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Abstract

Motivated by previous results on distance constrained labelings
and coloring of squares of K4-minor free graphs, we show that for
every p ≥ q ≥ 1, there exists ∆0 such that every K4-minor free graph
G with maximum degree ∆ ≥ ∆0 has an L(p, q)-labeling of span at
most qb3∆(G)/2c. The obtained bound is the best possible.

1 Introduction

Distance constrained labelings of graphs form an important graph theoretical
model for the channel assignment problem. An L(p, q)-labeling of a graph G
for integers p ≥ q ≥ 1 is a labeling of its vertices by non-negative integers
such that the labels of adjacent vertices differ by at least p and those at
distance two by at least q. The smallest K for which there exists an L(p, q)-
labeling with labels 0, . . . , K is called the L(p, q)-span of G and denoted by
λp,q(G). The notion of L(p, q)-labeling is closely related to classical graph
colorings: the L(1, 1)-span of a graph G is equal to the chromatic number of
G2 decreased by one.

In this paper, we focus on distance constrained labelings of graphs that
do not contain the complete graph of order four as a minor. Such graphs
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form a subclass of planar graphs which includes all outer-planar graphs.
Both L(p, q)-labelings and colorings of squares of planar graphs were inten-
sively studied, yielding many results: Wegner [30] proved that χ(G2) ≤ 8
for planar graphs G with the maximum degree three and conjectured that
the bound can be improved to seven. This conjecture has been recently
confirmed by Thomassen [28]. For planar graphs with the maximum degree
∆ ≥ 4, Wegner [30] conjectured that χ(G2) ≤ ∆ + 5 for ∆ ∈ {4, 5, 6, 7} and
χ(G2) ≤ b3∆/2c+1, otherwise. The best upper bound χ(G2) ≤ b5∆/3c+78
was established in [24, 25] and closely related results on coloring of higher
order powers of planar graphs were given in [2, 3]. In the case of L(p, q)-
labelings of planar graphs, van den Heuvel et al. [15] show that λp,q(G) ≤
(4q − 2)∆ + 10p + 38q − 24, and Borodin et al. [6] provide the bound of
λp,q(G) ≤ (2q−1)d9∆/5e+8p−8q+1 for ∆ ≥ 47. The best asymptotic result
λp,q(G) ≤ qd5∆/3e+18p+77q−18 is due to Molloy and Salavatipour [24, 25].
Better bounds are known for planar graphs without short cycles [27], e.g.
λp,q(G) ≤ (2q − 1)∆ + 4p + 4q − 4 if G is a planar graph of girth at least
seven. The bound for planar graphs with girth seven has recently been im-
proved to 2p + q∆ − 2 [10] under the assumption that the maximum degree
∆ is sufficiently large (this bound is the best possible if q = 1 which includes
the case of L(2, 1)-labelings).

For general graphs, the research was focused mainly on L(2, 1)-labelings
because of their practical applications. Another reason is the conjecture
of Griggs and Yeh [14] which assumes that λ2,1(G) ≤ ∆2 for every graph
G with maximum degree ∆ ≥ 2. The conjecture was verified for several
special classes of graphs, including graphs of maximum degree two, outer
planar graphs [8], planar graphs with maximum degree ∆ 6= 3 [4], chordal
graphs [26] (see also [7, 21]), hamiltonian cubic graphs [16, 17], direct and
strong products of graphs [18], etc. For general graphs, the original bound
λ2,1(G) ≤ ∆2 + 2∆ of [14] was improved to λ2,1(G) ≤ ∆2 + ∆ in [9]. A more
general result contained in [20] yields λ2,1(G) ≤ ∆2 + ∆ − 1 and the best
known bound of ∆2+∆−2 was given by Gonçalves [13]. Algorithmic aspects
of L(2, 1)-labelings as well as L(p, q)-labelings are also well investigated [1,
5, 11, 12, 19, 23] because of their applications in practice.

Motivated by results of [29], we study L(p, q)-labelings of K4-minor free
graphs. This class of graphs includes series-parallel graphs, an interesting
class of graphs obtained by two simple operations from single edges as re-
viewed in Section 2. Wang et al. [29] show that every K4-minor free graph
G with maximum degree ∆ has an L(p, q)-labeling, p + q ≥ 3, with span at
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most 2(2p− 1) + (2q − 1) b3∆/2c. This result generalizes the previous result
of Lih, Wang and Zhu [22] that the squares of K4-minor free graphs with
maximum degree ∆ ≥ 4 are (b3∆/2c + 1)-colorable, i.e., λ1,1(G) = b3∆/2c.
Since the latter bound is optimal, one may ask whether the bound obtained
in [29] is also optimal. We show that this is not the case and the bound
for any p ≥ q = 1 matches the bound for L(1, 1)-labelings if the maximum
degree ∆ is sufficiently large. More precisely, we show that for every p ≥ 1,
there exists ∆0, such that every K4-minor free graph with maximum degree
∆ ≥ ∆0 has an L(p, 1)-labeling with span at most b3∆/2c. Since this bound
matches the optimal bound of [22], it cannot be further decreased. In this
paper, we only focus on establishing the existence of ∆0. Our results also
translate to L(p, q)-labelings with q > 1.

Let us remark that all graphs considered in this paper are simple, i.e.,
without loops and parallel edges and we use standard graph theory notation
which can be found in most textbooks on graph theory.

2 Structure of Series-parallel Graphs

In this section, we introduce notation related to K4-minor free graphs and
series-parallel graphs in particular. Series-parallel graphs can be obtained by
the following recursive construction based on graphs with two distinguished
vertices called poles. The simplest series-parallel graph is an edge uv and the
two poles of it are its end-vertices. If G1 and G2 are series-parallel graphs
with poles u1 and v1, and u2 and v2, respectively, then the graph G obtained
by identifying the vertices v1 and u2 is also a series-parallel graph and its two
poles are the vertices u1 and v2. The graph G obtained in this way is called
the serial join of G1 and G2. The parallel join of G1 and G2 is the graph
obtained by identifying the pairs of vertices u1 and u2 and v1 and v2 with the
poles being the identified vertices. The series-parallel graphs are precisely
those that can be obtained from edges by a series of serial and parallel joins.

It is well-known that every 2-edge-connected K4-minor free graph is a
series-parallel graph. Let us now state this fact as a separate lemma:

Lemma 1. Every block of a K4-minor free graph is a series-parallel graph.

