
Block transitivity and degree matrices ?
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Abstract

We say that a square matrix M of order r is a degree matrix of a given graph G

if there is a so called equitable partition of its vertices into r blocks. This partition
satisfies that for any i and j it holds that a vertex from the i-th block of the partition
has exactly mi,j neighbors inside the j-th block.

We ask whether for a given degree matrix M, there exists a graph G such that M

is a degree matrix of G, and in addition, for any two edges e, f spanning between
the same pair of blocks there exists an automorphism of G that sends e to f . In
this work, we affirmatively answer the question for all degree matrices and show a
way to construct a graph that witness this fact.

We further explore a case where the automorphism is required to exchange given
pair of edges and show some positive and negative results.
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1 Introduction

The class of vertex transitive graphs (as well as edge or arc transitive graphs)
is an interesting and well studied graph class for its algebraic and topological
properties, see e.g. a classical monograph of Biggs [2] or a modern textbook
of Godsil and Royle [5].

The defining property of a vertex transitive graph is that for any pair of
vertices u and v there exists an automorphism ϕ that maps u onto v, can be
informally rephrased as saying that vertex transitive graphs have very rich
structure of automorphism that allows to send an arbitrary vertex anywhere
in the given graph. One trivial consequence of the above fact is that any vertex
transitive graph must be regular. Our aim is to study graphs with analogously
rich structure of automorphism but which need not to be regular.

If we take any automorphism ϕ of an arbitrary graph, it holds that it must pre-
serve vertex degree, degrees of neighbours, degrees of neighbours of neighbours
and so on. This property can be formalized in terms of equitable partition (to
our knowledge first defined by Corneil and Gotlieb in [3]) since equitable par-
titions are exactly those patrtitions where two vertices from the same block
cannot be distinguished by counting their neighbors inside any other block. It
is worth to note that the partition with the fewest number of blocks can be
computed in time O(m log(n)) [1]. Also observe that every automorphism of
G must preserve this coarsest equitable partition.

With an equitable partition can be associated so called degree matrix in which
each row represents a block of the partition, and the entries describes the num-
bers of their neighbors in different blocks. Kratochv́ıl, Proskurowski and Telle
showed that the test whether a given graphG admits a equitable partition with
prescribed matrix is NP-complete [7]. This result was obtained in the setting
of locally constrained graph homomorphisms. See also [4] for a comprehensive
study of this relationship.

We focus our attention to the question whether for a given degree matrix M

there exist a graph G with an equitable partition corresponding to the matrix
M, such that it has as rich structure of automorphism as possible. It is required
that for any pair of arcs that are not excluded due to trivial degree reasons
there exist an automorphism of G that maps one on the other. (Consequently
we can obtain an analogous property for vertices instead of arcs.) We call such
graphs block transitive. Ordinary vertex, edge or arc, resp., transitive graphs
can be obtained as block transitive graphs with at most two blocks.

In other words, the question in which we are interested can be restated as:
Given a degree matrix M , does there exist a block transitive graph G that
such M is a degree matrix for G?
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We show an algebraic construction providing an affirmative answer for the
above problem for all degree matrices. We further explore an even stronger
notion of transitive graphs and derive some positive and some negative results.

2 Preliminaries

For a positive integer k the symbol [k] stands for the set {1, 2, . . . , k}. Elements
of a matrix M will be denoted by lowercase indexed letters, i.e. mi,j = (M)i,j.

For a set V we denote by
(

V
2

)

the set of unordered pairs of V .

We consider simple, undirected and (if not stated otherwise) finite graphs. In
other words a graph G is a pair (V,E), where V = VG is a set of vertices and

E = EG ⊆
(

V
2

)

is a set of edges.

For a graph G = (V,E) and a set W ⊆ V we define the subgraph of G induced

by the set W as the graph (W,E ∩
(

W
2

)

).

The complete graph Kn is the graph on n nodes in which all vertices are
adjacent, i.e. connected by an edge. Formally, Kn = ([n],

(

[n]
2

)

). The complete
bipartite graph Km,n is the graph with a disjoint union of two sets of sizes m
and n as its vertex set, in which only the edges between these two sets are
present. Formally, Km,n = ([m+ n], {uv | u ≤ m < v}).

The complement of a graph G = (V,E) is G = (V,
(

V
2

)

\ E). For a bipartite

graph G = (V,E) with given bipartition G ⊆ Km,n we define its bipartite

complement as G
′
= (V,EKm,n

\ E).

