the rerouting. Formally, an octopus is
a (multi)graph that is a union of edge disjoint paths of length one and two
that start in the same vertex; the paths are called tentacles. If an octopus O
is a subgraph of the graph G and the initial vertex of the paths (i.e., of the
tentacles) is a vertex v, we say that the octopus is sitting in v.

Figure 3: An octopus

For every commodity i with flow smaller than h, we define an octopus Oi.
The octopus Oi is sitting in the terminal ti and has h − fi tentacles, where
fi denotes the amount of flow of commodity i in F , and the tentacles reach
through different empty edges to neighboring vertices (if there are more than
h − fi empty edges adjacent to ti, we choose any h − fi of them). Later we
will amend the octopuses, namely we will lengthen some of the tentacles.

Consider a non-terminal vertex v. Assumption A2 implies that the num-
ber of tentacles reaching v is p(v) and we denote them by τ1, . . . , τp(v). If none
of the octopuses reaches v by more than p(v)/2 tentacles, there exists a per-
mutation π of the tentacles τ1, . . . , τp(v) such that for each l ∈ {1, . . . , p(v)},
the tentacles τl and π(τl) belong to different octopuses (for example order the
tentacles according to the number of octopus they belong to and set π(τl) to
τ
l+dp(v)/2emod p(v)

; since mi(v) ≤ p(v)/2 for all i, tentacles τl and π(τl) belong

to different octopuses). We lengthen the tentacle τl through the edge used
by the tentacle π(τl), so that τl now terminates in the vertex in which the
octopus with tentacle π(τl) is sitting.

If there exists an octopus Oi that reaches the non-terminal vertex v by
more than p(v)/2 tentacles, then such an octopus is exactly one. For such an
octopus, by Observation 2.3, the number of its tentacles reaching v is exactly
dp(v)/2e. There exists a permutation π of p(v)− 1 tentacles reaching v such
that for each of them, the tentacles τ and π(τ) belong to different octopuses.
In a similar way as before, each tentacle τ involved in the permutation is
lengthened to the sink in which the octopus with the tentacle π(τ) is sitting.
Recall that by Observation 2.3 there exists a flow path passing through v
that does not belong to the commodity i, and the minimum cost of the flow
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F implies that the terminal vertex of the path is adjacent to v.
At this point, each tentacle of an octopus reaches either another terminal

vertex (we say that the tentacle touches the corresponding commodity), or
a flow path of another commodity that no other tentacle reaches (again we
say that the tentacle touches the corresponding commodity). Moreover, each
tentacle τ is stretched only through empty edges and at most one tentacle
is stretched through each empty edge in each direction; if there are two
tentacles stretched through the same edge (in opposite direction) they belong
to different octopuses.

Observation 2.4 For each i, the number of tentacles that touch the com-
modity i is strictly less than fi.

Proof. Were it not the case, it would be possible to redirect the complete
flow of the commodity i, through the tentacles touching it, to other terminals
without decreasing the total flow, contradicting the Assumption A3. ut

Rerouting For each tentacle of the octopus Oi touching the commodity
j 6= i, we reroute a half unit of the flow of commodity j to ti along the
edges that the corresponding tentacle is stretched through. Observation 2.4
guarantees that every commodity j has enough flow to provide a half unit
for each tentacle touching it and yet to keep more than fj/2 units for itself.
We decrease the flow of every unaffected path to one half.

At this point, the amount of flow of a commodity i with fi < h is h/2 and
the amount of flow of a commodity i with fi ≥ h is fi/2. Moreover, since the
initial flow was integral (flow paths from source to terminals were disjoint),
the new flow paths of each individual commodity will be edge disjoint. Thus,
we have an h-balanced flow of size at least F(I)/2, for the instance I, and
by construction, the flow is half integral.

Inductive step Let G and I be a graph and an instance that do not satisfy
the Assumptions A1-A3. We distinguish several cases in the inductive step.

1. If there exists a commodity i with a non-trivial minimum s− ti cut, we
do the inductive step on the number of vertices.

2. If for each commodity every minimum cut is trivial and there exists
an integral maximum flow with an empty edge that is not adjacent to
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a sink or is adjacent to exactly one sink and the degree of the sink is
higher than h, we do the inductive step on the number of edges.

3. Otherwise we do the inductive step on the number of commodities.

1. Assume that there exists a commodity i and a minimum cut C for the
commodity that is not trivial. Let δj denote the connectivity of s and tj and
let us denote by F an integral minimum cost maximum flow for I. If the only
commodity that uses C in the flow F is the commodity i, we perform the
following modification of G: the ti-side of G is merged into a single vertex
t, that is, keep every edge on the s-side, remove every edge on the ti-side
and for every edge {u, v} ∈ C with v on the ti-side, replace {u, v} by a new
edge {u, t}. We get a graph G′ that is smaller than G and for an instance
I ′ = (s; t1, . . . ti−1, t, ti+1, . . . , tk) on G′, the connectivity of s and tj is δj for
j ∈ {1, . . . , k}, j 6= i, and the connectivity of s and t is δi, and the (classical)
maximum flows for I in G and for I ′ in G′ have the same size. The graph
G′ is smaller than G yet F 1(I) = F1(I ′) (note that multi-edges may occur).
The theorem holds for G′ and an h-balanced flow for I ′ in G′ can be easily
extended into an h-balanced flow of the same size for the instance I in G.

