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Abstract

We show that every K4-minor free graph with toughness greater
than 4/7 has a 2-walk, i.e., a closed walk visiting each vertex at most
twice. We also give an example of a 4/7-tough K4-minor free graph
with no 2-walk.

1 Introduction

An active area of graph theory is the study of Hamilton cycles [8, 9], in
particular, the study of conditions based on different connectivity parameters
that guarantees the existence of a Hamilton cycle in a graph. One of the most
famous conjectures in this area is Chvátal’s conjecture. Its original version
asserts that every 2-tough graph G is hamiltonian. Let us recall that a graph
G is hamiltonian if it contains a cycle passing through all its vertices, and G is
α-tough if the number τ(A) of components of G\A is at most max{1, |A|/α}
for every non-empty set A of the vertices. The original conjecture has been
disproved by Bauer et al. [1] who constructed (9/4 − ε)-tough graphs which
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are not hamiltonian but it remains open whether there exists a constant α0

such that every α0-tough graph is hamiltonian.
Though Chvátal’s conjecture remains open in general, it is known to be

true for several special classes of graphs. We mention such results on chordal
graphs as an example. Recall that a graph is chordal if it does not contain
an induced cycle of length four or more. Every 18-tough chordal graph is
hamiltonian [5]. It is conjectured that the bound of 18 can be reduced to
two [2]. Better bounds are known for several subclasses of chordal graphs:
1-tough interval graphs [12], 3/2-tough split graphs [13] (also see [11]) and
(1+ ε)-tough planar chordal graphs are hamiltonian. The two former results
are known to be the best possible. In the case of planar graphs, the existence
of a Tutte cycle implies that every (3/2+ε)-tough planar graph is hamiltonian
and Böhme et al. [4] constructed (3/2 − ε)-tough planar graphs with no
Hamilton cycle.

Another approach to Chvátal’s conjecture is to show the existence of
weaker substructures than Hamilton cycles. A k-walk of G is a closed walk
that visits each vertex of G at least once and at most k times. Jackson
and Wormald [10] conjectured that every 1-tough graph has a 2-walk. The
conjecture is still open. The best result in this direction is that every 4-tough
graph has a 2-walk [7].

Motivated by these results, we find the toughness threshold for the ex-
istence of 2-walks in K4-minor free graphs. Note that the case of Hamilton
cycles is rather trivial for K4-minor free graphs: it is easy to show by the
induction based on the construction of series-parallel graphs (see Section 2
for details) that 1-tough K4-minor free graphs are hamiltonian. The bound
is optimal since any hamiltonian graph is at least 1-tough.

K4-minor free graphs form an important subclass of planar graphs (recall
that a graph is planar if and only if it does not contain K5 or K3,3 as a minor).
An alternative characterization of K4-minor free graphs involves the notion
of tree-width, a notion well-studied both in structural graph theory as well
as theoretical computer science [3]. A graph G is K4-minor free if and only
if its tree-width is at most two. A tree-width of a graph can be described
using the notion of tree decompositions that we do not introduce here, or
using the notion of k-trees. The class of k-trees can be defined recursively
as follows: a complete graph Kk+1 of order k + 1 is a k-tree, and if G is
a k-tree, then a graph obtained from G and Kk+1 by identifying k vertices
contained in a complete subgraph of G and Kk+1 is also a k-tree. Hence,
2-trees are obtained from triangles by identifying pairs of edges. A graph G
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is K4-minor free if and only if it is a subgraph of a 2-tree. In fact, chordal
2-connected K4-minor free graphs are precisely 2-trees. Finally, K4-minor
free graphs are also related to series-parallel graphs which we introduce in
Section 2: every 2-connected K4-minor free graph is series-parallel and every
block of a K4-minor free graph is series-parallel.

Our main result is that every K4-minor free graph which is more than 4/7-
tough has a 2-walk. On the other hand, we construct a 4/7-tough K4-minor
free graph with no 2-walk. The graph that we construct is a 2-tree, i.e., it
is also chordal. Hence, our bound is also the best possible for K4-minor free
chordal graphs, the class of graphs that coincide with chordal planar graphs
G with ω(G) ≤ 3. Let us finally remark that it is not hard to generalize our
construction to produce an infinite family of 4/7-tough chordal K4-minor free
graphs with no 2-walk.