For a vertex v ∈ V of a graph G = (V,E) we denote by NG(u) the set of
neighbors of u, i.e. NG(u) = {v | uv ∈ E}.

For two sets V and W the symbol V ×W denotes the Cartesian product of
these sets. When G = (VG, EG) and H = (VH , EH) are graphs we mean by
G×H the categorical product of graphs G and H which is defined as follows:

VG×H = VG × VH EG×H = {(u, ū)(v, v̄) | uv ∈ EG, ūv̄ ∈ EH}

Definition 1 We call a square matrix M of order r a degree matrix of a graph
G if there is a partition of VG into disjoint blocks G = (V1, . . . , Vr) such that,
for every i and every u ∈ Vi, we have:

∀j : |NG(u) ∩ Vj| = mi,j .

Such a partition G is called equitable partition of G (with degree matrix M).
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Degree matrices are fully characterized in the following way [4]:

Lemma 2 A non-negative integer square matrix M of order r is a degree
matrix if and only if the following conditions are satisfied simultaneously:

(1) (Plus-symmetry) For every 1 ≤ i, j ≤ r, mi,j = 0 =⇒ mj,i = 0.
(2) (Cycle product identity) For every sequence of indices i1, i2, . . . , ik, ik+1,

k ≥ 3, such that ik+1 = i1,

k
∏

j=1

mij ,ij+1
=

k
∏

j=1

mij+1,ij .

We denote the set of all degree matrices by M.

We note here that for any M ∈ M the block sizes of the smallest graph G with
M as its degree matrix can be computed as the smallest nontrivial integral
solution to a system of linear equations, which can be achieved in time being
polynomial in the computational size of the matrix M [4].

To simplify the following statements we represent the partition G also by the
equivalence relation ∼G on VG, where u ∼G v holds if and only if u and v
belong to the same block of the equitable partition G.

Definition 3 We say that a graph G with degree matrix M of order r and
equitable partition G is block transitive, if for each pair of edges e = uv and
f = ūv̄ where u ∼G ū and v ∼G v̄, there exists an automorphism ϕ of G that
preserves the partition, i.e., u ∼G ϕ(u), and that sends e to f , i.e., ϕ(u) = ū
and ϕ(v) = v̄.

The main result in this work is that the answer for our original problem
is always positive. i.e. for every matrix M ∈ M we can construct a block
transitive graph that has M as its degree matrix.

3 Block product

In this section we introduce an useful binary operation between block transi-
tive graphs.

Definition 4 Let G and H be graphs with equitalbe partitions G = (V1, . . . , Vr)
and H = (W1, . . . ,Wr) respectively. We construct the block product graph
G⊗H according to the partitions G and H as follows:

(1) VG⊗H = (V1 ×W1) ∪ (V2 ×W2) ∪ . . . ∪ (Vr ×Wr).
(2) EG⊗H = {(u, x)(v, y) |uv ∈ EG, xy ∈ EH}.
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W1 W2

V1 ×W1

V2 ×W2

V1

V2







1 1

4 0





 ⊗







1 2

1 1





 =







1 2

4 0







Fig. 1. Example of a block product graph and the corresponding degree matrices

In other words, G⊗H is the subgraph of the Cartesian product G×H induced
by the vertex set

⋃r
i=1 Vi ×Wi.

An example of the construction of a block product graph is depicted in Fig. 1

We denote by G ⊗ H the natural partition of VG⊗H induced by this product,
i.e. G ⊗ H = (V1 ×W1, V2 ×W2, . . . , Vr ×Wr). Note that for any node (u, x)
the number of its neighbors in Vi×Wi is exactly the product of the number of
neighbors of u in Vi with the number of neighbors of x in Wi. Consequently,
G ⊗H is a equitable partition and the following observation holds:

Claim 5 Let G and H be graphs with degree matrices M and N, respectively,
of order r associated to equitable partitions G and H, resp. Then G ⊗H is an
equitable partition of G⊗H, and the degree matrix associated to this partition
is the coordinate product M ⊗ N, defined as:

∀i, j : (M ⊗ N)i,j = mi,jni,j

We show that this product behaves well with respect to block transitivity.

Theorem 6 Let G and H be two block transitive graphs with equitable par-
titions of size r, and degree matrices M and N, then G ⊗ H is also a block
transitive graph with degree matrix M ⊗ N.