If there are also some other commodities that use the cut C in the flow
F , we redirect the part of their flow going through C to ti. This way we
maintain the same amount of the total flow and we argue as before.

2. From now on we assume that for every commodity, every minimum
cut is the trivial one. We denote by F an integral minimum cost maximum
flow for I that does not satisfy the second assumption.

Assume first that there exists an empty edge e that is not adjacent to
any of the sinks ti. Since e is not adjacent to any terminal node and since for
every i each minimum s− ti cut is the trivial one, removing e from the graph
G does not decrease the connectivity of any commodity and the maximum
flow for the instance I. As in the previous proof, an h-balanced flow for the
smaller graph can be interpreted as a solution for G.

Similarly, if there exists an empty edge e that is adjacent to exactly one
sink and the degree of the sink is higher than h, deletion of e does not decrease
the connectivity of any commodity below h and it does not decrease the
maximum flow for the instance I. Again, an h-balanced flow for the smaller
graph can be interpreted as a solution for G.

3. From now on we further assume that every edge unused by the inte-
gral minimum cost maximum flow F (if there are several such flows, choose

11



arbitrarily one of them) is adjacent to one of the terminals. We proceed as
in the proof of the base case and at the point where the Assumption A3 is
used we observe that it is possible to decrease the number of commodities in
the instance I without decreasing the total flow.

Sharper bound To prove the sharper bound (not necessarily with half-
integral flows) we observe that for every commodity with flow at most h −
1 in the initial flow, its h-balanced flow at the end is at least h/2 which
corresponds to the ratio 2 − 2/h. The only problem is with commodities
with original flow h or more. Thus, if we manage to slightly increase the final
flow of these commodities, the proof is completed. Recall that no octopus is
sitting in a terminal vertex of a commodity with flow h or more.

We proceed as follows: every commodity tj with initial flow h or more
will demand a tax of 1/(2(h− 1)) units of flow for each path that it provided
to other commodity. Commodities are able to pay these taxes since every
commodity had initial flow by at least one greater than the number of ten-
tacles touching it (Observation 2.4) and every commodity requires help from
at most h − 1 other commodities (more precisely, needs at most h − 1 new
edge disjoint paths). In the worst case, it keeps (only) a half unit of flow for
itself and spends the other half on taxes for the h − 1 helpers.

s

tj
ti

0.5 0.5

tax

s

v

tjti

0.5 0.5

tax

Figure 4: Taxation: on the left side is depicted the case when a tentacle
touches a terminal vertex, and on the right side is depicted the case when a
tentacle touches a path of other commodity.

The flow corresponding to a tax of a commodity ti paid to a commodity
tj flows from s to ti along an original path of commodity i and then from ti

to tj along the tentacle of the octopus sitting in ti; in the case of an octopus
Oi touching a path the commodity j (and not directly touching the sink tj)
(i.e., the tentacle τ reaching a non-terminal vertex) the flow flows from s

12



to ti along an original path of commodity i, then along the tentacle of the
octopus Oi and finally along an edge of the flow path of the commodity j
that the tentacle τ touches. In addition to this, we set the flow along each
path that was unaffected by the rerouting process to 1/(2 − 2/h) (and not
to 1/2 as we did for the half-integral flow). In this way, a commodity with
an initial flow l ≥ h will have a final h-balanced flow at least l(h/(2(h− 1))),
which corresponds to an h-route flow of the same size. ut

Remark 1 Notice that for every h, a trivial bound Fh(I) ≤ F1(I) holds.
Therefore for h = 2 the inequality (3) simplifies to

F1(I) = F2(I) . (4)

The equality (4) tells us that by imposing the requirement that the flow be
a 2-route flow, we do not lose anything with respect to the size of the flow.

Remark 2 The situation is completely different for general multicommod-
ity h-route flows. Even though the maximum 2-route flow is as large as the
maximum 1-route flow for single source multicommodity instances, for gen-
eral instances the ratio between the sizes of a maximum 1-route flow and a
maximum 2-route flow is as large as k/2.

Theorem 2.5 For every pair of integers h, k ≥ 2 there exists a graph G =
(V,E) and an instance I = (s1, . . . , sk; t1, . . . , tk) of the multicommodity flow
problem such that for each i, the vertices si and ti are h-connected, and, at
the same time,

F1(I) ≥ k
(

1 −
1

h

)

Fh(I).