The construction of a particular series-parallel graph G can be encoded
by a rooted tree which is called the SP-decomposition tree of G. Each node
of the tree corresponds to a subgraph of G obtained at a step of the recursive
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construction of G. The leaves correspond to simple paths with their end-
vertices being poles (such graphs are obtained by successive serial joins from
edges) and each inner node of the tree corresponds to either a serial or a
parallel join. Based on this, there are two types of inner nodes: S-nodes

and P-nodes. The inner nodes have at least two children: the subgraphs
corresponding to their children were joined together by a sequence of serial
or parallel joins depending on the type of the node. Since the result of
a sequence of serial joins depends on the order in which the serial joins
are applied, the children of each inner node are ordered. Without loss of
generality, we can assume that the children of a P-node are S-nodes and
leaves only, and the children of an S-node are P-nodes and leaves only. We
can also assume that no two consecutive children of an S-node are leaves.

An SP-decomposition tree corresponding to a series-parallel graph G is
not unique. In fact, there is a lot of freedom in its choice as can be seen in
the following well-known result:

Lemma 2. Let G be a series-parallel graph and v a vertex of G. There

exists an SP-decomposition tree such that v is one of the poles of the graph

corresponding to the root of the SP-decomposition tree.

In the proof of our main result, we show that a minimal possible counter-
example does not contain certain subgraphs. Their structure is based on the
subtrees corresponding to them in the SP-decomposition tree. A subgraph of
G corresponding to a leaf of the tree, i.e., a path consisting of 2-vertices , is
called an `-subgraph of G (` stands for leaf). A subgraph obtained by a paral-
lel join of A1-subgraph, A2-subgraph, . . . , Ak-subgraph, is a P (A1, . . . , Ak)-
subgraph and a subgraph obtained by a serial join of such subgraphs is an
S(A1, . . . , Ak)-subgraph. For instance, a P (`, `, `)-subgraph is a subgraph of
G that corresponds to a P-node with three leaves. Since the result of a serial
join depends on the order in which the subgraphs are joined, we require the
sequence A1, . . . , Ak to respect this order. Subgraphs obtained by a parallel
join of several A-subgraphs are called P (A∗)-subgraphs and those obtained
by a serial join S(A∗)-subgraphs. P (`∗)-subgraphs are called P -subgraphs
for short. An example of this notation can be found in Figure 2.

Finally, we introduce a special name for particular P -subgraphs of a
series-parallel graph G. A P -subgraph of G obtained by a parallel join of
several two-edge paths and possibly an edge is called a crystal. Its vertices
distinct from its poles are said to be its inner vertices. The size of a crystal
is the number of edges incident with each of its poles, i.e., if the poles are
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adjacent, the size of a crystal is the number of the paths forming it increased
by one. If A is a crystal, Inner(A) denotes its set of inner vertices and size(A)
denotes its size.

3 Labelings of K4-minor Free Graphs

In this section, we state and prove our results on L(p, q)-labelings of K4-
minor free graphs. For integers p ≥ 1 and D ≥ 1, a graph G is said to
be (D, p)-bad if G is K4-minor free, has maximum degree is at most D and
has no L(p, 1)-labeling with span at b3D/2c. A graph G is (D, p)-minimal

if it is (D, p)-bad and there is no (D, p)-bad graph of smaller order. Finally,
a function c : V (G) → {0, 1, . . . , k} is an LD(p, 1)-labeling of G if it is an
L(p, 1)-labeling of G and its span is at most b3D/2c. Clearly, a graph G is
(D, p)-bad if it is K4-minor free and there is no LD(p, 1)-labeling of G.

The following theorem shows that (for a fixed positive integer p) there
are only finitely many (D, p)-minimal graphs.

Theorem 3. For every positive integer p, there exists an integer D0 such

that there is no (D, p)-bad graph for any D ≥ D0.

Before we present the proof of Theorem 3, let us state the following
immediate corollary of it which gives a clearer statement of the result.

Corollary 4. For every positive integers p ≥ q, there exists ∆0 such that

every K4-minor free graph with maximum degree ∆ ≥ ∆0 has an L(p, q)-
labeling with span at most q b3∆/2c.

Proof. Fix integers p and q, and set ∆0 to be the constant D0 from Theorem 3
for p′ = dp/qe. To see that ∆0 has the required properties, fix a K4-minor free
graph G such that ∆(G) ≥ ∆0. By Theorem 3 (for D = ∆(G)), there exists
an L(dp/qe, 1)-labeling c of G of span at most b3∆(G)/2c. Set c′(v) = qc(v)
for each v ∈ V (G). Since the differences of the labels assigned to neighboring
vertices by c′ are at least q and the differences of the labels of vertices at
distance two are at least qdp/qe ≥ p, c′ is an L(p, q)-labeling of G and since
its span is at most qb3∆(G)/2c, the statement of the corollary follows.

In a series of lemmas, we show that if D is sufficiently large (in terms
of p), then certain subgraphs cannot appear in a (D, p)-minimal graph and
we eventually conclude that there is no (D, p)-minimal graph. The main
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idea of each of the proofs is to modify the given (D, p)-minimal graph G to
a smaller one which has an LD(p, 1)-labeling by the (D, p)-minimality of G
and use that labeling to obtain an LD(p, 1)-labeling of G contradicting the
assumption that G is (D, p)-bad.

3.1 Overture

Clearly, every (D, p)-minimal graph is connected. In the following lemma,
we show that it cannot contain vertices of degree one or two adjacent vertices
of degree two.

Lemma 5. For every positive integer p, there exists a constant D5 such that

no (D, p)-minimal graph, D ≥ D5, contains a vertex of degree at most one

or two adjacent vertices of degree two.

Proof. We prove the lemma for D5 = 8p − 4. Let us fix a (D, p)-minimal
graph G, D ≥ D5. First, consider the case that there is a vertex v in G of
degree one. Remove the vertex and find an LD(p, 1)-labeling c of G \ v (such
a labeling exists by the minimality of G). We now aim to extend c to an
LD(p, 1)-labeling of the entire graph G. To show that there is a suitable label
for v, we count the number of labels in the set {0, . . . , b3D/2c} which cannot
be used on v without violating the constraints of L(p, 1)-labelings. We say
that those labels are forbidden for v. In particular, we show that the number
of labels forbidden for v is at most b3D/2c, and thus there is at least one label
available for v. The label of the only neighbor w of v forbids at most 2p − 1
labels to be assigned to v and the neighbors of w forbid at most additional
D−1 labels, hence the total number of labels which cannot be assigned to v is
at most 2p−1+D−1 = D+2p−2 ≤ D+4p−2 = D+bD5(p)/2c ≤ b3D/2c.
In particular, c can be extended to an LD(p, 1)-labeling of G, i.e., G is not
(D, p)-bad—a contradiction.

