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Abstract

We show that the maximum number of colors that can be used in
a vertex coloring of a cubic 3-connected plane graph G that avoids a
face with vertices of mutually distinct colors (a rainbow face) is equal
to n

2 +µ∗− 2 where n is the number of vertices of G and µ∗ is the size
of the maximum matching of the dual graph G∗.

1 Introduction

Colorings of embedded graphs with face-constraints have recently drawn at-
tention of several groups of researchers. The very first question that comes
to one’s mind in this area is the following:

Question 1. What is the minimal number of colors needed to color an em-
bedded graph in such a way that each of its faces is incident with vertices of
at least two different colors, i.e., there is no monochromatic face?

This problem can be found in work of Zykov [21] who studied the no-
tion of planar hypergraphs and was further explored by Kündgen and Ra-
mamurthi [14] for hypergraphs arising from graphs embedded in surfaces of
higher genera. As an example of results obtained in this area, let us mention
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that every graph embedded on a surface of genus ε has a coloring with O( 3
√

ε)
colors [5] that avoids a monochromatic face.

An opposite type of question, motivated by results of anti-Ramsey theory,
is the following:

Question 2. What is the maximal number χf (G) of colors that can be used
in a coloring of an embedded graph G with no rainbow face, i.e., a face with
vertices of mutually distinct colors?

In our further considerations, we call a vertex coloring of G with no
rainbow face a non-rainbow coloring of G. Notice that, unlike in the case
of ordinary colorings, the goal in this scenario is to maximize the number
of used colors. Though it may take some time to digest the concept, the
setting is so natural that it has recently appeared independently in papers of
Ramamurthi and West [19] and of Negami [16] (see also [1, 2, 15] for some
even earlier results of this favor). In fact, Negami addressed the following
extremal-type question (equivalent to Question 2):

Question 3. What is the smallest number k(G) of colors such that every
vertex-coloring of an embedded graph G with k(G) colors contains a rainbow
face?

It is not hard to see that χf (G) = k(G) − 1 and the results obtained in
either of the scenarios translate smoothly to the other one.

We now briefly survey results obtained in the direction of Questions 2
and 3 for planar graphs. Ramamurthi and West [18] noticed that every
plane graph G has a non-rainbow coloring with at least α(G) + 1 colors, in
particular, every plane graph G of order n has a coloring with at least

⌈

n
4

⌉

+1
colors by the Four Color Theorem. Also, Grötzsch’s theorem [7, 20] implies
that every triangle-free plane graph has a non-rainbow coloring with

⌈

n
3

⌉

+1
colors. It was conjectured [18] that this bound can be improved to

⌈

n
2

⌉

+ 1.
Partial results on this conjecture were obtained in [12] and the conjecture has
eventually been proven in [10]. More generally, Jungić et al. [10] proved that
every planar graph of order n with girth g ≥ 5 has a non-rainbow coloring

with at least
⌈

g−3
g−2

n − g−7
2(g−2)

⌉

colors if g is odd, and
⌈

g−3
g−2

n − g−6
2(g−2)

⌉

colors if

g is even. All these bounds are the best possible.
Complementary to the lower bounds on χf (G) presented in the previous

paragraph, there are also results on upper bounds on χf (G). Negami [16]
investigated non-rainbow colorings of plane triangulations G and showed that
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α(G) + 1 ≤ χf (G) ≤ 2α(G). In [6], it was shown that χf (G) ≤
⌊

7n−8
9

⌋

for
n-vertex 3-connected plane graphs G, χf (G) ≤

⌊

5n−6
8

⌋

if n 6≡ 3 (mod 8) and
χf (G) ≤

⌊

5n−6
8

⌋

− 1 if n ≡ 3 (mod 8) for 4-connected plane graphs G, and
χf (G) ≤

⌊

43
100

n − 19
25

⌋

for 5-connected plane graphs G. The bounds for 3- and
4-connected graphs are the best possible.

Besides results on non-rainbow colorings of graphs with no short cycles
and non-trivially connected plane graphs, there are also results on specific
families on plane graphs, e.g., the numbers χf (G) were also determined for
all semiregular polyhedra [9].