PROOF. Let G and H be the equitable partitions associated to the graphs
G and H, respectively, with degree matrices M and N, resp.
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Let e = (u, x)(v, y) and f = (ū, x̄)(v̄, ȳ) be two edges of G ⊗ H between the
same pair of blocks of the partition, i.e., (u, x) ∼G⊗H (ū, x̄) and (v, y) ∼G⊗H

(v̄, ȳ). Since G is block transitive, there exists an automorphism ϕ ∈ Aut(G)
that sends uv to ūv̄. Similarly there is ψ ∈ Aut(H) that sends xy to x̄ȳ.
Consider the mapping ϕ⊗ ψ on the set VG⊗H defined by:

(ϕ⊗ ψ)(w, z) = (ϕ(w), ψ(z))

It is straightforward to verify that ϕ ⊗ ψ is an automorphism of G ⊗ H:
if (w, z)(w′, z′) ∈ EG⊗H then ww′ ∈ EG and zz′ ∈ EH . As ϕ and ψ are
automorphisms we know that ϕ(w)ϕ(w′) ∈ EG and ψ(z)ψ(z′) ∈ EH . Finally,
we get that

(ϕ(w), ψ(z)) (ϕ(w′), ψ(z′)) = (ϕ⊗ ψ)(w, z) (ϕ⊗ ψ)(w′, z′) ∈ EG⊗H

As by the construction, the mapping ϕ⊗ψ sends e to f , the statement of the
theorem holds.

4 Construction of block transitive graphs

Lemma 7 Let M be a degree matrix with 0’s outside the diagonal. Then all 0
entries outside the diagonal can be replaced with appropriate positive numbers
in a way that the resulting matrix M ′ is a degree matrix.

PROOF. For the degree matrix M take G be the smallest graph G with an
equitable partition G corersponding to M. Let S = (s1, s2, . . . , sr) the sizes
of blocks on G. (This vector can be computed as the minimal solution for
the block sizes problem associated to M, see [4].) For each pair of different
blocks Vi and Vj that are not connected (i.e., that mi,j = mj,i = 0) we insert
hi,j = gcd(si, sj) disjoint copies of the complete bipartite graphK(si/hi,j),(sj/hi,j)

using the vertices of Vi and Vj. The resulting graph will have the following
matrix M′:

m′
i,j =







mi,j if mi,j 6= 0 or i = j.

sj/hi,j if mi,j = 0 and i 6= j.

We now introduce simple matrices that we will use to factorize degree matrices.
If not stated otherwise all matrices are of order r.
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Definition 8 For a nonnegative integer m and indices i, j ∈ [r] we define the
symmetric matrix Si,j(m) of order r as follows:

(Si,j(m))k,l =















0 if k = l.

m if {k, l} = {i, j}.

1 in other case.

For a positive integer m and a set of indices I ⊆ [r] we define the matrix
AI(m) of order r as follows:

(AI(m))k,l =















0 if k = l.

m if k 6∈ I, l ∈ I.

1 in other case.

It is straightforward to verify that all Si,j(m) and also all AI(m) are indeed
degree matrices. To support this fact we note here that a block transitive
graph for any such a matrix will be constructed later in this section.

Lemma 9 Every degree matrix M with zeros on the diagonal can be decom-
posed into coordinate product of finitely many matrices Si,j(m) and AI(m)
with suitable parameters i, j,m and I.

PROOF. According to Lemma 7 we construct matrix M′ and write:

M = M′ ⊗
⊗

i<j, mi,j=0

Si,j(0).

In addition, we divide symmetric entries of M′ by the greatest common divisor
and obtain a matrix M′′, where the symmetric entries are relative primes. It
holds that:

M′ = M′′ ⊗
⊗

i<j, gcd(m′

i,j
,m′

j,i
)>1

Si,j(gcd(m′
i,j ,m

′
j,i)).

Let P = {p1, . . . , pk} be the set of prime divisors of elements of M′′. If P is
empty then M′′ is the identity matrix and the Lemma is proved. In the other
case, for each p ∈ P we define the matrix Mp elementwise such that for all
k ∈ [r] : mp

k,k = 0 and for l ∈ [r], l 6= k the entry mp
k,l is the greatest power of

p dividing m′′
k,l.