2 Series-parallel graphs

In this paper, we deal with K4-minor free graphs which are more than 4/7-
tough. Since each 4/7-tough graph is 2-connected, all graphs that we consider
are series-parallel graphs. The class of series-parallel graphs can be obtained
by the following construction based on blocks with poles. The simplest series-
parallel block is an edge and its two end-vertices are its poles. If G and H
are two blocks with poles v1 and v2 and w1 and w2, the graph obtained by
identifying the poles v2 and w1, such that v1 and w2 are its new poles, is
the block obtained by a serial join of G and H. The graph obtained from
G and H by identifying the the poles v1 and w1 and the poles v2 and w2 is
the block obtained by a parallel join of G and H. All blocks obtained by a
series of serial and parallel joins from single edges form the class of series-
parallel graphs. In the rest of the paper, we also refer to blocks used in the
construction of series-parallel graphs as to series-parallel blocks in order to
avoid confusion with 2-edge-connected subgraphs that are also called blocks
(though we do not use this term in the alternative meaning at all). Vertices
of a series-parallel block distinct from the poles are called inner vertices.

An important notion used in our proofs is a notion of an A-bridge. If
A ⊆ V (G), then an A-bridge of G is a maximal subgraph of G such that any
two vertices of it are joined by a path with all inner vertices distinct from
those contained in A. The vertices of an A-bridge contained in the set A
are called attachments and its other vertices are inner vertices. A simplest
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A-bridge is an edge with both end-vertices contained in A; an A-bridge with
internal vertices is said to be non-trivial. Hence, τ(A) is equal to the number
of non-trivial A-bridges.

Let us now state a simple structural lemma on series-parallel blocks:

Lemma 1. Let G be a series-parallel block with poles v1 and v2. If G is not

a single edge, then there exists an inner vertex v0 such that each {v1, v2, v0}-
bridge has exactly two attachments, and there are a {v1, v2, v0}-bridge with

the attachments v1 and v0 and a {v1, v2, v0}-bridge with the attachments v2

and v0.

Proof. We proceed by induction on the number of inner vertices of a series-
parallel block. If G is obtained by a serial join of two blocks, set v0 to be
the pole of the two blocks that was identified. If G is obtained by a parallel
join of two blocks, at least one of the two blocks is not a single edge (we
deal with simple graphs only) and this block contains a vertex v0 with the
properties described in the statement of the lemma. Since the other block
used in the parallel join is a {v1, v2, v0}-bridge with attachments v1 and v2,
all the {v1, v2, v0}-bridges have two attachments.

We finish this section with introducing a notion of proper series-parallel
blocks. Let G is a series-parallel graph, H is one of the blocks obtained in
the construction of G, and v1 and v2 are the poles H. We say that H is a
proper block if H has only one {v1, v2}-bridge but G has at least one non-
trivial {v1, v2}-bridge different from H. Note that being a proper block is a
property that depends not only on the block H but also on G.

3 Notation used in the proof

In this section, we introduce notation that we use in the proof of our main
result. We show that a proper block of a 4/7-tough series-parallel graph
contains 2-walks of certain specific types unless it contains one of the obvious
obstacles for their existence. The considered types of 2-walks are called green,
red, blue, black and grey. Similarly, the obstacles are called green, red and
blue.

We start with introducing the types of 2-walks. Let G be a proper series-
parallel block of a 4/7-tough series-parallel graph and let v1 and v2 be its
poles. Examples of all the types of walks that we introduce can be found
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v1 v2 v1 v2 v1 v2

v1 v2 v1 v2

Figure 1: Examples of green, red, blue, black and grey walks (in this order).
The green and blue walks are from the vertex v1.

v1 w v2

v1

w1

w2

v2

v1 w v2

Figure 2: Green and blue obstacles at the vertex v1 and a red obstacle
(depicted in this order).

in Figure 1. A green walk from vi is an open walk that starts and ends at
vi, visits each inner vertex of G once or twice and does not visit any of the
poles except at the beginning and the end of the walk. A red walk is an open
walk that starts at v1, ends at v2, visits each inner vertex of G once or twice
and does not visit any of the poles except at the beginning and the end of
the walk. A blue walk from vi is an open walk that starts at vi, ends at the
other pole of G, visits each inner vertex of G once or twice, visits vi at most
twice but it visits the other pole only at the end of the walk. A black walk

is a closed walk that visits both v1 and v2 once and each inner vertex of G
once or twice. Note that a black walk can also be viewed as a collection of
two open walks each starting at v1 and ending at v2 that visit together all
the inner vertices of G once or twice. Finally, a grey walk is an open walk
that starts at v1, ends at v2 and visits each vertex of G once or twice.

