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Abstract

A notion of real number graph labelings captures the dependence
of the span of an optimal channel assignment on the separations that
are required between frequencies assigned to close transmitters. We
determine the spans of such optimal labelings for a subfamily of Kneser
graphs formed by the complements of the line graphs of complete
graphs. This subfamily contains (among others) the Petersen graph.

1 Introduction

Distance constrained labelings form a well-established graph theory model
for the channel assignment problem. Since their introduction by Griggs and
Yeh [23] in 1992 they attracted a considerable amount of interest of re-
searchers. One can find papers on their structural aspects as well as on algo-
rithms computing optimal or near-optimal labelings. Let us recall this notion:
an L(py,...,pr)-labeling of a graph G for non-negative integers pq, ..., pg is
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a labeling ¢ of its vertices with non-negative integers such that the labels of
any two vertices at distance j, 1 < j <k, differ by at least p; (p,; represents
the required separation of the frequencies needed to avoid their interference).
A labeling satisfying these properties is also called proper, and the maximal
label used by a labelling is called the span. The smallest span of a proper
L(p1,...,pr)-labeling of G is denoted by Ay, ., (G).

Because of practical applications [24], the most studied distance con-
strained labelings are those with £ = 2 and among these those with p; = 2
and po = 1. A famous conjecture of Griggs and Yeh [23] asserts that ev-
ery graph with maximum degree A > 2 has an L(2, 1)-labeling with span
at most A?. In their paper [23], Griggs and Yeh proved that every such
graph has an L(2,1)-labeling with span at most A% + 2A. In a series of
papers [10, 31, 17], this bound has been decreased successively to the current
best bound A% + A — 2 of Gongalves [17]. Let us also remark that the conjec-
ture is known to be true for several special classes of graphs, such as graphs
of maximum degree two, chordal graphs ([36], see also [11, 29]), Hamilto-
nian cubic graphs [25] and planar graphs with maximum degree A # 3 [3].
There is a substantial body of results in this area which we are not able to
survey here, but let us mention as examples the papers [4, 5| on real-world
applications of this kind of labelings, the papers [33, 35] on distance con-
strained labelings of planar graphs and the papers [1, 6, 13, 14, 28, 34] on
their algorithmic aspects.

Since the separations pq, ..., p, might sometimes need to be determined
ad hoc, it is interesting to study the optimal span A, . ,, (G) as the function
of p1,...,px. This approach has been formalized by Griggs and Jin [18] and
subsequently generalized to a more general notion of lambda graphs [2, 30].
Because of the kind of a problem that we address, it is enough for us to stay
in the framework defined in [18] and thus we will not introduce the more
general notion of lambda graphs.

In the setting proposed by Griggs and Jin [18], both the separations

p1,-.-.,pr and the labels of the vertices of G are non-negative reals. The
smallest span of an optimal L(py,...,px) is then denoted by A(G;p1, ..., Dk)
to emphasize its dependence on the parameters pq,...,pg. It is easy to see

that A\(G;p1, ..., px) is a continuous function of py, . .., pg. Griggs and Jin [19]
also established other basic properties of A(G;p1, ..., px) such as the scaling
property, i.e., A(G;ap1,...,ap;) = aX(G;py,...,px) for every a > 0, and
that the function A(G;pi,...,pr) is piecewise linear. In [30], it has been
shown that the function A(G;p1,...,px) has only finitely many linear parts
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even if the graph G is infinite. The reader is referred to the survey [22] for a
more comprehensive introduction to the subject.