Every matrix Mp is a degree matrix, because it satisfies the cycle product
identity. Any product along a cycle of indices is equal to the greatest power
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of p dividing the corresponding product in the original matrix M′′.

Now we can further decompose matrix M′′ as follows:

M′′ =
⊗

p∈P

Mp.

It remains to disassemble each matrix Mp into coordinate product of matrices
of form AI(p). For that we iteratively repeat the following procedure:

1. Select I to be the set of indices of rows of Mp with all ones and one zero.
2. If I = [r] then stop, otherwise divide coordinatewise Mp by AI(p) and

continue by step 1.

To argue correctness we need an insight into block sizes |V1|, . . . , |Vr| of a graph
G with degree matrix M p. If mp

k,l = mp
l,k = 1 then both blocks Vk and Vl are

of the same size. In the other case holds either that mp
k,l = 1 and p|mp

l,k or
vice versa. Assume w.l.o.g. the first case, which means that |Vk| = mp

l,k|Vl|. As
the matrix Mp is not the identity matrix, we know that this case at least once
appears, i.e., G has at least two blocks of different size.

The choice of the index set I corresponds to the selection of indices of blocks
that are of the maximum size. A vertex from a smaller block Vl, l 6∈ I must
have mp

k,l ≥ p neighbors in any Vk, k ∈ I. In other words, whenever k ∈ I, l 6∈ I
we know that p|mp

k,l. Hence, the division in step 2 always provides an integral
result.

Observe also that the products along a cycle of indices in the former and in
the modified matrix Mp differ only in a factor of pt. This t is the number
of times the cycle traverses between the set I and its complement and it is
independent on the direction of the cycle. Therefore the modified matrix Mp

obtained in step 2 satisfies cycle product identity, i.e., it is a degree matrix,
and the procedure can be iterated.

The number of rounds of the procedure is equal to the greatest power of p in
Mp. Hence, it is finite and the statement of the Lemma holds.

We continue with a construction of a block transitive graph with degree matrix
Si,j(m). We take V = [m+ 1] × [r] and

E = {(a, k)(a, l) | {k, l} 6= {i, j}} ∪ {(a, i)(b, j) | a 6= b}.

In explanation the first set of edges is a disjoint union of m+ 1 copies of the
graph Kr − e (a complete graph with one edge removed) joined by the second
set of edges that define a bipartite complement of a (m+1)-matching between
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(2 + 1)K2
′ S3,4(2) =





























0 1 1 1 1

1 0 1 1 1

1 1 0 2 1

1 1 2 0 1

1 1 1 1 0





























(2 + 1)K−e

Fig. 2. Example of a block transitive graph GS for the matrix S3,4(2), r = 5.
(Rows in the drawing of GS form blocks of the corresponding equitable partition.)

the set of vertices with second coordinate i and the one with second coordinate
j. See Fig. 2 for an example.

Lemma 10 The graph GS = (V,E) is block transitive and Si,j(m) is its degree
matrix.

PROOF. Note first that the partition G = {V1, . . . , Vr} defined by Vi =
[m+ 1] × {i} is an equitable partition of GS with the degree matrix Si,j(m).

To argue that GS is block transitive we distinguish two cases:

(1) The given edges e = (a, k)(a, l) and f = (b, k)(b, l) span between Vk and
Vl, where {k, l} 6= {i, j}. Then let π be the transposition of [m+ 1] that
swaps a with b, i.e., π = (a b) written in cycle notation.

(2) The edges e = (a, i)(b, j) and f = (c, i)(d, j) span between Vi and Vj. By
the construction of GS we know that a 6= b and c 6= d. Now let π be any
permutation of [m+ 1] such that π(a) = c and π(b) = d.

π =



















































(a c)(b d) if all a, b, c, d are different.

(b d) if a = c and b 6= d.

(a c) if b = d and a 6= c.

(a b d) if b = c and a 6= d.

(a b c) if a = d and b 6= c.

(a b) if (a, b) = (d, c).

In both cases we obtain the desired automorphism ϕ of GS by applying π on
the first coordinate, i.e., it is the mapping ϕ(x, y) = (π(x), y).

Now we construct a block transitive graph with degree matrix AI(m). Without
loss of generality we may assume, that the set I is of size s and that it contains
the first s natural numbers, i.e. I = [s]. A graph with such particular degree
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A{1,2}(3) =





























0 1 1 1 1

1 0 1 1 1

3 3 0 1 1

3 3 1 0 1

3 3 1 1 0





























K3·2,3

3 ·K2

K3

Fig. 3. Example of GA for the matrix A{1,2}(3), r = 5.

matrix has as a degree matrix matrix AJ(m) for any set J ⊆ [r] of size s,
since it can be obtained only by a suitable reordering of blocks in the equitable
partition.