We now describe some obvious obstacles for the existence of the described
types of walks. It turns out that these obstacles, under the assumption that
G is more than 4/7-tough, are the only ones that can exclude the existence of
a particular type of a walk. We say that G contains a green obstacle at vi if
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there exists an inner vertex w such that there are two non-trivial {v1, v2, w}-
bridges with the attachments vi and w (see Figure 2). Clearly, if G contains
a green obstacle at vi, it cannot contain a green walk from the other pole:
indeed, such a walk must enter each of the two bridges from w since it must
avoid the vertex vi and thus the vertex w would be visited three times—for
the first time before tracing the first of the bridges, for the second time after
tracing the first and before tracing the second bridge, and for the third time
after tracing the second bridge.

We say that G contains a blue obstacle at vi (see Figure 2) if there exist
inner vertices w1 and w2 such that there are two non-trivial {v1, v2, w1, w2}-
bridges with the attachments vi and w1, two non-trivial {v1, v2, w1, w2}-
bridges with the attachments vi and w2, and a non-trivial {v1, v2, w1, w2}-
bridge with the attachments v3−i, w1 and w2. If G contains a blue obstacle
at vi, then G cannot contain a blue walk from v3−i: such a blue walk must
enter or exit one of the two {v1, v2, w1, w2}-bridges with the attachments vi

and w1 through vi (otherwise, w1 would be visited three times), and similarly
one of the bridges with the attachments vi and w2 must enter or exit through
vi (otherwise, w2 would be visited three times). Hence, the vertex vi would
be visited twice and thus there is no blue walk from v3−i. Note that we do
not need the {v1, v2, w1, w2}-bridge with the attachments v3−i, w1 and w2 to
be non-trivial in order to prevent the existence of a blue walk, however, in
our considerations, the bridge will always be non-trivial.

Finally, we say that G contains a red obstacle if there exists an inner
vertex w such that there are two {v1, v2, w}-bridges with the attachments
v1 and w, and two {v1, v2, w}-bridges with the attachments v2 and w (see
Figure 2). If G contains a red obstacle, then it cannot contain a red walk—
indeed, such a walk can enter only one of the two {v1, v2, w}-bridges with
the attachments v1 and w from the vertex v1, and thus it must enter and
exit the other bridge through w. Similarly, one of the two {v1, v2, w}-bridges
with the attachments v2 and w is entered and exited through w. Then, w
is visited three times—we conclude that there is no red walk. Similarly, the
presence of a blue obstacle at any of the two poles prevents the existence of
a red walk.

We now state five lemmas on the existence of each type of a walk. These
lemmas will be proven in the next section.

Lemma 2. Let G be a proper series-parallel block of a 4/7-tough series-

parallel graph and let v1 and v2 be its poles. If G does not contain a green
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obstacle at the pole v2, then G contains a green walk from v1. Analogously,

if G does not contain a green obstacle at the pole v1, then G contains a green

walk from v2.

Lemma 3. Let G be a proper series-parallel block of a 4/7-tough series-

parallel graph and let v1 and v2 be its poles. If G contains neither a blue

obstacle at the pole v1 or v2, nor a red obstacle, then G contains a red walk.

Lemma 4. Let G be a proper series-parallel block of a 4/7-tough series-

parallel graph and let v1 and v2 be its poles. If G does not contain a blue

obstacle at the pole v1, then G contains a blue walk from v2. Analogously,

if G does not contain a blue obstacle at the pole v2, then G contains a blue

walk from v1.

Lemma 5. Every proper series-parallel block G of a 4/7-tough series-parallel

G contains a black walk.

Lemma 6. Every proper series-parallel block G of a 4/7-tough series-parallel

G contains a grey walk.

4 Main result

Before we proceed with proving Lemmas 2–6, let us derive the main result
assuming we have already proven the lemmas.

Theorem 7. If G is a K4-free minor graph that is more than 4/7-tough,
then G has a 2-walk.

Proof. Since G is more than 1/2-tough, it is 2-connected and thus series-
parallel. If G has less than four vertices, then it is either a single vertex,
an edge or a triangle and the statement of the theorem readily follows. We
assume in the rest that G has at least four vertices. Since G is 2-connected,
it is obtained by a parallel join of series-parallel blocks B1, . . . , Bk with poles
v1 and v2. Without loss of generality, we can assume that each Bi is either an
edge or a series-parallel block obtained by a serial join. Since G is 4/7-tough,
at most three of the blocks B1, . . . , Bk are non-trivial.