In the fundamental case k = 2, the function A(G;p1,pe) is determined
by its values for po = 1 and thus it can also be viewed as a one-parameter
function A(G;x,1). Note that A\(G;1,0) = lim, .., A(G;x,1)/z. We often
refer to A\(G;x,1) as to the lambda function of the graph G. Note that
AMG;1,0) = x(G) — 1 and A\(G;1,1) = x(G?) — 1. Since the problem of de-
termining the lambda function of a graph includes determining its chromatic
number as well as the chromatic number of its square, it is not surprising
that the lambda functions are determined only for graph classes formed by
well-structured graphs. Such graph classes include paths and cycles [15, 19],
wheels [15, 19], or complete bipartite graphs [21]. Because of practical ap-
plications, the lambda functions of some particular infinite graphs are also
known, for instance, the lambda functions of the infinite square and hexago-
nal planar grids have been determined [20, 8] and that of the triangular grid
has been found [20, 8] for most of the values of x. Another class of graphs
for which the lambda functions are known are infinite regular trees [16, 9.
In this paper, we extend this list of results by determining the lambda func-
tions of some Kneser graphs. Notice that determining the lambda functions
for all Kneser graphs would include determining the chromatic number of
squares of Kneser graphs, a problem posed by Fiiredi, with only few partial
results [12, 26].

Recall that a Kneser graph K(n, k), n > 2k, is the graph with (Z) vertices
defined as follows: each vertex is associated with a k-element subset of a base
n-element set and two vertices are adjacent if the sets corresponding to them
are disjoint. Note that the Kneser graph K(5,2) is the Petersen graph. The
problem of determining the chromatic number of Kneser graphs is a well-
known problem which was solved by Lovasz using topological tools [32] (see
also [27]) who showed the chromatic number of K (n, k) is equal to n — 2k + 2.
On the other, the chromatic number of squares of Kneser graphs is not known
and there is even no conjecture on its value.

The problem of determining the lambda functions of all Kneser graphs
includes the problems on the chromatic number of them as well as their
squares as special cases; in this paper, we determine the lambda functions of
all Kneser graphs K (n,2) with n > 5 (Theorem 8). As examples, the lambda
functions of Kneser graphs K(n,2), n =5,6,7,8, can be found in Figure 1.

Before we start the exposition of our results, let us observe several prop-
erties of K(n,2). The graph K (n,2) is isomorphic to the complement of the
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Figure 1: The lambda functions of the Kneser graphs K(5,2), K(6,2),
K(7,2) and K(8,2).



line graph of the complete graph K,: indeed, each vertex of K(n,2) can
be associated with an edge of K. Such an edge naturally corresponds to a
two-element subset of an n-element set (which is formed by the vertices of
K,). Two such vertices of K (n,2) are adjacent if and only if the correspond-
ing sets are disjoint. The latter is equivalent to the fact that they are not
adjacent in the line graph of K,,. It turned out to be very handful in our
considerations to associate n — 1 vertices of K,, with the numbers 0,...,n—2
and the last one with the star, x. This distinction will be useful in most of
our considerations.

A corollary of the just observed correspondence of K(n,2) with the line
graph of K, is that the maximum clique size of K(n,2) is [n/2] (the size of
a maximum matching of K,,). Another fact that will be useful in our work is
that the square of K (n,2) is complete for all n > 5, i.e., the distance between
any two vertices of K(n,2) is at most two. In particular, A\(K(n,2);1,1) =

X(F(n,2)?) ~ 1= (3) - 1.

2 Small values of z

In this section, we establish auxiliary lemmas that will be useful in determin-
ing the lambda function A(K(n,2);x,1) of Kneser graphs K(n,2) for small
values of x. We start with two lemmas asserting that vertices of Kneser
graphs K (n,2) can be ordered in such a way that large segments of consec-

utive vertices form cliques in K (n,2). We first consider the case when n is
odd.

Lemma 1. For every { > 2, there exists an order vi,...,Vy,, m = (%;1),
of the vertices of K(20 + 1,2) such that for everyi=1,...,m — ({ — 1) the
vertices vy, ..., Vive—1 form a clique of order ¢ in K(20+1,2).