Let us mention that there are also results on mixed types of colorings in
which we require that there is neither a monochromatic nor a rainbow face,
e.g., [4, 11, 13]. For instance, it is known that each plane graph with at least
five vertices has a coloring with two colors as well as a coloring with three
colors that avoid both monochromatic and rainbow faces [3, 17].

The quantity χf (G) is also related to several parameters of the dual graph
of G. In particular, n

2
+ µ∗ − 2 ≤ χf (G) ≤ n − α∗ for connected cubic plane

graphs G [8] where α∗ is the independence number of the dual graph G∗ of G
and µ∗ is the size of the largest matching of G∗. In fact, it was conjectured
that the first inequality is always an equality if G is 3-connected:

Conjecture 1. The maximum number of colors used in a non-rainbow color-
ing of a cubic 3-connected plane graph G is related to the size of a maximum
matching of its dual as follows:

χf (G) =
n

2
+ µ∗ − 2 .

We prove this conjecture. In our view, the fact that χf (G) only depends
on the size of the largest matching of G∗ in this specific case is quite surprising
and deserves further investigation in more general setting.

As the first step towards proving the conjecture, we establish a lemma
that guarantees the existence of a matching of large size in the dual of a
3-connected cubic plane graph (Lemma 2). With the help of this lemma, our
main result is proven in Section 3. At the end of the paper, we briefly discuss
generalizations and extensions of our results to cubic plane graph that need
not to be 3-connected. In particular, we show that the assumption that G is
3-connected cannot be relaxed.
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Figure 1: An example of a bigraph. The bigraph is formed by one singleton,
one pair and three triples.

2 Auxiliary lemmas

In this section, we first introduce a special type of multigraphs that we call
bigraphs and prove a lemma on the size of inclusion-wise maximal matchings
in bigraphs. We then use this lemma to establish the existence of a large
matchings in the dual of a cubic plane graph.

A bigraph is a connected graph that is obtained as a union of complete
graphs of order one, two and three such that each vertex is contained in
exactly two of the complete graphs (see Figure 1 for an example). We keep
multiple edges present in a bigraph though replacing them with single edges
would also be fine in our further considerations. The complete graphs forming
a bigraph are referred as singletons, pairs and triples depending on their sizes.
The bigraph obtained as a union of two triples turns out to be exceptional
in our considerations: it is denoted by K2

3 and can be found in Figure 2. A
bigraph formed by α singletons, β pairs and γ triples, is an (α, β, γ)-bigraph.
Observe that an (α, β, γ)-bigraph has (α + 2β + 3γ)/2 vertices and β + 3γ
edges.

A matching of a bigraph is a collection of vertex-disjoint edges. A single-
ton, a pair or a triple of a bigraph is covered by a matching if all its vertices
are incident with edges contained in the matching. The following lemma
asserts that each bigraph contains a matching covering some of its single-
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Figure 2: The bigraph K2
3 .

tons, pairs or triples. The proof of the lemma is quite straightforward but it
involves distinguishing several cases.

Lemma 1. Let G be an (α, β, γ)-bigraph. If G 6= K2
3 , G contains an

inclusion-wise maximal matching M that covers α′ singletons, β ′ pairs and
γ′ triples such that

2α + β + α′ + β′ + γ′ ≥ 4 .

Proof. We distinguish several cases based on the values of α and β:

• α = 0, β = 0 and every two triples share at most one vertex.
Assume first that there are three triples T1, T2 and T3 such that any
two of them share a vertex, i.e., Ti ∩ Tj 6= ∅ for all i 6= j. Let vij be
the vertex of Ti ∩ Tj, i < j, and let vi be the remaining vertex of Ti,
i = 1, 2, 3—see Figure 3. Finally, let T0 be the other triple containing
the vertex v1 and w1 and w2 the vertices of T0 different from v1. If
{w1, w2} = {v2, v3}, consider an inclusion-wise maximal matching M
that contains the edges v1v12, v13v23 and v2v3. Since all the four triples
T0, T1, T2 and T3 are covered by M , we obtain that γ ′ ≥ 4 and the
statement of the lemma now follows.