If there are three non-trivial blocks B1, B2 and B3, then neither of them
contains a red or a blue obstacle at v1 or v2. If B1 contained a red obstacle
(with a vertex w as in the definition), then G would have six non-trivial
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v1

w

v2
v1 v2

w1

w2

v1 v2

w1

w2

Figure 3: Configurations in the proof of Theorem 7 in case of three non-trivial
series-parallel blocks.

v1 v3
v2

B′ B′′

B2

Figure 4: Notation used in the proof of Theorem 7 in the case of a single
non-trivial series-parallel block.

{v1, v2, w}-bridges which is impossible because of the toughness assumption
(see Figure 3). If B2 contained a blue obstacle at v1 (with vertices w1 and
w2 as in the definition), then G would have seven non-trivial {v1, v2, w1, w2}-
bridges which is also impossible because of the toughness assumption. The
case that B2 contained a blue obstacle at v2 is symmetric. We conclude that
each Bi, i = 1, 2, 3, contains a red walk by Lemma 3 (note that all the blocks
Bi are proper). The red walks of B1 and B2 and the black walk of B3 (which
exists by Lemma 5) combine to a 2-walk of G.

If there are exactly two non-trivial blocks B1 and B2, then each of them
is proper and thus contains a black walk by Lemma 5. The two black walks
combine to a 2-walk of G.

The last case is that there is a single non-trivial block B1. Note we cannot
apply Lemma 5 since B1 is not a proper block. In this case, k = 2 and B2

is a single edge. The block B1 was obtained by a serial join of two blocks B ′

and B′′ (see Figure 4). Since G has at least four vertices, one of the blocks
B′ and B′′ is non-trivial, say B ′ is a non-trivial series-parallel block. Let
v3 be the common pole of B′ and B′′. Observe now that the graph G can
also be obtained in the following way: perform the serial join of B ′′ and B2

identifying the vertex v2 and let B0 be the obtained block with poles v1 and
v3. G is then obtained by the parallel join of B0 and B′. Since both B0

and B′ are non-trivial, we can now proceed as in the case of two or three
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non-trivial blocks which we have analyzed before and conclude that G has a
2-walk.

We prove Lemmas 2–6 together by induction on the number of their
vertices. In the proof, we use the induction assumption that all the five
lemmas have been established for all proper blocks with fewer vertices.

Proof of Lemmas 2–6. If G is a single edge or a two-edge path, the state-
ments of all the lemmas clearly hold. In the rest, we assume that G contains
at least two inner vertices. Let v0 be the vertex of G as described in Lemma 1.
Let A1, . . . , Ak be the {v1, v2, v0}-bridges with the attachments v1 and v0, and
B1, . . . , B` the {v1, v2, v0}-bridges with the attachments v2 and v0. Note that
since G is proper, any bridge with the attachments v1 and v2 must be a
single edge and a walk does not have to trace it (it does not have any inner
vertices). Hence, we can assume that there is no such bridge at all.

At most two of the bridges A1, . . . , Ak are non-trivial: otherwise, the
original graph contains four non-trivial {v1, v0}-bridges (at least three bridges
Ai and a bridge containing v2) and the entire graph is at most 1/2-tough
contradicting the assumption. If k ≥ 2, then we can assume that all the
bridges A1, . . . , Ak are non-trivial, since the trivial bridges do not have to be
traced by a walk and we can remove them from the list. Hence, it is enough
to consider the following three cases:

• k = 1 and A1 is a bridge formed by a single edge,

• k = 1 and A1 is a non-trivial bridge, and

• k = 2 and both A1 and A2 are non-trivial bridges.

Similarly, only the following three cases need to be considered regarding the
bridges B1, . . . , B`:

• ` = 1 and B1 is a bridge formed by a single edge,

• ` = 1 and B1 is a non-trivial bridge, and

• ` = 2 and both B1 and B2 are non-trivial bridges.

Also note that each non-trivial bridge Ai is a non-trivial series-parallel block
with the poles v1 and v0, and each non-trivial bridge Bi is a non-trivial
series-parallel block with the poles v2 and v0.
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v1 w v0 v2

v1

w1, w2

v0 v2 v1

w1, w2

v0 v2

Figure 5: Possible configurations if k = 2 and A1 does not contain a red
walk.

v1

w

w′

v0 v2

Figure 6: The configuration if k = 2 and both A1 and A2 contain green
obstacles at v1.

We now prove several technical claims on the existence of certain walks
in the blocks Ai and Bi that we later use to construct the desired walks in
G.