Proof. We construct an order of the vertices of K(2¢ + 1,2) that can be
partitioned into ¢ blocks, By, ..., By_1, each formed by 2¢ + 1 consecutive
vertices. The first vertex vyet1)41 of By is the vertex corresponding to the
set {*,k} (see Figure 2), the i-th vertex viet1y4i, ¢ = 2,..., ¢, is the vertex
corresponding to the set {(—(i — 1) + k) mod 2¢, ((i — 1) + k) mod 2/}, the
(€4 1)-th vertex vg(aet1)+e41 is the vertex corresponding to the set {*, k+ ¢},
and the i-th vertex vyos41)+i, ¢ = €+2,...,20+1, is the vertex corresponding

to the set {((i — ¢ — 1) + k) mod 2¢, (—(i — £ — 2) + k) mod 2/¢}.



Figure 2: The edges corresponding to the vertices vy, ..., v9 contained in the
block By and the vertices vy, ..., v1g contained in the block By of the order
of the vertices of K(9,2) constructed in the proof of Lemma 1 (the left and
the middle part of the figure). In the right part of the figure, there is depicted
the subgraph formed by the last four edges of the first block and the first
five edges of the second block.

The constructed order of the vertices has a nice interpretation in the edge
representation of Kneser graphs. In the drawing of a complete graph with
the star vertex in the middle and the numbered vertices on a cycle around
the star vertex, each block B; corresponds to a Hamilton cycle and each ¢
consecutive edges of B; form a matching as depicted in Figure 2. Consecutive
blocks are then obtained by rotating the Hamilton cycle by 360/(2¢) degrees
clockwise.

We now verify that any ¢ consecutive vertices form a clique of K (2041, 2),
i.e., the sets corresponding to them are mutually disjoint. The easiest way to
see this is to use the correspondence with Hamilton cycles of Koy, 1 explained
in the previous paragraph. Observe that the last ¢ edges of each block B;,7 =
0,...,¢—2, with the first £+ 1 edges of the block B;,; also form a Hamilton
cycle and, moreover, any ¢ consecutive edges out of these form a matching
(see Figure 2). Since any ¢ consecutive edges lie in a single block or in two
blocks B; and B;., for some i = 0,...,¢ — 2, we conclude that any ¢ edges
that are consecutive in the constructed order form a matching in the complete
graph and thus the corresponding vertices form a clique of K(2¢+1,2). The
statement of the lemma now follows. O

Next, we focus on the Kneser graphs K (n,2) with even n.
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Figure 3: The edges corresponding to vertices of the first and the second
block of the order constructed for K(8,2) in the proof of Lemma 2.

Lemma 2. For every { > 2, there exists an order vi,...,Uy,, m = (%;2),

of the vertices of K(2¢ + 2,2) such that for every i =1,...,m — (£ — 1) the
vertices vy, . .., virg—1 form a clique of order ¢ in K (20 + 2,2) and for every
1=1,0+2,204+3,...,m —{, the vertices v;, . ..,v;1¢ form a clique of order
¢+1.

Proof. We construct an order of the vertices of K(2¢ + 2,2) that consists
of 2¢ 4+ 1 blocks of ¢ 4+ 1 vertices each. The blocks are numbered from 0 to
2(. The first vertex vj41)+1 of the k-th block is the vertex corresponding
to the set {*, k} and the i-th vertex vyui1y4i, @ = 2,...,£ + 1, is the vertex
corresponding to the set {(—(i—1)-+k) mod (20+1), ((i—1)+k) mod (20+1)}.
Clearly, each block forms a clique of order £ + 1 as required.

The constructed order of the vertices has also a nice interpretation in
the edge representation of Kneser graphs. In the drawing of a complete
graph with the star vertex in the middle and the numbered vertices on a
cycle around the star vertex, each block corresponds to a perfect matching
consisting of an edge joining the star vertex to one of the numbered vertices
and all the edges perpendicular to this edge (see Figure 3). Consecutive
blocks are then obtained by rotating the perfect matching by 360/(2¢ + 1)
degrees clockwise.