If {w1, w2} ∩ {v2, v3} = ∅, then we consider an inclusion-wise maximal
matching M that contains the edges v12v1, v23v2, v13v3 and w1w2. Since
M covers all the four triples T0, T1, T2 and T3, it holds that γ ′ ≥ 4 and
the inequality of the statement of the lemma is satisfied.

If |{w1, w2} ∩ {v2, v3}| = 1, we can assume by symmetry that w2 = v3

and w1 6= v2. Let T ′

0 be the triple different from T0 that contains the
vertex w1 and let w′

1 and w′

2 be the remaining vertices of T ′

0. Since all
the vertices v1, v3 = w2, v12, v13, v23 and w1 are contained in two of
the triples T0, T ′

0, T1, T2 and T3, at least one of the vertices w′

1 and
w′

2 is different from all these vertices as well as from v2. By symmetry,
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Figure 3: Possible configurations in the case that α = 0, β = 0, there are no
two triples sharing two vertices and there are three triples such that any two
of them share a vertex.
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Figure 4: The configuration in the case that α = 0, β = 0, there are no two
triples sharing two vertices, there are no three triples such that any two of
them share a vertex, and there are four triples (cyclically ordered) such that
pairs of consecutive triples share a vertex.

we can assume that w′

1 6= v2. Let us now consider an inclusion-wise
maximal matching M that contains the edges v12v1, v23v2, v13v3 and
w1w

′

1. Such a matching M covers all the triples T0, T1, T2 and T3,
and thus γ′ ≥ 4. The inequality of the statement readily follows. This
finishes the analysis of the case that there are three triples such that
any two of them share a vertex. Hence, we assume in the rest that
there are no three such triples.

Let us now assume that there are four triples T1, T2, T3 and T4 such that
there exist v12 ∈ T1 ∩ T2, v23 ∈ T2 ∩ T3, v34 ∈ T3 ∩ T4 and v14 ∈ T4 ∩ T1

(see Figure 4). In addition, let vi be the vertex of Ti, i = 1, . . . , 4,
different from the vertices v12, v23, v34 and v14. The vertices v1, v2, v3

and v4 are mutually distinct—indeed, if v1 = v2, then the triples T1 and
T2 share two vertices which is excluded by one of our assumptions. If
v1 = v3, then any two of the triples T1, T2 and T3 share a vertex which is
also excluded by our assumptions. The other cases are symmetric. Let
us now consider an inclusion-wise maximal matching M that contains
the edges v1v12, v2v23, v3v34 and v4v14. Since such a matching M covers
all the triples T1, T2, T3 and T4, it holds that γ ′ ≥ 4 and the inequality
is satisfied. Hence, we can further assume that there are no four triples
with the above property.
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Figure 5: The configuration in the case that α = 0, β = 0, there are no two
triples sharing two vertices, there are no three triples such that any two of
them share a vertex, and there are no four triples (cyclically ordered) such
that each pair of consecutive triples share a vertex.

Consider now any two triples T1 and T2 that share a vertex. Let v be
the vertex that they share, v′

1 and v′′

1 the other vertices of T1, and v′

2

and v′′

2 the other vertices of T2. Let T ′

i be the other triple containing
the vertex v′

i and T ′′

i the other triple containing the vertex v′′

i , i = 1, 2.
Finally, let x′

i and y′

i be the other vertices of T ′

i , and let x′′

i and y′′

i be
the other vertices of T ′′

i , i = 1, 2. See Figure 5 for illustration of our
notation. By our assumptions, all the vertices v, v′

1, v′′

1 , v′

2, v′′

2 , x′

1,
x′′

1, x′

2, x′′

2, y′

1, y′′

1 , y′

2 and y′′

2 are mutually distinct since otherwise we
would have three or four triples with the properties described before.
Consider now an inclusion-wise maximal matching M that contains the
edges v′

1v
′′

1 , v′

2v
′′

2 , x′

1y
′

1, x′′

1y
′′

1 , x′

2y
′

2 and x′′

2y
′′

2 . Such a matching M covers
all the triples T ′

1, T ′′

1 , T ′

2 and T ′′

2 . Hence, γ ′ ≥ 4. We conclude that the
matching M satisfies the required inequality.