Claim 1. If k = 2, then each of the blocks A1 and A2 has a red walk.

Analogously, if ` = 2, then each of the blocks B1 and B2 has a red walk.

By symmetry, we can only focus on the case that k = 2 and show that A1

has a red walk. By the induction assumption, it is enough to show that A1

does not contain a red obstacle or a blue obstacle at v1 or v0: if A1 contained
a red obstacle, then the entire graph would contain six non-trivial {v1, v0, w}-
bridges, contradicting the assumption that the graph is more than 4/7-tough
(see Figure 5). If A1 contained a blue obstacle, then then the entire graph
would contain seven non-trivial {v1, v0, w1, w2}-bridges, also contradicting
the assumption that the graph is more than 4/7-tough.

Claim 2. If k = 2 and G does not contain a blue obstacle at v1, then A1

or A2 contains a green walk from v0. Analogously, if ` = 2 and G does not

contain a blue obstacle at v2, then B1 or B2 contains a green walk from v0.

If both A1 and A2 contained green obstacles at v1 with vertices w1 and
w2, then G would contain a blue obstacle at v1 with w1 and w2. Note that
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v1

w1

w2

v0
v2

Figure 7: The configuration if k = ` = 2 and both A1 and A2 contain green
obstacles at v0.

v1

w1

w2

v0

w′
1

w′
2

v2 v1

w1

w2

v0
w v2

v1 w v0
w′ v2

Figure 8: Possible configurations if both A1 and B1 contain a blue obstacle
at v0 or a red obstacle.

the {v1, v2, w1, w2}-bridge with the attachments v2, w1 and w2 is non-trivial
since it contains v0 (see Figure 6).

Claim 3. If k = ` = 2, then A1 or A2 contains a green walk from v1.

Analogously, if k = ` = 2, then B1 or B2 contains a green walk from v2.

If both A1 and A2 contained a green obstacle at v0, say with vertices
w1 and w2, then G would contain seven non-trivial {v0, v2, w1, w2}-bridges
contradicting our assumption that G is more than 4/7-tough (see Figure 7).
The claim now follows from the induction assumption. Analogously, B1 or
B2 contains a green walk from v0.

Claim 4. A1 or B1 contains neither a blue obstacle at v0 nor a red obstacle.

If both A1 and B1 contained blue obstacles at v0 with vertices w1 and w2,
and w′

1 and w′

2, respectively, then there would be nine non-trivial {v0, w1, w2,
w′

1, w
′

2}-bridges (see Figure 8). Hence, the graph would be at most 5/9-tough
contradicting the assumption that it is more than 4/7-tough.
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v1

w1

w2

v0
v2

v1 w v0 v2

Figure 9: Possible configurations if A1 contains a blue obstacle at v0 or a red
obstacle, and ` = 2.

v1 v0 v2

v1 v0 v2

Figure 10: Green walks (drawn in bold) constructed in the proof of Lemma 2.

If A1 contained a blue obstacle at v0 (with vertices w1 and w2) and B1 a
red obstacle (with a vertex w), then the whole graph would have nine non-
trivial {v0, v2, w, w1, w2}-bridges. Again, this is excluded by the assumption.
The case that A1 contained a red obstacle and B1 a blue one is symmetric.

If A1 contained a red obstacle (with a vertex w) and B1 also contained
a red obstacle (with a vertex w′), then the whole graph would have nine
non-trivial {v0, v1, v2, w, w′}-bridges which is impossible by the assumption.
The statement of the claim now readily follows.

Claim 5. If ` = 2, then A1 contains neither a blue obstacle at v0 nor a red

obstacle. Analogously, if k = 2, then B1 contains neither a blue obstacle at

v0 nor a red obstacle.

If A1 contained a blue obstacle at v0, then there would be seven non-
trivial {w1, w2, v0, v2}-bridges contradicting the assumption that the graph is
more than 4/7-tough (also see Figure 9). If A1 contained a red obstacle, then
there would be seven non-trivial {v1, w, v0, v2}-bridges. The case of k = 2 is
symmetric.

We are now ready to construct the desired types of walks in G.
Proof of Lemma 2. If G does not contain a green obstacle at v2, then it

has a green walk from v1.