We now verify that any ¢ consecutive vertices form a clique of K (2042, 2),
i.e., the sets corresponding to them are mutually disjoint. Let us consider a
vertex vp(41)4is K =0,...,20 and 1 =1,...,0+ 1. The set corresponding to
it is disjoint from all the sets corresponding to the vertices within the same
block, i.e., the sets corresponding to vges1)4# for ' =1,..., £+ 1 and i’ # 1.



If £ > 0, the last vertex of the previous block whose set is not disjoint from
the set corresponding to vy (41)+ 1S the vertex vg_1)s1)4ip1 if 1 < f+1 (we
do not have to analyze the case i = ¢ 4+ 1). Similarly, if £ < 2¢ + 1, the first
vertex of the next block whose set is not disjoint from the set corresponding to
Uk(t41)44 18 the vertex vg_1)@41)4i—1 if ¢ > 0. Hence, the set corresponding to
Uk(e41)+4 1s disjoint from all the sets corresponding to the vertices vip41)4itj
for j = £1,...,£(¢ —1). The claim of the lemma now follows. O

In the rest of this section, we focus on establishing lower bounds on the
lambda function of K(n,2) for x € (0,1/¢). Again, we have to distinguish
two cases with respect to the parity of n. Let us start with the odd case.

Lemma 3. The following estimate holds for every ¢ > 2 and x € (0,1/¢):
MKQR20+1,2);2,1) > 204+ (0 — 1)z .

Proof. Let ¢ be an L(x,1)-labeling of K(2¢ + 1,2) and let vy,..., v, m =
(%;1), be an order of the vertices such that c(vy) < c(vg) < -+ < c(vy).

We now show that c(vyyq) > @ for every @ = 0,...,2¢. The inequality
clearly holds for ¢ = 0. If ¢« > 0, then there are two non-adjacent vertices
among vV(i—1)ye+1, - - - , Virr1 since K (2041, 2) does not contain a clique of order
¢+ 1. Hence, the labels of these two vertices differ by at least one. We infer
from c(vi—1yes1) < -+ < (Vi) that e(vier) > c(vi—1yeq1)+1 > (i—1)+1 =
i and eventually conclude that c(vgp2,1) > 2¢.

Since the difference of any two labels is at least x, the next estimate

readily follows:
c(Um) > c(vaz 1) + (m— (200 + 1))z > 20+ ({ — 1)z .
This finishes the proof of the lemma. O

We conclude this section with the lower bound on the lambda function
of K(n,2) with n even. This case turned out to be more complex than the
case of odd n.

Lemma 4. The following estimate holds for every ¢ > 2 and x € (0,1/):

MK (2042,2);2,1) > 20+ 3l .



Proof. Let ¢ be an L(x,1)-labeling of K(2¢ + 2,2) and let vy,..., v, m =
(*2?) be an order of the vertices such that c(vi) < c(v) < -+ < c(vn).

We define recursively indices g, ...,%9. Set ig = 1. For 7 > 0, let ¢; be
the largest index such that the vertices from the i;_;-th to (i; — 1)-th one,
i.e., Vi;,_,,...,v;-1, form a clique. Since the maximal order of a clique of
K(20+2,2)is (+1, K(2¢+2,2) cannot be vertex covered by less than 2¢+ 1
cliques, and thus all the indices 7, ..., 5, are well-defined.

Let further Cj, j =0,...,2¢ — 1, be the clique of K(2¢+ 2,2) formed by
the vertices v, ...,v;, ., —1 and 75, 7 = 0,...,2f, be the number of cliques of
order £+ 1 among Cy, ..., C;_;. In particular, 79 = 0 and ~; < j.

We now prove the following claim:

Claim: It holds that c(v;,) > j + v;x for every j =0, ..., 2L.

We proceed by the induction on j. The statement trivially holds for j = 0.
Hence, let us assume j > 0. Let k € {0,...,|C;_1| — 1} be the largest k such
that the vertex v;;_, 1 of C;_; is not adjacent to the vertex v;;. In addition,
if the order of the clique C;_; is £ + 1, then the edges of the complete graph
corresponding to the vertices of C;_; form a matching and the vertex v;; is
not adjacent to at least two of the vertices of C;_;. In particular, & > 1.
Since the difference between the labels of any two vertices is at least x (recall
that = < 1) and v;; 1s not adjacent to v, , 1, we obtain:

c(vy;) > c(vi;_y4x) + 12> c(vy;_) + 1+ kx> j+y12 + ko .