We take V = [1] × [r] ∪ ([m] \ {1}) × [s] and

E = {(a, i)(a, j)} ∪ {(a, i)(1, j) | i ≤ s, j > s}.

In other words, this graph consists of m disjoint complete graphs Ks joined
to a single Kr−s by a complete bipartite graph Km·s,r−s. See Fig. 3 for an
example.

Lemma 11 The graph GA = (V,E) is block transitive and AI(m) is its degree
matrix.

PROOF. As above the equitable partition according to the second coordinate
witness that AI(m) is a degree matrix of GA.

We further discuss the property of block transitivity in two cases:

(1) The given edges e = (a, i)(a, j) and f = (b, i)(b, j) span between Vi and
Vj, where i, j ≤ s.

(2) The edges e = (a, i)(1, j) and f = (b, i)(1, j) span between Vi and Vj,
where i ≤ s < j.

In both cases let π be the transposition of [m] that swaps a with b, i.e.,
π = (a b). As in the previous lemma we apply π on the first coordinate to get
the desired automorphism ϕ(x, y) = (π(x), y).

5 Main Theorem

Theorem 12 For every degree matrix M ∈ M there exists a finite block
transitive graph G with degree matrix M.
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PROOF. We first transform the given matrix M into a matrix M′ such that
M′ contains all non-diagonal entries of M.

As M′ has zeros on the diagonal, we now decompose the matrix M′ into
coordinate product of matrices of form Si,j(m) and AI(m) due to Lemma 9.
By Theorem 6 we construct a block transitive graph G′ with degree matrix
M′ according to this decomposition.

It remains to further modify G′ to incorporate all nonzero diagonal entries of
M. Without loss of generality assume that m1,1,m2,2, . . . ,mk,k are all nonzero
diagonal entries of M, and put z = (m1,1 +1)(m2,2 +1) . . . (mk,k +1). We take
z copies of the graph G′ and distinguish the z copies u(i1,i2,...,ik) of every vertex
u by indices (i1, i2, . . . , ik) taking range [m1,1 +1]× [m2,2 +1]×· · ·× [mk,k +1].

Now for every index l = 1, . . . , k we join vertices inside block Vl by z
ml,l+1

cliques Kml,l+1 in the way that two vertices become connected if only if they
are copies of the same vertex and their indices differ only in the l-th coordinate.

Straightforwardly, if we unify the z copies of each block of the equitable par-
tition of G′ into one block, we obtain a partition of VG into r sets, witnessing
that M is a degree matrix of the graph G.

It remains to show that G is block transitive. We distinguish two cases:

(1) The given edges e = u(i1,i2,...,ik)v(i1,i2,...,ik) and f = ū(j1,j2,...,jk)v̄(j1,j2,...,jk)

span between different blocks. In this case first find an automorphism ψ
of G′ with ψ(u) = ū and ψ(v) = v̄, whose existence is assured by the
block transitivity of G′. Then we define k permutations π1, . . . , πk such
that for each l = 1, . . . , k, the permutation πl = (il, jl) is the transposition
of [ml,l + 1] that swaps il with jl. We combine these mappings into the
desired automorphism ϕ(u(i1,i2,...,ik)) = ψ(u)(π1(i1),π2(i2),...,πk(ik)).

(2) The edges e = u(i1,i2,...,ik)u(i′
1
,i′

2
,...,i′

k
) and f = ū(j1,j2,...,jk)ū(j′

1
,j′

2
,...,j′

k
) join

vertices from the same block. Then we know that indices i1, i2, . . . , ik
differ from i′1, i

′
2, . . . , i

′
k only in one, say t-th, coordinate it 6= i′t. Conse-

quently, j1 = j′1, j2 = j′2, . . . , jk = j′k except for jt 6= j′t. As above, we
first determine an automorphism ψ of G′ with ψ(u) = ū. Then we take
k permutations π1, . . . , πk such that for l = 1, . . . , k the permutation πl

acts on [ml,l + 1] and sends il onto jl, and, in addition, the permutation
πt further satisfies πt(i

′
t) = j ′t. Together, these mappings provide us the

desired automorphism ϕ of G by ϕ(u(i1,i2,...,ik)) = ψ(u)(π1(i1),π2(i2),...,πk(ik)).
Observe that images of two adjacent vertices differ only in one coordi-

nate and, therefore, are connected by the construction of G.
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6 Strongly block transitive graphs

We continue our study with a stronger notion of a block transitive graph.
From now, the desired automorphism will be required not only to send given
edge e to f , but in addition, also f to e.