Next, we show that there are no two adjacent vertices u and v of degree
two. Remove u and v from G and find an LD(p, 1)-labeling c of G \ {u, v}.
Let x be the neighbor of u different from v and y the neighbor of v different
from u, i.e., G contains a path xuvy. We first find a label for u: there
are at most 2p − 1 labels forbidden by x, at most D − 1 forbidden by the
neighbors of x and at most one label forbidden by y. Together, there are
at most 2p − 1 + D − 1 + 1 = D + 2p − 1 ≤ b3D/2c labels forbidden for u
and therefore, we can label u properly. The case of v is analogous, except
that there are at most 2p− 1 additional labels forbidden by u. We conclude
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that c can be extended to the entire graph G which contradicts the (D, p)-
minimality of G.

In the rest of the proof, we choose one of the end-blocks of the block-
decomposition of a K4-minor free graph G (we choose the entire G if G is
2-connected) and show that it cannot contain certain types of subgraphs. We
refer to the chosen end-block as to the final block, and write G? for it. By
Lemma 1, the final block is a series-parallel graph and, by Lemma 2, we may
assume that one of the poles of the graph corresponding to the root of its
SP-decomposition is its cut-vertex. In case that G is 2-vertex-connected, we
consider an arbitrary SP-decomposition of G. One such (fixed) decomposi-
tion of G? will be denoted by T ?. Notice that since G? is 2-connected, the
root of T ? is a P -node.

We adopt the notation of A-subgraphs introduced in Section 2, and we
say that an A-subgraph is contained in G?, if there is a subtree TA of the form
described by A with root r in T ? such that there is no descendant w of r in
T ? whose depth (measured from r) is greater than depth of every descendant
of r in TA (in other words, we allow the subtree of the node r to be more
complex than just A-subgraph, but we do not want it to be significantly more
complex).

An immediate consequence of Lemma 5 is that all P -subgraphs contained
in the final block are crystals. In fact, crystals are the “building blocks”
of many of the reducible subgraphs we deal with later in the proof. The
following lemma gives two useful estimates on the size of crystals in (D, p)-
minimal graphs.

Lemma 6. For every positive integer p, there exist a constant K such that no

(D, p)-minimal graph G, contains a crystal of size greater than dD/2e + K.

Moreover, if C1 and C2 are two crystals in G sharing a vertex v such that

v is incident to no vertex of G except for the vertices of C1 and C2 and C2

contains at least one inner vertex, then the size of C1 is at least bD/2c −K.

Proof. We prove the lemma for K = 4p − 4. Let us fix a (D, p)-minimal
graph G. To see the first claim, suppose that there is a crystal C with poles
u and v of size k ≥ dD/2e + 4p − 3 and let w be an inner vertex of C.
Remove w and find a proper LD(p, 1)-labeling c of G \ w. It is now possible
to extend c to an LD(p, 1)-labeling of G because there are at most b3D/2c
labels which cannot be assigned to w: the labels of vertices u and v forbid
at most 2p − 1 labels each, at most k − 1 labels are forbidden by the labels
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of the remaining inner vertices of C, at most D − k labels are forbidden by
neighbors of u outside C and other at most D − k labels are forbidden by
the labels of the neighbors of v outside C. Altogether, there are at most
2D + 4p − 3 − k ≤ b3D/2c forbidden labels, hence there is still at least one
label available for w, thus G is not (D, p)-bad—a contradiction.

To prove the second claim, suppose there are two crystals C1 and C2 with
the common pole v which is connected only to the vertices of C1 and C2,
and C2 contains an inner vertex w. Let u be the pole of C2 different from
v, k be the number of inner vertices of C2 and ` ≤ bD/2c − 4p + 3 be the
size of C1. As in the first part of the proof, we remove w from G and find
an LD(p, 1)-labeling of G \ w which we extend to an LD(p, 1)-labeling of G.
The number of labels forbidden for w is again at most b3D/2c: vertices u
and v forbid at most 2p − 1 labels each, at most k − 1 labels are forbidden
by the inner vertices of C2, at most ` labels are forbidden by the vertices in
C1 neighboring with v, and at most D − k labels are forbidden by neighbors
of u outside of C2; altogether 4p − 3 + D + ` ≤ b3D/2c forbidden labels,
thus there is again at least one label available for w. Hence, there exists an
LD(p, 1)-labeling of G which contradicts the (D, p)-minimality of G.

Let us turn our attention back to the SP-decomposition T ?. We already
know that the deepest inner nodes are P -nodes and that they correspond
to crystals; to proceed with the proof, we investigate the neighborhood of
those crystals. There are two possibilities—either the P -node is the entire
decomposition T ? or it has an S-node parent S. Let us start with the former
case:

Lemma 7. For every positive integer p, there exists a constant D7 such

that the SP-decomposition of the final block of every (D, p)-minimal graph,

D ≥ D7, has at least two inner nodes.

Proof. We prove the lemma for D7 = max{8p − 6, D5}, where D5 is the
constant from Lemma 5. For the sake of contradiction, assume that there is
a (D, p)-minimal graph G (for some D ≥ D7) whose final block G? violates
the statement. By Lemma 5, the entire decomposition cannot be just a leaf.
Hence, we may assume that the decomposition consists of a single P -node
with several leaves. In other words, G? is a single crystal with poles u and v,
which is possibly connected to the rest of G through the pole v. Let w be one
of the inner vertices of the crystal. Remove w, find an LD(p, 1)-labeling c of
G \w and then extend the labeling to w. The number of labels forbidden for
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Figure 1: A S(P, `)-subgraph and the corresponding subtree.

w is at most 4p− 3 + D ≤ b3D/2c: at most 2(2p− 1) because of u and v, at
most k− 1 because of the inner vertices of G?, and at most D− k because of
the neighbors of v outside G?. Hence, we can extend c to an LD(p, 1)-labeling
of G. Therefore, G is not (D, p)-bad.

3.2 Allegro

By Lemma 7, if D is large enough, we know that every bottommost P -node
P0 in G? has an S-node parent S0. Let us investigate the other children of
S0: in the next two lemmas, we show that S0 must have exactly two children,
both being P -subgraphs.

Lemma 8. For every positive integer p, there exists a constant D8 such that

there is no (D, p)-minimal graph, D ≥ D8, whose final block contains an

S(P, `)-subgraph.