• α = 0, β = 0 and there exist two triples that share two vertices.
Let T1 and T2 be two triples sharing two vertices, let v1 and v2 be the
two vertices they share and let w1 and w2 be the other vertices of T1

and T2, respectively. Note that w1 6= w2 since G 6= K2
3 . Let T ′

1 and T ′

2

be the other triples that contain the vertices w1 and w2, respectively
(see Figures 6 and 7).

First assume that T ′

1 = T ′

2. Let w be the other vertex contained in
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w
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Figure 6: The configuration in the case that α = 0, β = 0 and there are two
triples sharing two vertices which share vertices with the same (third) triple.

T ′

1 = T ′

2 and T3 the other triple containing w. Finally, let w′ and w′′

be the remaining vertices of T3, T4 the triple different from T3 that
contains w′. Finally, let w′′′ and w′′′′ be the remaining vertices of T4.
Clearly, both w′′′ and w′′′′ are different from the vertices v1, v2, w1, w2

and w. By symmetry, we can assume that w′′′ 6= w′′. Consider now
an inclusion-wise maximal matching M that contains the edges v1w1,
v2w2, ww′′ and w′w′′′. Since γ′ ≥ 4 for such a matching M (M covers
the triples T1, T2, T ′

1 = T ′

2 and T3), the inequality holds for M .

Next, we assume that T ′

1 6= T ′

2. Let w′

1 and w′′

1 be the other vertices of
T ′

1, and w′

2 and w′′

2 the other vertices of T ′

2 (see Figure 7). If {w′

1, w
′′

1}∩
{w′

2, w
′′

2} = ∅, consider an inclusion-wise maximal matching M that
contains the edges v1w1, v2w2, w′

1w
′′

1 and w′

2w
′′

2 . If {w′

1, w
′′

1} = {w′

2, w
′′

2},
consider an inclusion-wise maximal matching M that contains the edges
v1w1, v2w2 and w′

1w
′′

1 = w′

2w
′′

2 . In both the cases, the triples T1, T2,
T ′

1 and T ′

2 are covered and thus γ ′ ≥ 4. It follows that the inequality
holds.

It remains to consider the case |{w′

1, w
′′

1}∩{w′

2, w
′′

2}| = 1. By symmetry,
we can assume that w′′

1 = w′′

2 and w′

1 6= w′

2. Let T3 be the other triple
containing w′

1 and w′ and w′′ the other vertices of T3. Both w′ and
w′′ are clearly different from the vertices v1, v2, w1, w2 and w′′

1 = w′′

2 .
By symmetry, we can also assume that w′ 6= w′

2. Let us consider an
inclusion-wise maximal matching M that contains the edges v1w1, v2w2,
w′

1w
′ and w′

2w
′′

1 = w′

2w
′′

2 . Such a matching M covers the triples T1, T2,
T ′

1 and T ′

2 and thus γ′ ≥ 4. The inequality from the statement of the
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Figure 7: The configurations in the case that α = 0, β = 0 and there are
two triples sharing two vertices which do not share vertices with the same
(third) triple.
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T1 T2

T3

v3

v2
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v4

v5

v6
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Figure 8: The configuration in the case α = 0, β = 1 and the vertices of the
pair are contained in the same triple.

lemma now follows.

• α = 0 and β = 1
Let v1 and v2 be the vertices contained in the pair. Assume first that
there is a triple T1 that contains both v1 and v2, and let v3 be the other
vertex contained in T1 (see Figure 8). Since α = 0 and β = 1, v3 is
contained in another triple, say T2, and let v4 and v5 be the remaining
vertices of T2. Finally, let T3 be the other triple that contains v4 and
v6 and v7 its vertices different from v4. Clearly, both v6 and v7 are
different from v1, v2 and v3, and, by symmetry, we can assume that
v6 6= v5. Consider now an inclusion-wise maximal matching M that
contains the edges v1v2, v3v5 and v4v6. Clearly, β ′ = 1 and γ′ ≥ 2
for such a matching M and the inequality from the statement of the
lemma holds.