Definition 13 We call a graph G with degree matrix M of order r and equi-
table partition G is strongly block transitive, if for each pair of edges e = uv
and f = ūv̄ where u ∼G ū, v ∼G v̄ and where ū = v if v̄ = u there exists
an automorphism ϕ of G preserving the partition that swaps e with f , i.e.,
ϕ : u↔ ū, v ↔ v̄.

The special assumption in the definition excludes the case of e = uv, f = wu,
where u should be swapped simultaneously with v and w, which is impossible.

The following observation gives us a insight into the structure of a strongly
block transitive graph:

Observation 14 Let G be a strongly transitive graph with respect to equitable
partition G = {V1, . . . , Vk} with degree matrix M. Then the subgraph of G′

induced by a single block Vi or by the edges stemming between two blocks Vi

and Vj does not contain a path on four vertices P4 as an induced subgraph.

PROOF. Assume that G′ contains a path (u, v, w, x). We choose e = uv,
f = wx. If ϕ was the desired automorphism we get that ϕ(vw) = ϕ(v)ϕ(w) =
xu ∈ EG′ , i.e. (u, v, w, x) cannot be an induced subgraph of G′.

As complete bipartite graphs are the only bipartite graphs of diameter two,
we immediately obtain the following corollary:

Corollary 15 Let G be as in the above observation, then its subgraph given
by the edges stemming between two blocks Vi and Vj is a disjoint union of
complete bipartite graphs Kmi,j ,mj,i

.

In consequence we see, that we cannot directly import all constructions from
the above section, since the construction for the symmetric matrix Si,j(m)
(Lemma 10) involved a complement of a matching as the graph between blocks
Vi and Vj, but this graph is not complete bipartite.

On the other hand, the notion of strongly block transitive graphs preserves all
the remaining constructions.

Theorem 16 Let G and H be two strongly block transitive graphs with equi-
table partitions of size r, and degree matrices M and N, then G ⊗H is also

12



a strongly block transitive graph with degree matrix M ⊗ N.

Lemma 17 The graph GA = (V,E) is strongly block transitive and AI(m) is
its degree matrix.

We omit formal proofs of these two statements as the proofs are exactly the
same only notion “block transitive graph” should be strengthened by “strongly
block transitive graph” and accordingly “automorphism ϕ that sends u to v”
with “automorphism ϕ that swaps u with v”, etc.

We claim also that the construction shown in Theorem 12, which was used to
comprehend degree matrices with some positive entries on the diagonal, could
be used for strongly block transitive graphs without any change.

Hence, we can focus our attention only to symmetric degree matrices. We
present a necessary condition for a symmetric nonnegative matrix to be a
degree matrix of a strongly block transitive graph:

Definition 18 We say that a degree matrix M satisfies the triangle inequality
property if for every sequence of indices i1, . . . , ik, k ≥ 3 holds that

k−1
∏

j=1

mij ,ij+1
6= 0 =⇒

k−1
∏

j=1

mij ,ij+1
> mi1,ik

Theorem 19 Every degree matrix of a strongly transitive graph satisfies the
triangle inequality property.

In the sequel we use the following notation: Assume that the equitable parti-
tion V1, . . . , Vr of a graph G is fixed. For a vertex u ∈ V1 and k = 2, . . . , r we
denote by Nk(u) the set of its neighbors in Vk. Now consider all paths on k
vertices from u that traverse blocks V2, . . . , Vk (i.e. all paths u, u2, . . . , uk such
that uj ∈ Vj for all j = 2, . . . , k). Let N ′

k(u) be the set of final vertices of the
above paths (it may be empty).

The proof of Theorem 19 is a direct consequence of the following lemma:

Lemma 20 Let G be a graph and V1, . . . , Vk be a sequence of blocks of one of
its equitable partition such that for some u ∈ V1 it holds that |N ′

k(u)| < |Nk(u)|.
Then the graph is not strongly block transitive for that partition.