If v; = 7;-1, we have obtained the desired inequality. Otherwise, the order
of C;_1is £+ 1, thus k > 1, and the inequality also follows. This finishes the
proof of the claim.

The cliques Cy, . .., Co_1 contain at most 2¢-(—+y, vertices of K (20+2,2).
Hence, iy < 20% + 1 + 79,. The next estimate on c(v,,) easily follows:

(0n) 2 clvg,) + (m—iz)a
> 204 yyr + (2 +304+1) — (202 + 1+ yy)) 2
> 2+ 3z .
The lemma is now established. O



3 Large values of z

In this section, we prove lower and upper bounds on the lambda function of
K(n,2) for x > 1. We start with the upper bound for z € (1, 3).

Lemma 5. For everyn > 5 and x € (1, 3), there exists an L(x,1)-labeling of
K(n,2) of span (g) — 1 such that all the assigned labels are (distinct) integers
and the two largest labels are () — 2 and (%) — 1.

Proof. The proof proceeds by induction on n. For n = 5, label the vertices
of K(5,2) with labels 0,1,...,9 in the order in which they correspond to the
following sets:

{x,0}, {x, 1},{*,2}, {*,3},{3,2},{3,1},{3,0},{0,1},{0,2} and {1,2} .

Since the vertices corresponding to the sets {0, 2} and {1, 2} are non-adjacent,
the labeling also satisfies the additional assertion of the lemma.

Now assume that n > 5. By induction, there exists an L(x, 1)-labeling of
the subgraph G of K(n,2) induced by the vertices corresponding to the sets
not containing the star that has span (";1) — 1 and two non-adjacent vertices
of G are assigned the labels (";1) — 2 and (”51) — 1. By symmetry, we can
assume that the vertices labeled with (";1) — 2 and (”;1) — 1 correspond to

the sets {0,2} and {0, 1}, respectively. Assign now the label ("}') +i to the
vertex corresponding to the set {x,i}, i = 0,...,n — 2. It is easy to verify
that the labeling obtained in this way is an L(z,1)-labeling of K(n,2) and
there are two non-adjacent vertices, {x,n — 3} and {x,n — 2}, labeled with
the labels (5) — 2 and (}) — 1. O

2

Next, we prove the upper bound for x > 3.

Lemma 6. For every n > 5 and x > 3, there exists an L(x,1)-labeling of
K (n,2) with span (n—3)(z —3)+ (3) — 1 such that the three largest labels are
(n=3)(z—=3)+(3) =3, (n=3)(x—=3)+(}) =2 and (n—3)(z—3)+ (3) — L.

Proof. We proceed similarly as in the proof of Lemma 5. First, we label the
vertices of K (5,2) with labels

0,1,2,3,z+1,x+2,2+3,2x+ 1,2z + 2 and 22 + 3

in the order in which they correspond to the sets
{03, {13 £, 23, {%, 33, {3, 2}, {3, 1}, {3, 0},{0,1},{0, 2} and {1,2} .
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The labeling also satisfies the additional assertion of the lemma.

We assume n > 5 in the rest. Let us consider an L(x,1)-labeling of the
subgraph of K (n,2) induced by vertices corresponding to sets that do not
contain the star such that three largest labels are (n —4)(z —3) + (", ') — 3,
(n—4)(x—3)+ (”;1) —2and (n—4)(x—3)+ ("51) — 1. By symmetry, we
can assume that the label (n —4)(x —3) + (”;1) — 2 is assigned to the vertex
corresponding to the set {0, 2} and the label (n —4)(x —3) + (ngl) —1 to the
one corresponding to {0,1}. Label now the vertex corresponding to the set
{*,i},i=0,...,n—2, with (n—3)(z—3)+ ("}") +i. It is easy to verify that
the labeling obtained in this way satisfies the assertion of the lemma. [l

We finish the section with establishing the lower bound for x > 3 that
matches the upper bound shown in the previous lemma.