Proof. We prove the lemma for D8 = 8p − 4. Let us fix a (D, p)-minimal G
(for some D ≥ D8). Suppose that G? contains an S(P, `)-subgraph. In other
words, there is a crystal A of size k ≥ 2 with poles u and v connected to
an edge vx (see Figure 1). Since the size of A is at least two, it contains an
inner vertex w. Remove w and find an LD(p, 1)-labeling c of G \ w. Then,
extend the labeling to w. The number of labels forbidden for w is at most
D + 4p − 2 ≤ b3D/2c: at most 2(2p − 1) because of u and v, at most k − 1
because of the inner vertices of A, at most D − k because of neighbors of u
outside A, and 1 because of the vertex x. Hence, there is at least one label
available for w, and therefore c can be extended to G. This implies that G
is not (D, p)-bad—a contradiction.

The lemma we just proved shows that every bottommost P -subtree has
an S-node parent S0 whose children are only P -subgraphs. The following
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Figure 2: An S(P, P, P )-subgraph, the subtree corresponding to it and its
reduction.

lemma yields that there exactly two such children, i.e., the subtree of S0 is
an S(P, P )-subgraph as claimed before.

Lemma 9. For every positive integer p, there exists a constant D9 such

there is no (D, p)-minimal graph, D ≥ D9, whose final block contains an

S(P, P, P )-subgraph.

Proof. We prove the lemma for D9 = 4K + 16p− 4, where K is the constant
from Lemma 6. Let G be a (D, p)-minimal graph for some D ≥ D9 whose
final block contains an S(P, P, P )-subgraph. In other words, there exist three
crystals A, B, and C with poles u and v, v and w, and w and x, respectively.
The configuration is depicted in Figure 2. By Lemma 6, we know that the size
of each of the crystals is between bD/2c−K and dD/2e+K. By symmetry,
we may assume that the size of A is smaller than or equal to the size of C.

Construct an auxiliary graph G′ as follows: remove the crystals A, B and
C from G and connect u and x by ` paths of length two, where ` is the size
of A. This newly created crystal is denoted by S. Since the order of G′ is
smaller than the order of G, there exists an LD(p, 1)-labeling c of G′. We
now extend c to the original graph G. First, the vertices u, x, and all the
vertices outside S get the same label as they are assigned by c. We use the
labels assigned by c to inner vertices of S to label all vertices in the crystal
A and size(A) vertices in the crystal C (note that since the distance of an
inner vertex of A from an inner vertex of C is at least three, the labels of
those vertices are not in a conflict). After this operation, all inner vertices of
A are properly labeled and there are at most 2K + 1 vertices in C without
a label.

Next, we find a label for the vertex v avoiding the conflicting labels except
for the labels of inner vertices of A. The number of forbidden labels for v
is at most D + 2p − 1 ≤ b3D/2c: at most 2p − 1 because of u, at most `
because of the inner vertices of C, and at most D − ` because of neighbors
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of u outside A. To resolve possible conflicts with the labels in A, unlabel the
inner vertices of A in conflict. Notice that at most 2p − 1 vertices can be
unlabeled. Use a similar approach to label w—but this time, the roles of A
and C are interchanged, i.e., we avoid the labels of inner vertices of A and if
there is a conflict with an inner vertex of C, we unlabel the conflicting vertex.
The number of labels forbidden for w is at most D + 4p− 2 ≤ b3D/2c, since
we have to avoid the label of v as well.

When v and w are labeled, we can finish labeling the inner vertices of
A and C (those which did not get label yet or have been unlabeled). Let k
be the number of inner vertices of A. The number of forbidden labels of an
inner vertex of A (similarly for C) is at most D + 4p− 2 ≤ b3D/2c: at most
2(2p− 1) because of u and v, at most 1 because of w, at most k − 1 because
of the inner vertices of A, and at most D − k because of the neighbors of u
outside A. The final step is labeling of the inner vertices of B. Notice that
the inner vertices of A and B use at most size(A) + 2K + 4p − 1 distinct
labels: at most size(A) for the labels taken from S, at most 2K+1 for vertices
which did not get the initial labels, and at most 2(2p − 1) new labels of the
unlabeled vertices. Therefore, the number of labels forbidden for an inner
vertex of B is at most D +2K +8p−2 ≤ b3D/2c: at most 2(2p−1) because
of v and w, at most D− size(A)− 1 because of the other inner vertices of B,
at most size(A) + 2K + 4p− 1 because of the inner vertices of A and C, and
at most 2 because of u and x. We infer from the preceding calculations that
c can be extended to G. Hence, G is not (D, p)-bad.

Lemma 9 provides a nice characterization of possible configurations of
S-nodes of the largest depth. It shows that those nodes are roots of S(P, P )-
subgraphs in G?. Since the root of the decomposition T ? must be a P -node,
every S(P, P )-subgraph must have a P -node parent. The following lemma
shows that no such P -node has two or more S(P, P )-children. In particular,
this shows that every S(P, P )-subgraph of the largest depth in T ? is contained
in a P (S(P, P ), l∗)-subgraph.

Lemma 10. For every positive integer p, there exists a constant D10 such

that there is no (D, p)-minimal graph, D ≥ D10, whose final block contains

an P (S(P, P ), S(P, P ))-subgraph.

Proof. We prove the lemma for D10 = 16p+8K−4, where K is the constant
from Lemma 6. Fix a (D, p)-minimal graph G, D ≥ D10, such that its final
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Figure 3: A P (S(P, P ), S(P, P ))-subgraph, the subtree corresponding to it
and its reduction.