PROOF. We consider two cases:

• Nk(u)∩N
′
k(u) 6= ∅. We choose two vertices v, v′ ∈ Nk(u) such that v ∈ N ′

k(u)
and v′ 6∈ N ′

k(u). But no blocks preserving automorphism ϕ can send the edge
uv onto uv′, because the image of the path (u, u2, . . . , uk = v) would confirm
that v′ also belongs to the set N ′

k(u).

13



v′

u′ u

vv′′

u2

Vk

V1

Fig. 4. Illustration for the proof of Theorem 19.

• Nk(u)∩N
′
k(u) = ∅. We take any v ∈ Nk(u), v

′ ∈ N ′
k(u). Also choose any u′ ∈

Vik such that (u′, v′) ∈ EG. Now v′ ∈ Nk(u
′) and as |Nk(u

′)| = |Nk(u)| =
m1,k we may choose v′′ ∈ Nk(u

′) such that v′′ 6∈ N ′
k(u) (see Fig. 4).

If there were blocks preserving automorphisms ϕ that swaps uv with u′v′

and ϕ′ that swaps uv with u′v′′ then in their composition ψ = ϕ ◦ ϕ′ the
vertex u remains fixed, while v′ is swapped with v′′. As in the above case,
the image of the path (u, u2, . . . , uk = v′) under ψ would contradict the
choice v′′ 6∈ N ′

k(u).

PROOF. [of Theorem 19] Take any graph G with degree matrix M which
does not satisfy the triangle inequality property. Without loss of generality
we may assume that witnessing this assumption the blocks are arranged such
that their indices are i1, . . . , ik = 1, . . . , k.

By our assumptions we have

|N ′
k(u)| ≤

k−1
∏

j=1

mj,j+1 < m1,k = |Nk(u)|

and hence G is not strongly block transitive by Lemma 20.

Theorem 19 breaks our hope into use of factorization method into symmetric
matrices Si,j(m) and asymmetric matrices AI(m), as the following corollary
shows:

Corollary 21 No strongly block transitive graph exists with degree matrix
Si,j(m) of order r ≥ 3 with m ≥ 2.

We have shown that the triangle inequality property is a necessary condition
for a degree matrix to allow a strongly block transitive graph. We show that,
unfortunately, it is not sufficient. For that we further explore the structure of
strongly block transitive graphs.

14



Definition 22 Let G be a graph with equitable partition V1, . . . , Vr. We say
that B ⊆ Vi is an (i, j)-block if B = Vi ∩ N(u) for some u ∈ Vj. In such a
case we also say that u generates the (i, j)-block B.

Clearly, any (i, j)-block B satisfies |B| = mj,i.

Lemma 23 Let V1, V2 and V3 be three blocks of some strongly block transitive
graph G such that m1,2m2,3 = m1,3. Then the following holds:

(1) Every (2, 1)-block intersects every (2, 3)-block in at most one vertex.
(2) Each (3, 1)-block is a disjoint union of (3, 2)-blocks.

PROOF. Assume for the contrary that B is a (2, 1)-block that intersects
some (2, 3)-block B ′ in at least two vertices. Take u ∈ V1 that generates B
and w ∈ V3 that generates B′. Let N ′

3(u) be the set of vertices in V3 that have
in the set V2 a common neighbor with u.

Clearly w ∈ N ′
3(u). Since u and w have |B ∩ B ′| ≥ 2 common neighbors in

V2, we have that N ′
3(u) < m1,2m2,3 = m1,3 = N3(u). Now, by Lemma 20 the

graph G is not strongly block transitive, a contradiction.

For the other claim take a (3, 1)-block B generated by some vertex u ∈ V1.
Take an arbitrary v′ ∈ N ′

3(u) and its neighbor u′ ∈ V1. Now for any v ∈ B
there exists an automorphism ϕ that swaps uv with u′v′ and consequently
v ∈ N ′

3(u
′), i.e. B ⊆ N ′

3(u
′). (Consult Fig 4 with k = 3.)

As the set N ′
3(u

′) may have at most m1,2m2,3 = m1,3 = |B| many vertices,
we have that N ′

3(u
′) = B. Consequently B must be the disjoint union of the

(2, 3)-blocks generated by the neighbors of u′ in V2.

Now we are ready to show the counterexample.