Lemma 7. The following estimate holds for everyn > 5 and x > 3:

MK (n,2);2,1) > (n — 3)(z — 3) + (g) 1.

Proof. Consider an L(x, 1)-labeling ¢ of K(n,2) and let vy, ..., v, m = (;),
be an order of the vertices such that c(vy) < ¢(vy) < -+ < ¢(v,,). Let 41 be
the largest index such that the vertices vy,...,v;, form an independent set
in K(n,2), iy the largest index such that the vertices v, 11, ...,v;, form an
independent set, i3 the largest index such that the vertices v;, 41, ..., v;, form
an independent set, etc. Finally, let A; = {v;,_,11,...,v;} for j =1,2,...,
(setting ip = 0), and let k& be the number of such sets A,.

There are two types of independent sets A;: those corresponding to stars
in the edge representation of K(n,2) and those corresponding to triangles.
Let k, be the number of sets of the former type. Since k, vertices of a complete
graph of order n are incident with w edges and each independent set
of the other type contains exactly three edges, we have the following bound

on k: n ks(2n—1—ks) 2 9
b D EEEE o @no Dkt n
- 3 6
It is straightforward to verify using elementary tools from the mathematical
analysis that the expression is minimized for ks, € {n —4,n — 3}. Hence, we
can conclude that:
(n—=32—-@2n—-"T)(n—-3)+n*—n 6n—12

k > = =n—2.
6 6
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We now prove the following claim:

Claim: If the vertex v;, i € {1,...,m}, is contained in A;, then c(v;) >
(j—D(x—=3)+i—1.

We proceed by induction on 7. Since v; € A;p, the claim trivially holds
for + = 1. Let us now consider a vertex v; with ¢ > 1. If v;_; and v; are
contained in the same set A;, then we have

c(v;) > clvi)+1>(G—1)(x—=3)+i—1

since any two labels differ by at least one. Hence, we can assume in the rest
that v;_1 € A;_; and v; € A;.

We claim that there exists 1 <7 < min{3, |A;_;|} such that the vertices
v;i—y and v; are adjacent (clearly, such v;_y € A;_1). If |A;_1] < 3, the
claim follows directly from the choice of the set A;_;. On the other hand, if
|A;_1| > 3, then the edges corresponding to the vertices of A;_; must form
a star in the complete graph and the edge corresponding to v; is incident to
at most two such edges. Hence, v; must be in K(n,2) adjacent to one of the
vertices v;_3, v;_o and v;_1.

Consider i’ as defined in the previous paragraph. Since the vertices v;_
and v; are adjacent, their labels differ by at least x > 3 and we obtain the
following bound on ¢(v;):

c(v;) =2+ —-2)(x—-3)+(GE—1)—1

C(Ui—i’
i~ Dz —3)+i—143—4¢>(G—-1)(x—3)+i—1.

(J

AVARLY,

This finishes the proof of the claim.

Finally, since c¢(v,,) is at least

(k—l)(x—S)—l—m—lZ(n—3)(:c—3)-|—(Z) 1,

the statement of the lemma readily follows. O

4 Main result

We are now ready to prove our main theorem.
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Theorem 8. The lambda functions of the graphs K(20+1,2) and K (2(+2,2)
for every £ > 2 are the following:

20+ (0 — 1)z for x € (0,1/¢),
) eetr—1a for x € (1/¢,1),
MK(2041,2)2,1) = 202 4 ¢ —1 for x € (1,3),
(20 —2)x + 20> =50 +5 forx >3,
and
20+ 3lx forxz € (0,1/¢),
. ) @2+ 30 forx e (1/0,1),
AMEQRE+2,2)52,1) =4 9 4 g forx € (1,3), and

(20— D)x + 202 —3(+3 forx>3.