block G? contains a P (S(P, P ), S(P, P ))-subgraph. In particular, there are
two vertices u and v connected by two crystals AL and BL with the common
pole x and by another two crystals AR and BR with the common pole y
(see Figure 3). The entire subgraph (the four vertices and four crystals)
is denoted by R. By Lemma 6, the size of each of the crystals is at least
bD/2c − K, so the number neighbors of u (or v) outside R is small (at
most 2K + 1). We construct an auxiliary graph G′ as follows: remove the
interior of R (leave only u and v) and join u and v by ` paths where ` =
min{size(AL) + size(AR), size(BL) + size(BR))}. The newly added crystal is
denoted by S. Since G′ has less vertices than G and its maximum degree is
at most D, there exists a proper LD(p, 1)-labeling c of G′. We extend c to
a proper LD(p, 1)-labeling of G in the following way. First, split the labels
of the inner vertices of S into two sets X and Y , such that each set contains
at least bD/2c − K labels. The elements of X are used to label as many
inner vertices of AL and BR as possible. The elements of Y are used to label
the inner vertices of AR and BL in a similar way. Note that after this step,
at most 4K + 2 inner vertices of crystals in R are not labeled. Next, label
vertices x and y. As in Lemma 9, unlabel some neighboring inner vertices if
there is a conflict. The number of forbidden labels for x (analogously for y)
is at most D + 4p + 2K ≤ b3D/2c: at most 2(2p− 1) because of u and v, at
most ` because of the inner vertices of AR and BR, at most 2K +1 because of
the neighbors of u outside R, at most D−` because of neighbors of v outside
R, and at most 1 because of the vertex y. Since the number of forbidden
labels is at most b3D/2c, it is possible to label both the vertices x and y.
Note that the number of unlabeled inner vertices is bounded by 2(2p − 1).
Finally, we label the remaining inner vertices (those which were unlabeled
or were not labeled yet). Since there are at most 2(2p − 1) + 4K + 2 such
vertices, the number of labels forbidden for an inner vertex of AL is bounded
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by D + 8p + 4K − 2 ≤ b3D/2c: 2(2p− 1) because of x and v, D − ` because
of the neighbors of v outside R, 1 because of u, and ` + 2(2p − 1) + 4K + 1
because of the labels of the inner vertices of AL, BL, and BR. The cases of
the inner vertices of the remaining three crystals are analogous. Therefore,
G can be properly LD(p, 1)-labeled—a contradiction.

3.3 Intermezzo

Before we continue with the proof, let us establish the following technical
lemma. Before stating it, we need some additional notation: if p, t, and K
are non-negative integers, then BK(t, p) denotes the set of integers x such
that 0 ≤ x ≤ K and |t − x| < p. Notice that if u and v are two adjacent
vertices of G and u is labeled with t, then BK(t, p) is precisely the set of
labels which cannot be used to label v in any proper L(p, 1)-labeling of G
with span K.

Lemma 11. Let p be a non-negative integer, G a graph with no adjacent

2-vertices, c its partial L(p, 1)-labeling of span at most K ≥ |V (G)| − 1 such

that every vertex which is not labeled by c is a 2-vertex, and every label is

used at most once in c. Further, let P = {v1, . . . , vk} be the set of all vertices

whose degree is different from 2. If every label in the set
⋃k

i=1 BK(c(vi), p) is

used on some vertex v in V (G), then c can be extended to an L(p, 1)-labeling

of the entire graph G with span at most K.

Proof. In order to extend c to the entire G, we assign the unused labels (from
the set {0, . . . , K}) arbitrarily to the 2-vertices which are not labeled by c,
in such a way that each label is used at most once. It is now routine to check
that this extension of c is an L(p, 1)-labeling. The condition for vertices at
distance two is clearly satisfied as no two vertices get the same label. If u
and v are neighboring vertices, we know that at least one of them, say u,
has degree different from 2 and therefore, is labeled by c. If v is not labeled
by c, the distance of the labels of u and v must be at least p because all the
labels conflicting with c(u) are used somewhere else in the prelabeling c. If v
is labeled by c, then the proper difference of labels is guaranteed by the fact
that c is a partial L(p, 1)-labeling.

The main benefit of the lemma is that we do not have to specify the
assignment of all the labels, but only the labels of vertices with degrees
different from two and the labels which are “close” (in terms of p) to those
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Figure 5: A P (S(P, P ), `∗)-subgraph being the entire final block, the corre-
sponding subtree, and its reduction.

labels. This will be quite useful in the proofs of the next few lemmas which
involve constructions of LD(p, 1)-labelings of potentially large graphs with
only a few vertices which are not 2-vertices.

3.4 Largo

By Lemmas 7–10, if D is large enought, the final block of a (D, p)-minimal
graph contains a P (S(P, P ), `∗)-subgraph (see Figure 4). This subgraph is
either the entire final block or the root of the subtree corresponding to it
has a parent (which is an S-node and must have another parent which is a
P -node). First, we deal with the former case.

Lemma 12. For every positive integer p, there exists a constant D12 such

that there is no (D, p)-minimal graph, D ≥ D12, whose entire final block is a

P (S(P, P ), `∗)-subgraph.

Proof. We prove the lemma for

D12 = max

{

2

3
(10p + 4Kp − 2K − 3), 6K + 4p + 4

}
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where K is the constant from Lemma 6. For the sake of contradiction, assume
that there is a (D, p)-minimal graph G, D ≥ D12, whose final block G? is a
P (S(P, P ), `∗)-subgraph. In particular, G? consists of three vertices u, v, w
and three crystals A, B, and C such that the poles of the crystal A are u and
v, the poles of the crystal B are v and w, and the poles of the crystal C are
u and w. If G? is not the entire graph G, then v is the cut-vertex separating
G? from the rest of G. Let Nv be the set of neighbors of v outside G?. The
configuration is depicted in Figure 5. In order to produce an LD(p, 1)-labeling
of G, we construct an auxiliary graph G′ from G by replacing G? by a single
vertex v and eventually find an LD(p, 1)-labeling c of G′.

In the rest of the proof, we aim to extend c to an LD(p, 1)-labeling c′

of the entire graph G. By Lemma 6, the sizes of A, B, and C are at least
bD/2c − K, and thus |Nv| ≤ 2K + 1. We start with the vertices u, v and
w. Their labels should satisfy the following: they differ by at least 2p from
each other and and each of them differs by at least p from all the labels of
the vertices in Nv. Since this is satisfied for v, the vertex v can keep its
original label and we only have to label u and w. Calculating the number
of labels forbidden for u (similarly for w), we get that there are at most
2(4p− 1)+ (2K +1)(2p− 1) ≤ b3D/2c such labels. In particular, there exist
suitable labels for u and w.

To finish the prelabeling, we assign the labels of vertices in Nv to some
inner vertices of C and we assign any unused labels in Bb3D/2c(c

′(v), p) to some
inner vertices in the crystal C. Since bD/2c − K > (2K + 1) + 2p − 2 + 1,
the crystal C always contains enough inner vertices for the assignment and
moreover, there will remain at least one inner vertex of C without an assigned
label. The existence of such a vertex will be important in the final part of
the proof. Similarly, we assign any unused elements of Bb3D/2c(c

′(u), p) to
some inner vertices of B and the unused elements of Bb3D/2c(c

′(w), p) to
some inner vertices of A. Notice that the resulting labeling is a valid partial
LD(p, 1)-labeling of G?.