Note that ` = 1, otherwise, G would contain a green obstacle with w = v0.
In addition, B1 does not contain a green obstacle at v2 since such an obstacle
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v1 v0 v2

v1 v0 v2

Figure 11: Red walks (drawn in bold) constructed in the proof of Lemma 3.

would also be a green obstacle of G. Hence, B1 has a green walk from v0

by the induction. If k = 1, the green walk of B1 can be combined with a
black walk of A1 to a green walk of G. If k = 2, the green walk of B1 can
be combined with two red walks of A1 and A2 (which exist by Claim 1) to a
green walk of G. We conclude that G has a green walk from v1 unless it has
a green obstacle at v2. The reader can check Figure 10 for the illustration of
the proof of this claim.

Proof of Lemma 3. If G contains neither a blue obstacle at v1 or v2 nor a

red obstacle, then G has a red walk.

Since G does not have a red obstacle, k = 1 or ` = 1. By symmetry, we
can assume that k = 1. Let us first consider the case ` = 1. By Claim 4, the
assumptions of the claim and the induction, A1 or B1 contains a red walk.
By symmetry, let us say that A1 has a red walk. Since G does not contain
a blue obstacle at v2, B1 does not contain it either and thus B1 has a blue
walk from v0. The red walk of A1 and the blue walk of B1 combine to a red
walk of G (see Figure 11).

If ` = 2, then B1 or B2 contains a green walk from v0 by Claim 2. By
symmetry, we assume that B1 has a green walk from v0. By Claim 5 and the
induction, A1 has a red walk. The red walk of A1, the green walk of B1 and
a red walk of B2 (which exists by Claim 1) can be combined to a red walk
of G (also see Figure 11).

Proof of Lemma 4. If G does not contain a blue obstacle at v2, then it has

a blue walk from v1.

Assume first that k = ` = 1. By Claim 4, A1 or B1 contains neither
a red obstacle nor a blue obstacle at v0. If A1 has this property, then A1

contains a blue walk from v1 by the induction and B1 has a blue walk from
v0 (otherwise, a blue obstacle at v2 of B1 would also be a blue obstacle at
v2 of G). The two blue walks combine to a blue walk of G from v1. If B1

contains neither a red obstacle nor a blue obstacle at v0, B1 has a red walk
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v1 v0 v2 v1 v0 v2

v1 v0 v2

v1 v0 v2 v1 v0 v2

Figure 12: Blue walks (drawn in bold) constructed in the proof of Lemma 4.

v1 v0 v2

v1 v0 v2 v1 v0 v2

v1 v0 v2

Figure 13: Black walks (drawn in bold) constructed in the proof of Lemma 5.

by the induction. In addition, A1 has a grey walk by the induction. The
grey and the red walks combine to a blue walk from v1 (see Figure 12).

If k = 2 and ` = 1, then B1 has a red walk by Claim 5 and the induction.
By Claim 1, both A1 and A2 have red walks, and by the induction, they
have black walks, too. The black walk of A1 and the red walks of A2 and B1

combine to a blue walk of G from v1.
If ` = 2, then B1 or B2 contain a green walk from v0 by Claim 2. Assume

that B1 does (the other case is symmetric). By Claim 1, B2 contains a red
walk. If k = 1, a blue walk of A1 from v1 which exists by the induction and
Claim 5, combines with the green walk of B1 and the red walk of B2 to a
blue walk of G from v1. If k = 2, A1 or A2 has a green walk from v1 by
Claim 3. By the symmetry, we can assume that A1 has a green walk from v1.
Since A2 has a red walk by Claim 1, the green walks of A1 and B1 and the
red walks of A2 and B2 combine to a blue walk of G from v1 (see Figure 12).

Proof of Lemma 5. G has a black walk.

The black walk of G is comprised of a black walk of A1 if k = 1 or two red
walks of A1 and A2 if k = 2 (such red walks exist by Claim 1), and of a black
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v1 v0 v2

v1 v0 v2 v1 v0 v2

Figure 14: Grey walks (drawn in bold) constructed in the proof of Lemma 6.

walk of B1 if ` = 1 or two red walks of B1 and B2 if ` = 2 (see Figure 13).

Proof of Lemma 6. G has a grey walk.

Assume first that k = 1 and ` = 1. By Claim 4, A1 or B1 does not contain
a blue obstacle at v0, say A1 does not. By the induction, A1 has a blue walk
from v1 and B1 has a grey walk. The two walks combine to a grey walk of
G (see Figure 14).

Next, we consider the case k = 1 and ` = 2. By Claim 5, A1 does not
contain a blue obstacle at v0. Hence, it has a blue walk from v1 by the
induction. Both B1 and B2 have black walks by the induction and red walks
by Claim 1. The blue walk of A1 from v1, a black walk of B1 and a red walk
of B2 combine to a grey walk of G. The case k = 2 and ` = 1 is symmetric.