The other case is that no triple contains both v1 and v2. Let T1 and
T2 be the triples containing v1 and v2, respectively. Let v′

1 and v′′

1

be the other vertices of T1 and v′

2 and v′′

2 the other vertices of T2 (see
Figure 9). If {v′

1, v
′′

1}∩{v′

2, v
′′

2} = ∅, consider an inclusion-wise maximal
matching M that contains the edges v1v2, v′

1v
′′

1 and v′

2v
′′

2 . Since β ′ = 1
and γ′ ≥ 2 for such a matching M , the inequality from the statement
of the lemma holds. If {v′

1, v
′′

1} = {v′

2, v
′′

2}, consider an inclusion-wise
maximal matching M that contains the edges v1v2 and v′

1v
′′

1 = v′

2v
′′

2 .
Since β ′ = 1 and γ′ ≥ 2 for such a matching M , the inequality also
holds. Hence, we can assume that v′

1 = v′

2 and v′′

1 6= v′′

2 in the rest.

Let T3 be the other triple that contains the vertex v′′

1 and w1 and
w2 the other vertices contained in T3. Clearly, both w1 and w2 are
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Figure 9: The configurations in the case α = 0, β = 1 and the vertices of the
pair are not contained together in any of the triples.

different from v1, v2 and v′

1 = v′

2. By symmetry, we can assume that
w1 6= v′′

2 . Let us now consider an inclusion-wise maximal matching M
that contains the edges v1v2, v′

1v
′′

2 = v′

2v
′′

2 and v′′

1w1. Since β ′ = 1 and
γ′ ≥ 2 for such a matching M , the inequality from the statement of the
lemma holds.

• α = 0 and β = 2
If the two pairs are disjoint, consider an inclusion-wise maximal match-
ing M that contains the edges corresponding to the pairs. Since β ′ ≥ 2
for such a matching M , the matching M satisfies the inequality from
the statement of the lemma.

Next, we assume that the two pairs are not disjoint. If they completely
coincide, then G is a bigraph formed by two parallel edges and a match-
ing M containing one of the two edges is inclusion-wise maximal with
β′ = 2. In particular, M satisfies the inequality from the statement.

Hence, it remains to consider the case that the two pairs share a single
vertex: let v1, v2 and v3 be the vertices such that v1 and v2 form one
of the pairs and v2 and v3 form the other pair. Since α = 0, the vertex
v3 is contained in a triple. Let w1 and w2 be the other vertices of the
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v1 v2 v3

w2

w1

Figure 10: The last configuration considered in the case α = 0 and β = 2.

T1

T2

v

v′

v′′

w′

w′′

Figure 11: The configuration considered in the case α = 1 and β = 0.

triple (see Figure 10). Clearly, both w1 and w2 are different from v2.
By symmetry, we can assume that w1 6= v1. Let M be an inclusion-
wise maximal matching that contains the edges v1v2 and v3w1. Since
M covers both the pairs, β ′ = 2 and M satisfies the inequality from
the statement of the lemma.

• α = 0 and β ≥ 3
Let v and w be the vertices that form one of the pairs. If M is an
inclusion-wise maximal matching that contains the edge vw, then β ′ ≥
1 and M satisfies the inequality.

• α = 1 and β = 0
Let v be the vertex of G contained in the singleton. Since G contains
only one singleton and no pairs, v is also contained in a triple, say T1

(see Figure 11). Let v′ and v′′ be the other vertices of T1, T2 the triple
different from T1 that contains v′, and w′ and w′′ the remaining vertices
of T2. Clearly, both w′ and w′′ are different from v. By the symmetry,
we assume that w′ 6= v′′.

Consider now an inclusion-wise maximal matching M that contains the
edges vv′′ and v′w′. Since M covers the singleton formed by v and the
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triple T1, it holds that α′ = 1 and γ′ ≥ 1. Hence, the inequality from
the statement of the lemma holds.

• α = 1 and β ≥ 1
Let v be the vertex of G contained in the singleton. Consider any
inclusion-wise maximal matching M that contains an edge incident
with v. Such a matching M clearly covers the singleton formed by v.
Hence, α′ ≥ 1 and the inequality from the statement of the lemma
holds.