Proof. Let G be a graph on k + 1 distinct vertices v1, . . . , vk+1 with vi con-
nected by h− 1 parallel edges with vi+1, for i = 1, . . . , k, and vk+1 connected
by an edge e with v1 (Figure 5). Consider an instance I with si = vi and
ti = vi+1, for i = 1, . . . , k. Then, F 1(I) = k(h − 1). On the other hand,
Fh(I) ≤ h, since an elementary h-route flow between si and ti has to use the
edge e = {vk+1, v1}, for every i = 1, . . . , k. This yields the desired bound. ut

On the other hand, F 1(I) ≤ kFh(I).
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Figure 5: The graph G for h = 4 and k = 5

Remark 3 Theorem 2.2 relies on the assumption that the network has uni-
form edge capacities. The next theorem shows that without this assumption,
the result does not hold.

Theorem 2.6 For every C ≥ 1 and every integer h ≥ 1, there exists an
undirected network G = (V,E) with maximum edge capacity C and an in-
stance I = (s; t1, . . . , tk) of the single source multicommodity flow problem
such that for each i, F 1(s, ti) = Fh(s, ti), and, at the same time,

F1(I) ≥ (C −
C − 1

h
) · Fh(I) .

Proof. Choose k = dC(h−1)+1
h

e and consider a network G with k + 2 vertices
V = {s, u, t1, t2, . . . tk} connected in the following way: s is connected with
u by h edges, h − 1 of them with capacity C and one with capacity 1,
and for each i ∈ {1, . . . , k}, u and ti are connected by h edges, each of
capacity 1 (Figure 6). Then, for an instance I = (s; t1, . . . , tk) we have
F1(I) = C(h − 1) + 1 yet Fh(I) = h. ut

3 Disconnecting Cuts

We will denote the size of a minimum h-disconnecting cut for an instance I
by Ch(I).
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Figure 6: A bad network for nonuniform single source h-route flows (for
h = 5).

Theorem 3.1 For every h ≥ 2 and every instance I of the single source
flow problem,

Fh(I)

h
≤ Ch(I) ≤ (2 − 2/h) · Fh(I) . (5)

Moreover, for every h ≥ 2 and every ε > 0 there exists an instance I = {s; t}
of the problem such that

(1 − ε) · Fh(I) ≤ Ch(I) , (6)

and for every k ≥ 1 and every h ≥ 2 there exists an instance I such that

Fh(I)

h
= Ch(I) . (7)

Proof. Given a decomposition of an h-route flow into a linear combination
of elementary h-route flows, we have to cut at least one of the h paths of
every h-system in the decomposition. Altogether we have to cut edges of
total capacity at least Fh(I)/h which proves the first inequality.

To prove the inequality Ch(I) ≤ (2 − 2/h) · Fh(I) we observe that a
minimum classical cut is also an h-cut, and from the duality of flows and
cuts we know that the size of this cut is equal to F 1(I). We apply the bound
F1(I) ≤ (2 − 2/h) · Fh(I) of Theorem 2.2 (without loss of generality we
assume that all sinks in the instance I are h-connected with the source) and
the proof is completed.

Concerning the second part of the theorem, consider a graph consisting
of two vertices s and t connected by m parallel edges, with m ≥ h. The
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maximum h-route flow has size m and the minimum h-disconnecting cut has
size m− (h− 1). We conclude that for every ε > 0 there exists an integer m
such that (m−h+1)/m ≥ 1−ε, and thus, there exists an instance I = {s; t}
satisfying the inequality (6). Note that a fractional disconnecting cut is in
this case (almost) h-times better: take a fraction 1/h of each edge in the cut.

For the last part of the theorem, consider the the instance and the net-
work described at the end of the previous section (Figure 6) with every edge
capacity set to one. Then, Fh(I) = hk and Ch(I) = k. ut

Corollary 3.2 For every h ≥ 2, there exists a polynomial time 2(h − 1)-
approximation algorithm for the h-disconnecting problem with a single source.

Remark 4 The bound on the performance of the algorithm is not far from
what happens for “bad” instances. Think about a simple graph consisting
of two vertices u, v connected by h parallel edges and an instance with one
commodity with source in u and sink in v: the minimum disconnecting cut
has size 1 while the disconnecting cut obtained by the algorithm has size h.

We also note that the bound (5) can be slightly improved to

Fh(I)

h
≤ Ch(I) ≤ (2 − 2/h) · Fh(I) − (h − 1)

by deleting all but h − 1 edges from the minimum classical cut (instead of
deleting all the edges). If there is only one commodity, this slightly modified
procedure computes an optimal h-disconnecting cut.

4 Open problems

We conclude with two open problems about disconnecting cuts for multiroute
flows. The approximation ratio of the algorithm for disconnecting cuts for
single source flow problems described in the last section is 2(h − 1); design
a better algorithm. Similarly, design an approximation algorithm for the
disconnecting cut problem for the more general multiroute multicommod-
ity flow problems (e.g., single source and non-uniform capacities, multiple
sources and uniform capacities). As the close relation between classical flows
and multiroute flows is lost in these cases, a novel approach will be needed.
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