The final case that we need to consider is that k = ` = 2. By Claim 1, A1,
A2, B1 and B2 have red walks. By Claim 3, A1 or A2 has a green walk from
v1, say A1 does. Similarly, we can suppose that B1 has a green walk from v2.
The green walks of A1 and B1 and the red walks of A2 and B2 combine to a
grey walk of G.

5 A 4/7-tough graph with no 2-walk

In this section, we construct a 4/7-tough 2-tree with no 2-walk. We start
with introducing two series-parallel blocks which are depicted in Figures 15
and 16. The two blocks have a common property that any 2-walk tracing
them must contain an inner edge incident with y as stated in the next two
lemmas (an edge of a block is inner if it does not join its poles).

Lemma 8. Let G be the series-parallel block with poles x and y depicted in

Figure 15. Any 2-walk contains at least one inner edge of G incident with y.

Proof. If no inner edge of G incident with y is contained in a 2-walk, then
the 2-walk must come to a from x, then visit both the common neighbors
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a

Figure 15: A series-parallel block with poles x and y such that any 2-walk
must contain an inner edge incident with y.

x y

a

b

c

d
e

Figure 16: A series-parallel block with poles x and y such that any 2-walk
must contain an inner edge incident with y.

of a and y and return to x. However, a would be visited three times in this
way. The statement of the lemma now follows.

Lemma 9. Let G be the series-parallel block with poles x and y depicted in

Figure 16. Any 2-walk contains at least one inner edge of G incident with y.

Proof. Let us consider a 2-walk that contains neither the edge dy nor the
edge ey. Hence, the 2-walk comes to and leaves the vertex e through the
edge de. By Lemma 8, d is incident with at least one edge contained in each
of the two copies of the block depicted in Figure 15 pasted along the edge
ad. Since the 2-walk visits d at most twice, the 2-walk cannot use the edge
bd or the edge cd. Hence, the 2-walk enters the block through the vertex
x, it comes from x to b, visits c, continues to a (in order to reach d), and
eventually returns from a to b and leaves the block through x. However, in
this way, the 2-walk visits b three times which is impossible. We conclude
that every 2-walk contains at least one inner edge of G incident with y.

The graph that we present as an example of a 4/7-tough series-parallel
graph with no 2-walk is depicted in Figure 17. It is easy to verify that the
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Figure 17: A 4/7-tough 2-tree with no 2-walk.

graph is not only series-parallel, but it is in fact a 2-tree. Also note that the
graph contains three copies of the block from Figure 15 and two copies of the
block from Figure 16. Let us first argue that it has no 2-walk.

Lemma 10. The 2-tree depicted in Figure 17 has no 2-walk.

Proof. By Lemmas 8 and 9, every 2-walk of the graph contains five edges
incident with the vertex a. However, such a 2-walk must visit a at least
three times which is impossible.

Next, we argue that the graph depicted in Figure 17 is 4/7-tough.

Theorem 11. The 2-tree depicted in Figure 17 is an example of a 4/7-tough
2-tree with no 2-walk.

Proof. By Lemma 10, it is enough to show that the graph is 4/7-tough. The
number of non-trivial A-bridges for A = {h, l, n, p} is seven and thus the
graph is at most 4/7-tough. In the rest, we show that the graph is 4/7-
tough.

Assume that G is less than 4/7-tough, and let A be a non-empty inclusion-
wise minimal set of vertices such that |A|/τ(A) < 4/7. For any proper subset
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B of A, we can infer the following from the choice of A:

|A|

τ(A)
<

|A| − |B|

τ(A \ B)

τ(A)|B| < |A| (τ(A) − τ(A \ B))

τ(A)

|A|
|B| < τ(A) − τ(A \ B)

7|B|

4
< τ(A) − τ(A \ B)

Hence, if |B| = 1, τ(A) ≥ τ(A \ B) + 2. In particular, each vertex of A is
an attachment of at least three non-trivial A-bridges and thus A contains
no vertices of degree two. Similarly, every pair of vertices of A is incident
with five non-trivial A-bridges (unless |A| = 2), every triple with seven such
bridges (unless |A| = 3) and every quadruple with nine such bridges (unless
|A| = 4). In our further considerations, we will argue that A does not
contain certain subsets B based on the number of A-bridges incident with
the vertices B and implicitly assume that B is a proper subset of A; the cases
that B = A will not be explicitly analyzed and the reader is asked to check
that our arguments extend to such cases, too.