Next, we would like to estimate the size of G?. By the degree condition
for vertices u, v, and w, we obtain the following inequalities:

size(A) + size(C) + |Nv| ≤ D

size(A) + size(B) ≤ D

size(A) + size(C) ≤ D
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Summing these values up, we get that

|V (G?)| = |Inner(A)| + |Inner(B)| + |Inner(C)| + 3

≤ size(A) + size(B) + size(C) + 3 ≤ b3D/2c + 3.

However, the statement of Lemma 11 requires |V (G?)| ≤ b3D/2c + 1. To
overcome this problem, we consider the following cases.

Case 1: None of A, B, and C contains an edge joining the poles of the

crystal. In this case, we can remove one unlabeled inner vertex w′ from A and
one unlabeled inner vertex u′ from B. Let G′ be the resulting graph. Since
two vertices are removed in the construction of G′, |V (G′)| ≤ b3D/2c + 1
as required. By Lemma 11, we obtain an LD(p, 1)-labeling c? of G′. The
labeling c? is eventually extended to the entire G? by setting c?(w′) = c?(w)
and c?(u′) = c?(u).

Case 2: Exactly one of A, B, and C contains an edge joining the poles

of the crystal. By the symmetry, we can assume that A contains an edge
joining the end-vertices of A, i.e., size(A) = |Inner(A)| + 1. Remove an
unlabeled inner vertex w′ from A and let G′ be the resulting graph. Again,
|V (G′)| ≤ b3D/2c + 1 as required. By Lemma 11, there exists an LD(p, 1)-
labeling c? of G′ which can be extended to an LD(p, 1)-labeling of G? by
setting c?(w′) = c?(w).

Case 3: At least two crystals contain an edge connecting the poles. Then,

|Inner(A)| + |Inner(C)| + |Nv| + 1 ≤ D,

|Inner(A)| + |Inner(B)| + 1 ≤ D,

|Inner(A)| + |Inner(C)| + 1 ≤ D,

and at least one of those inequalities is strict. Therefore, we get |V (G?)| ≤
b3D/2c+1 and Lemma 11 can be applied to G? directly, yielding an LD(p, 1)-
labeling c? of G?.

Based on the discussion above, we can find an LD(p, 1)-labeling c? of G?

consistent with the prelabeling. It is routine to check that(because of the
construction of the prelabeling) c? combined with c is a proper LD(p, 1)-
labeling of the G, hence G is not (D, p)-bad—a contradiction.

By Lemmas 7–12, the final block of a (D, p)-minimal graph contains
an S(P (S(P, P ), `∗), `)-subgraph, an S(P (S(P, P ), `∗), P )-subgraph, or an
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Figure 6: An S(P (S(P, P ), `∗), `)-subgraph, the subtree corresponding to it
and its reduction.

S(P (S(P, P ), `∗), P (S(P, P ), `∗))-subgraph. In the next three lemmas, we
show that none of these cases actually applies if D is large enough.

Lemma 13. For every positive integer p, there exists a constant D13 such

that there is no (D, p)-minimal graph, D ≥ D13, whose final block contains

an S(P (S(P, P ), `∗), `)-subgraph.

Proof. We prove the statement of the lemma with

D13 = max{4K + 2L + 8p, (4p − 2)(K + L + 1) + 24p − 8}

where K is the constant from Lemma 6 and L = 4p − 3. Let G be a
(D, p)-minimal graph for some D ≥ D13 whose final block G? contains an
S(P (S(P, P ), `∗), `)-subgraph. In particular, G? contains four vertices u, v,
x and y, three crystals A, B, and C such that the poles of crystal A are x
and v, the poles of crystal B are x and y, the poles of crystal C are y and v,
and there is an edge joining u with x. The entire subgraph (the four vertices
and the three crystals) is denoted by R and is depicted in Figure 6. Finally,
let Nu and Nv be the set of the neighbors of u and v that are not contained in
R. Moreover, if there is an edge uv in G? which is not contained in R, then
we also set v ∈ Nu and u ∈ Nv. Both Nu and Nv are nonempty, otherwise x
is a cut-vertex and G? is not 2-connected.

By Lemma 6, the sizes of both B and C are at least bD/2c − K. Next,
we show that the size of A is at least bD/2c − L. Assume the contrary, i.e.,
size(A) ≤ bD/2c − L − 1. Let us remove an inner vertex w from B and find
an LD(p, 1)-labeling c of G\w. Since the number of labels forbidden for w is
at most D−1+bD/2c−L−1+1+2(2p−1) = b3D/2c−L+4p−3 = b3D/2c,
c can be extended to G. However, this is impossible by the (D, p)-minimality
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of G. Hence, the size of A must be at least bD/2c − L. Combined with the
lower bound on the size of C, we obtain that |Nv| ≤ K + L + 1.

In order to prove the statement of the lemma, we construct a new graph
G′ from G by replacing R with an edge uv and find an LD(p, 1)-labeling c
of G′ which we eventually extend to an LD(p, 1)-labeling of G. The proof
proceeds similarly to the proof of Lemma 12. First, we find the prelabeling:
the labels of the vertices x and y are chosen in such a way that they differ by
at least 2p from the labels of both u and v, by at least p from the labels of
the vertices in Nv, by at least one from the labels of the vertices in Nu, and
by at least 2p from each other. The number of forbidden labels is bounded
by 2(4p − 1) + (K + L + 1)(2p − 1) + D − 1 + 4p − 1 ≤ b3D/2c.

Next, the labels of vertices in Nv \u are used to label some inner vertices
of B, and the unused labels in Bb3D/2c(c(v), p) ∪ Bb3D/2c(c(u), p) are used to
label some inner vertices of B. Since bD/2c−K > (K+L+1)+2(2p−2)+1,
the number of inner vertices in the crystal B is sufficient so that all the labels
described above can be used on some vertices of B. Moreover, there always
remains at least one inner vertex of B without a label. Finally, the unused
labels in Bb3D/2c(c(y), p) are used to label some inner vertices of A and the
unused labels in Bb3D/2c(c(x), p) are used to label some inner vertices of C.

It is straightforward to verify that this partial labeling satisfies the con-
ditions on the prelabeling given in Lemma 11 for the subgraph R and span
b3D/2c with a possible exception for the condition that |V (R)| ≤ b3D/2c.
Since the degree of each of v, x, and y is at most D, we obtain the following
inequalities:

size(A) + size(B) + 1 ≤ D,

size(B) + size(C) ≤ D,

size(A) + size(C) + |Nv| ≤ D.