Example 24 For the symmetric degree matrix

M =



































0 4 2 2 2 2

4 0 2 2 2 2

2 2 0 4 4 4

2 2 4 0 4 4

2 2 4 4 0 4

2 2 4 4 4 0


































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no strongly block transitive graph exists although M satisfies the triangle in-
equality property.

PROOF. Take an arbitrary (2, 1)-block B of a hypothetic strongly block
transitive graph G. We apply Lemma 23 (2) for the triples of blocks (V1, Vi, V2)
with i = 3, . . . , 6. For every i we get that B is a disjoint union of (2, i)-blocks.
As the four vertices of B can be partitioned into pairs in only three different
ways, we get that for some distinct i and j, the (2, i) and (2, j)-blocks forming
B coincide. But this is in contradiction with Lemma 23 (1) for the triple
(Vi, V2, Vj).

7 Conclusion

We have defined the new notion of a block transitive graph that extends the
notion of a transitive graph beyond the class regular graphs. We have shown
that for every degree matrix M always a block transitive graph G with degree
matrix M exists. We have also shown that for yet more restrictive notion
of strongly transitive graphs this does not hold in general which yields an
open question of classification of degree matrices that allow a strongly block
transitive graph.

Finally, we would like mention a folklore algebraic construction of bipartite
edge transitive graphs (see e.g. [6]). Take a group Γ such that it has two
subgroups Γ1 and Γ2. Consider the sets of their cosets Vi = {xΓi | x ∈ Γ} for
i = 1, 2. The intersection graph G = (V1 ∪ V2, {AB | A∩B 6= ∅}) is bipartite

as cosets in both V1 and V2 are disjoint. Vertices from V1 have |Γ1|
|Γ1∩Γ2|

neighbors

and vertices in V2 have degree |Γ2|
|Γ1∩Γ2|

, so







0 |Γ1|
|Γ1∩Γ2|

|Γ2|
|Γ1∩Γ2|

0





 is a degree matrix

of G. Moreover, G is arc-transitive as the action x → ba−1x sends the edge
A1B1 onto A2B2 if we take some a ∈ A1 ∩B1 and b ∈ A2 ∩B2.

Existence of a suitable group Γ and its subgroups is essentially equivalent to
the existence of an bipartite edge transitive graph. From such a G we take
Γ = Aut(G) to be the automorphism group of G and for an edge e = uv we
take Γ1 and Γ2, respectively, to be the set of automorphisms that fix u and v,
resp. A coset of Γ1 consists of all automorphisms of G that send u to a fixed
vertex, and analogously for Γ2.

As G is edge transitive then for any edge u′v′ ∈ EG there exist an automor-
phism ϕ ∈ Γ such that ϕ(u) = u′ and ϕ(v) = v′, i.e. the cosets ϕΓ1 and
ϕΓ2 representing u′ and v′ intersect. Consequently, the graph obtained by the
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above construction from the group Γ = Aut(G) and the two subgroups Γ1,Γ2

is isomorphic to the original graph G.

From our Theorem 12 follows that we can find a group Γ and its subgroups
of prescribed relative sizes of their intersections, such that the intersection
graph of their cosets yields a block transitive graph with given degree matrix.
We pose a question whether such suitable group and its subgroups can be
constructed directly in a purely algebraic way.
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We thank Daniël Paulusma and Jan Arne Telle for fruitful discussions on this
subject. We also thank Matthew De Vos for pointing us to the representation
of the arc transitive graphs as intersection graphs of cosets.

References

[1] Bastert, O. Computing equitable partitions of graphs. Match 40 (1999),
265–272.

[2] Biggs, N. Algebraic Graph Theory. Cambridge University Press, 1974.

[3] Corneil, D., and Gotlieb, C. An efficient algorithm for graph isomorphism.
J. Assoc. Comput. Mach. 17 (1970), 51–64.

[4] Fiala, J., Paulusma, D., and Telle, J. Locally constrained graph
homomorphism and equitable partitions. accepted, 2006.

[5] Godsil, C., and Royle, G. Algebraic graph theory. Graduate Texts in
Mathematics. 207. New York, Springer, 2001.

[6] Jones, G., Nedela, R., and Škoviera, M. Complete bipartite graphs with
a unique regular embedding. to appear in JCTB, 2006.

[7] Kratochv́ıl, J., Proskurowski, A., and Telle, J. A. Complexity of graph
covering problems. Nordic Journal of Computing 5 (1998), 173–195.

17