Proof. We first determine the lambda functions for x > 1. Let m be the
number of vertices of K (n,2) where n is equal to 2¢ + 1 or 2¢ 4+ 2. Since
n > 5, the distance between any two vertices of K(n,2) is at most two.
Hence, A(K(n,2);x,1) > m — 1. This simple lower bound and Lemma 5
determine the lambda function for x € (1,3). For z > 3, the matching upper
and lower bounds are given in Lemmas 6 and 7.

Next, we proceed separately for the cases of K(2¢+1,2) and K(2(+2,2).
Let us start with determining the rest of the lambda function of K(2¢+1,2).
Note that m = (*J') on this case. If z € (0,1/¢), the value of A(K (2 +
1,2);x,1) is at least 2¢ + (¢ — 1)x by Lemma 3. For the upper bound, we
consider the order of the vertices vq,...,v,, as described in Lemma 1 and
assign the vertex v; the label (i — 1)z + |(¢ —1)/¢| (1 — fx). The labeling
can be interpreted as follows: the vertices in the order form ¢ cliques of order
2¢ + 1 and the label of the i-th vertex of the k-th clique is k + (i — 1)z.

We now argue that the obtained labeling is proper. Consider two vertices
v;and vy, 1 <@ < j <m. If j—i < £, then the vertices v; and v; are adjacent
by the choice of our order. Since their labels differ by at least x, the edge
v;v; 1s properly labeled. Otherwise, j —¢ > £ and the labels of v; and v; differ
by at least one, thus they are properly labelled. Since

c(vpy) = (m—1)x+ {mT—lJ (1—fx) = (202 4+0—1)2+20(1—Lz) = 20+ ({—1),

the upper bound follows.

13



Suppose that x € (1/¢,1). Since the labels of any two vertices must differ
by at least x,

MK(2041,2);2,1) > (m— Dz =2 +0—1x .

For the upper bound, we consider the order vq,...,v,, as in Lemma 1 and
assign the vertex v; the label (i — 1)x. The arguments that this labeling is
proper follow those presented in the previous paragraph.

It remains to determine the rest of the lambda function of K(2¢ + 2,2).
Recall that m = (*}?) in this case. If z € (0,1/(), the value of (K (2¢ +
2,2);x,1) is at least 20+ 3¢x by Lemma 4. For the upper bound, we consider
the order of the vertices vy,...,v,, as described in Lemma 2 and assign the
vertex v; the label (i — 1)z + [(i —1)/({ +1)] (1 — ¢x). We can interpret the
labeling with the aim of the proof of Lemma 2 as follows: the label of the
i-th vertex of the block By (as defined in the proof) is k(1 4+ z) + (i — 1)=.

We now analyze the obtained labeling. The labels of two vertices v; and
vj, 1 <@ < j < m, differ by at least one if j —¢ > £. If j —¢ </, the vertices
v; and v; are adjacent by the choice of the order and since their labels differ
by at least x, the vertex corresponding to v;v; is properly labelled. If j —i = ¢
and ¢ = 1 mod (¢ + 1), the vertices v; and v; are also adjacent and thus the
edge v;v; is also properly labeled. Finally, if ¢ # 1 mod (¢ + 1), the labels
of v; and v; differ by at least one. We conclude that the labeling is a proper
L(z,1)-labeling of K(2¢+ 1,2). Since
c(vp) =(m—1)z+ VZTllJ (1 —tz) = (20* + 30)x 4+ 20(1 — x) = 20 + 3/,
the upper bound follows.

Let us now consider the case that x € (1/¢,1). Since the labels of any
two vertices must differ by at least x, we infer

MK((2042,2);2,1) > (m — 1)z = (202 + 30)x .

For the upper bound, we consider the order vq,...,v,, as in Lemma 2 and
assign the vertex v; the label (i — 1)x. The arguments that this labeling is
proper are analogous to those presented in the previous paragraph. O
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