Summing these inequalities up and using |Nv| ≥ 1, we conclude that

2(size(A) + size(B) + size(C)) ≤ 3D − 2.

Thus,

|V (R)| = 4 + |Inner(A)| + |Inner(B)| + |Inner(C)|

≤ 4 + b(3D − 2)/2c = b3D/2c + 3.

As in Lemma 12, we cannot apply Lemma 11 directly to R in general, because
the number of vertices could be greater than b3D/2c+1. However, by consid-
ering the same three cases as in Lemma 12, we conclude that the prelabeling
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Figure 7: An S(P (S(P, P ), `∗), P )-subgraph, the subtree corresponding to it
and its reduction.

can always be extended to an LD(p, 1)-labeling cR of R. By the construction
of the prelabeling, cR can be combined with c to yield an LD(p, 1)-labeling
of the entire graph G. Hence, G is not (D, p)-bad, a contradiction.

Lemma 14. For every positive integer p, there exists a constant D14 such

that there is no (D, p)-minimal graph, D ≥ D14, whose final block contains

an S(P (S(P, P ), `∗), P )-subgraph.

Proof. We prove this lemma for D14 = 10p(K + 6p + 6) where K is the
constant from Lemma 6. For the sake of contradiction, assume that there
exists a (D, p)-minimal graph G, D ≥ D13, whose final block G? contains an
S(P (S(P, P ), `∗), P )-subgraph. In particular, G? contains four vertices u, v,
x, and y and four crystals A0, A, B, and C, such that the poles of A0 are
u and x, the poles of A are x and v, the poles of B are x and y, and the
poles of C are v and y. The entire subgraph (the four vertices and the four
crystals) is denoted by R and is depicted in Figure 7. Let Nu and Nv be the
sets of neighbors of u and v outside R and set M = 5p.

By Lemma 6, the sizes of the crystals B and C are at least bD/2c − K.
Consequently, the sizes of A0 and A sum to at most dD/2e + K. By an
argument analogous to that used to prove Lemma 6, we show that the sum
of the sizes of A and A0 is at least bD/2c − L, where L = 4p − 4. Assume
the contrary, i.e., size(A)+size(A0) ≤ bD/2c−L−1. Then, remove an inner
vertex w from B and find an LD(p, 1)-labeling c of G \w. Since the number
of labels forbidden for w is at most D − 1 + bD/2c − L − 1 + 2(2p − 1) =
b3D/2c − L + 4p − 4 = b3D/2c, c can be extended to G. However, this is
impossible by the (D, p)-minimality of G.

Let M = 5p. We distinguish two cases: size(A0) ≥
D

2M
and size(A0) < D

2M
.
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Case size(A0) ≥ D
2M

: Consider the graph G′ obtained from G by con-
tracting the subgraph induced by A, B, and C into the vertex v. In par-
ticular, R is transformed to a crystal S with poles u and v. Next, we find
an LD(p, 1)-labeling c of G′ and extend it to an LD(p, 1)-labeling of G as
described in the following. The labels assigned to the inner vertices of S are
used to label the inner vertices of A0 and as many inner vertices of C as
possible. Then, suitable labels for x and y are found (possibly by unlabeling
some vertices in A0 and C). The number of forbidden labels for x and y is at
most D− D

2M
+ dD/2e+K +2(2p−1)+1 ≤ b3D/2c. The inner vertices of A

and the remaining vertices of A0 are labeled next. The number of forbidden
labels is at most D−1+2p−1+1+2(2p−1) ≤ b3D/2c for the inner vertices
of A and at most D − 1 + dD

2
e+ K + 1− 1

2M
D + 1 + 2(2p− 1) ≤ b3D/2c for

the inner vertices of A0.
The next step is labeling of the remaining inner vertices of C. The number

of forbidden labels for those vertices is bounded by D − 1 + 2(2p − 1) + 1 ≤
b3D/2c. Finally, label the inner vertices of B (the number of forbidden labels
for these vertices is at most D− 1 + dD/2e+ K − D

2M
+ 2p− 1 + 2(2p− 1) ≤

b3D/2c). We conclude that c can be extended to an LD(p, 1)-labeling of the
entire G—a contradiction.

Case size(A0) < D
2M

: Since size(A) + size(A0) ≥ bD/2c − L, size(A) ≥
(M−1)D

2M
− L. Therefore, |Nv| ≤

D
2M

+ K + L ≤ D
M

. By the 2-connectivity of
G?, |Nv| ≥ 1 (otherwise, x would be a cut-vertex). We proceed analogously
to the proof of Lemma 13. Transform G to G′ by replacing R with a single
edge uv, and find an LD(p, 1)-labeling c of G′. In the rest of the proof, we
demonstrate how to extend c to an LD(p, 1)-labeling of the entire graph G.

First, we find labels for x and y that differ from the labels of u and v
by at least 2p, from the labels of the vertices in Nv by at least p, from the
labels of the vertices in Nu by at least one, and from each other by at least
2p. This is always possible since the number of labels forbidden for x and y
is at most D + D

M
(2p − 1) + 3(4p − 1) ≤ b3D/2c. Next, labels for the inner

vertices of A0 are found in such a way that the difference of these labels from
the labels of u, v, x, and y is at least p and they are different from the labels
of all the vertices in Nu ∪ Nv. Note that the number of forbidden labels for
each vertex of A0 is bounded by D + 4(2p − 1) + D

2M
+ K + L ≤ b3D/2c.

Now, assign all the labels of the inner vertices of A0 to some inner vertices
of C and assign the labels of the vertices in Nv to some inner vertices of B
(omit the label c(u) if ux is an edge). Next, construct an auxiliary graph
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G0 by taking the subgraph of G induced by the set {v, x, y} ∪ A ∪ B ∪ C.
If ux is an edge in G, add u and the edge ux to G0 as well. Let c0 be the
obtained prelabeling of G0. To meet the conditions of Lemma 11, we extend
c0 as follows: the unused labels in Bb3D/2c(c0(u), p) and Bb3D/2c(c0(v), p) are
assigned to some vertices in B and the unused labels in Bb3D/2c(c0(x), p) and
Bb3D/2c(c0(y), p) are assigned to some inner vertices of C and A, respectively.

Notice that since bD/2c−K > D
M

+2(2p−2)+1 and (M−1)D
2M

−L > 2(2p−2)+1,
every crystal contains enough inner vertices for the assignment of the labels
and every crystal will always contain at least one inner vertex without a
label.