Let B = A ∩ {j, h, l, n, p}. If j ∈ B, then neither h, n nor p can be
contained in B (there would not be three non-trivial A-bridges incident with
them). On the other hand, l is contained in B, since otherwise j would not
be incident with at least three non-trivial A-bridges. However, the pair j and
l is now incident with at most four non-trivial A-bridges: those containing h,
n, p and the common neighbor of a and l. Since this is impossible, we infer
that j 6∈ B.

Assume that l ∈ B. If B = {h, l, n, p}, then the quadruple h, l, n and
p is incident with at most eight non-trivial A-bridges which is impossible.
If B = {h, l, n}, then the triple h, l and n is incident with at most six
non-trivial A-bridges which is also impossible. Similarly, B 6= {h, l, p}. If
B = {l, n, p}, the triple l, n and p is incident with at most six non-trivial
A-bridges which is impossible. If B = {l, n}, the pair l and n is incident
with at most four non-trivial A-bridges which is also impossible. Similarly,
B 6= {l, p}. If B = {h, l}, then the pair h and l is incident with at most
four non-trivial A-bridges which is impossible, too. Hence, B = {l} and l is
incident with at most two non-trivial A-bridges which is impossible as well.
We eventually conclude that l 6∈ B. Hence, neither n nor p are contained in
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A (they cannot be incident with three non-trivial A-bridges if l 6∈ B). The
only two cases that remain are B = {h} and B = ∅. Since the former case is
excluded (h would be incident with a single non-trivial A-bridge), we infer
that B = ∅. Analogously, it holds that A ∩ {i, k,m, o, q} = ∅ and thus that
A ⊆ {a, b, c, d, e, f, g}.

Assume first that b ∈ A. Since b must be incident with at least three non-
trivial A-bridges, a must also be contained in A (otherwise, f and g cannot
be in different A-bridges), and f 6∈ A, g 6∈ A, and d 6∈ A. Let α = |A∩{c, e}|.
There are 3+2α non-trivial A-bridges, and |A|/τ(A) = (2+α)/(3+2α) ≥ 4/7.
We conclude that b 6∈ A.

Assume now that f ∈ A. Since f must be incident with at least three
non-trivial A-bridges, a ∈ A and c 6∈ A. If g is also contained in A, let
α = |A ∩ {d}| (note that e 6∈ A in this case). It is easy to derive that
|A|/τ(A) = (3 + α)/(5 + 2α) ≥ 4/7. If g 6∈ A, let α = |A∩{d, e}|. We derive
that |A|/τ(A) = (2+α)/(3+2α) ≥ 4/7. We eventually conclude that f 6∈ A.
By symmetry, g 6∈ A. We can now conclude that A ⊆ {a, c, d, e}.

If a 6∈ A, then none of the vertices c, d or e can be incident with three
non-trivial A-bridges. Hence, a ∈ A. Let α = |A ∩ {c, d, e}|. Since there are
1+2α non-trivial A-bridges, we have that |A|/τ(A) = (1+α)/(1+2α) ≥ 4/7.
We can now conclude that there is no set A with |A|/τ(A) < 4/7 and the
graph is 4/7-tough.
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[6] V. Chvátal: Tough graphs and hamiltonian circuits, Discrete Math. 5

(1973), 215–228.

[7] M. N. Ellingham, X. Zha: Toughness, trees, and walks, J. Graph Theory
33 (2000), 125–137.

[8] R. J. Gould, Updating the hamiltonian problem—a survey, J. Graph
Theory 15 (1991), 121–157.

[9] R. J. Gould, Advances on the hamiltonian problem—a survey, Graphs
and Comb. 19 (2003), 7–52.

[10] B. Jackson, N. C. Wormald: k-walks of graphs, Australas. J. Combin.
2 (1990), 135–146.

[11] T. Kaiser, D. Král’, L. Stacho: Tough spiders, submitted. A preliminary
version available as ITI report 2005–272.

[12] J. M. Keil: Finding hamiltonian circuits in interval graphs, Inf. Proc.
Let. 20 (1985), 201–206.

[13] D. Kratsch, J. Lehel, H. Muller: Toughness, hamiltonicity and split
graphs, Discrete Math. 150 (1996), 231–245.

[14] P. J. Owens: Non-hamiltonian maximal planar graphs with high tough-
ness, Tatra Mt. Math. Publ. 18 (1999), 89–103.

20