Finally, we have to show that |V (G0)| ≤ b3D/2c+ 1. Since the degree of
each of the vertices x, y, and v is bounded by D, we obtain that

|size(A)| + |size(B)| + size(A0) ≤ D

|size(B)| + |size(C)| ≤ D

|size(A)| + |size(C)| + |Nv| ≤ D

Summing these inequalities up and using |Nv| ≥ 1 and size(A0) ≥ 2, we
conclude that

2(size(A) + size(B) + size(C)) ≤ 3D − 3.

Thus,

|V (G0)| = 4 + |Inner(A)| + |Inner(B)| + |Inner(C)|

≤ 4 + b(3D − 3)/2c = b(3D − 1)/2c + 3.

As in the previous two proofs, Lemma 11 cannot be applied to G0 directly.
However, considering the same cases and analyzing them as in Lemma 12,
we conclude that G is not (D, p)-bad.

Lemma 15. For every positive integer p, there exists a constant D15 such

that there is no (D, p)-minimal graph, D ≥ D15, whose final block contains

an S(P (S(P, P ), `∗), P (S(P, P ), `∗))-subgraph.

Proof. We prove the lemma for D15 = 24p+28K +4 where K is the constant
from Lemma 6. For the sake of contradiction, fix G to be a (D, p)-minimal
graph for some D ≥ D15 whose final block G? contains an S(P (S(P, P ), `∗),
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Figure 8: An S(P (S(P, P ), `∗), P (S(P, P ), `∗))-subgraph, the subtree corre-
sponding to it and its reduction.

P (S(P, P ), `∗))-subgraph. In particular, G? contains five vertices u, v, x, y,
and z and six crystals A1, B1, C1, A2, B2 and C2 such that the poles of the
crystal A1 are u and y, the poles of the crystal B1 are u and x, the poles of
the crystal C1 are x and y, the poles of the crystal A2 are y and v, the poles
of the crystal B2 are y and z, and the poles of the crystal C2 are v and z.
The entire subgraph (the five vertices and the six crystals) is denoted by R
and is depicted in Figure 8. Let Nu and Nv be the sets of the neighbors of u
and v outside R.

By Lemma 6, the sizes of the crystals B1, C1, B2, and C2 are at least
bD/2c − K. Hence, the sizes of A1 and A2 sum to at most 2K + 1. An
LD(p, 1)-labeling of G is obtained as follows: construct a new graph G′ from
G by contracting the subgraph induced by A1, B1, and C1 into the vertex u.
Since the degree of the vertex u could be greater than D after the contraction,
it might be necessary to remove several (at most 2K + 1) vertices from the
crystal corresponding to B2. Let A, B and C be the “new” crystals and let
w be the common pole of B and C. Find an LD(p, 1)-labeling c of G′. We
will extend c to an LD(p, 1)-labeling of G in what follows.

First, use the labels assigned to the inner vertices of B to label as many
inner vertices of B1 as possible and use the labels assigned to the inner
vertices of C to label as many inner vertices of C2 as possible. The vertex
y is assigned the label of an arbitrarily chosen inner vertex of A. Next,
find suitable labels for x and z and unlabel some vertices in B1 or C2 if
required. The number of forbidden labels for each of the vertices x and
z is bounded by D + 2(2p − 1) + 2. The inner vertices of A1 and A2 are
labeled next. The number of forbidden labels for those vertices is at most
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D + 2(2p − 1) + 2K ≤ b3D/2c.
It remains to label the inner vertices of B2 and C1, and the remaining inner

vertices of B1 and C2. We start with the remaining vertices of B1 and C2. The
number of forbidden labels is bounded by D − 1 + 2(2p − 1) + 1 ≤ b3D/2c.
Next, label as many inner vertices of C1 as possible using labels of inner
vertices of C and as many inner vertices of B2 using labels of inner vertices
of B. Notice that there are at most 2(2K + 1 + 2(2p − 1)) labels which are
used on inner vertices of B1 but not on inner vertices of B2, and the same
relation holds between C2 and C1. Finally, label the remaining vertices of C1

and B2. The number of forbidden labels for those vertices is at most

D − 1 + 2(2K + 1 + 2(2p − 1)) + 2(2p − 1) ≤ b3D/2c.

We infer from the above that c can be extended to the entire graph G, which
contradicts its (D, p)-minimality.

3.5 Finale

Proof of Theorem 3. Fix p and set D0 = max{D7, . . . , D15} where D7, . . . , D15

are the constants from Lemmas 7–15. For the sake of contradiction, let us
assume that there exists a (D, p)-bad graph G, D ≥ D0. Since the empty
graph is clearly not (D, p)-bad, there must exist a (D, p)-minimal graph G′.
Further, let G? be the final block of G′ and T ? be its SP-decomposition tree
such that if G? contains a cut-vertex v of G′, then v is one of the poles of the
root node of T ?.

By Lemmas 7–9, the final block G? contains an S(P, P )-subgraph. Con-
sider an S(P, P )-subgraph G0 whose depth in T ? is the largest among all the
S(P, P )-subgraphs. By Lemma 10, there is no P (S(P, P ), S(P, P ))-subgraph.
So, G0 must be contained in a P (S(P, P ), l∗)-subgraph G1. Lemma 12 yields
that G1 cannot be the entire subgraph G?. In particular, the P -node corre-
sponding to G1 must have an S-node parent in T ? which corresponds to an
S(. . .)-subgraph G2. However, Lemmas 13–15 imply that no such G2 exist.
We infer from the above arguments that no (D, p)-bad graph exists.

4 Direction for Future Research

Corollary 4 yields that the upper bound on the L(p, 1)-span of K4-minor free
graphs of the maximum degree ∆ matches the corresponding upper bound on
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the chromatic number of the square if ∆ is large enough. Analogous results
are known for some other graph classes as well. For instance, the bounds on
the L(p, 1)-span and the L(1, 1)-span of planar graphs of maximum degree ∆
obtained by Molloy and Salavatipour [24, 25] differ only by an additive term
which (linearly) depends on p. We suspect that this is not a mere coincicence
and believe that the following more general statement actually holds.

Conjecture 1. Let H be a graph and let fH
p (∆) be the maximum L(p, 1)-

span of an H-minor free graph of the maximum degree ∆. For every positive

integer p, there exist two constants ∆0 and K such that fH
p (∆) ≤ fH

1 (∆)+K
for every ∆ ≥ ∆0.

For the case of K4-minor free graphs, i.e., H = K4, we have established
the above conjecture with K = 0 (Corollary 4). It could turn out that this is
just an exposure of a more general fact, i.e., Conjecture 1 is true with K = 0
for all graphs H.
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