• α ≥ 2
Any inclusion-wise maximal matching M has the property from the
statement since 2α ≥ 4.

We now derive from Lemma 1 the following lemma that relates the exis-
tence of matchings in the dual graph to the existence of certain vertex subsets
of the original plane graph. Before stating the lemma, we need to introduce
the following notation: if G is a plane graph and F is a set of its faces,
then G∗[F ] is the subgraph of the dual graph G∗ induced by the vertices
corresponding to the faces of F .

Lemma 2. Let G be a plane 3-connected cubic graph. If A is a non-empty
subset of its vertices and F a (possibly empty) subset of its faces such that
each face f ∈ F is incident with at least two vertices of A, then the graph
G∗[F ] contains a matching of size at least |F | − |A| + 1.

Proof. If F = ∅, the statement of the lemma trivially holds. Hence, we
assume F 6= ∅ in the remaining. For each face f ∈ F , choose arbitrarily
two vertices vf and v′

f that are contained in A and that are incident with
f . These vertices are further called representatives of f . Observe that each
vertex is a representative of at most three faces since G is cubic. Let further
α be the number of vertices that are representatives of a single face, β the
number of vertices that are representatives of two faces and γ the number of
vertices that are representatives of three faces. Clearly, α + β + γ ≤ |A|.

We now construct a bigraph H whose vertices correspond to faces of F
as follows: for each vertex v that is a representative of three faces, say f1, f2

and f3, include the triple formed by f1, f2 and f3 to H. For each vertex v
that is a representative of two faces, say f1 and f2, include the pair formed
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by f1 and f2 to H. Finally, for each vertex v that is a representative of a
single face f1, include the singleton formed by f1 to H. We do not include
anything to H for those vertices that are representatives of none of the faces.
Since each face has exactly two representatives, the graph constructed in this
way is an (α, β, γ)-bigraph.

If H = K2
3 , then G would contain vertices v′ and v′′ such that the three

faces incident with v′ are the same faces as those incident with v′′. However,
v′ and v′′ would then form a vertex cut of G which is impossible since G is
3-connected. We infer that H 6= K3

2 . By Lemma 1, H has an inclusion-wise
maximal matching that covers α′ singletons, β ′ pairs and γ ′ of its triples such
that

2α + β + α′ + β′ + γ′ ≥ 4 (1)

Note that the matching M of H corresponds to a matching of G∗[F ] of the
same size.

Let us now estimate the size of M . Clearly, any inclusion-wise maximal
matching covers at least one vertex of each pair and at least two vertices of
each triple (otherwise, we could add another edge to M). Hence, the number
of vertices of H covered by M is

1

2
(α′ + β + β ′ + 2γ + γ′) .

Note that we have to divide the above sum by two since each vertex of H
is contained in exactly two of its singletons, pairs and triples. Consequently,
the size of M is

1

4
(α′ + β + β ′ + 2γ + γ′) .

Since the number of vertices of A is at least α + β + γ and the size of F is
1
2
(α + 2β + 3γ), we infer the following bound on |F | − |A| + 1:

|F | − |A| + 1 ≤ 1

2
(α + 2β + 3γ) − α − β − γ + 1 ≤

1

2
(α + 2β + 3γ) − α − β − γ +

1

4
(2α + β + α′ + β′ + γ′) =

1

4
(α′ + β + β ′ + 2γ + γ′) = |M | .

Note that we have applied inequality (1) at the second step. The lemma now
follows.
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3 The formula

In this section, we prove our main result:

Theorem 3. If G is a 3-connected cubic graph with n vertices and µ∗ is the
size of the maximum matching of G∗, then the following holds:

χf (G) =
n

2
+ µ∗ − 2 .

Proof. We first prove that χf (G) ≥ n
2

+ µ∗ − 2. This inequality was proven
in [8] but we decided to include its proof for the sake of completeness. Let
M be a maximum matching of G∗ and let E be the edges of G corresponding
to those of M . Finally, let GE be the subgraph of G with V (GE) = V (G)
and E(GE) = E. Clearly, GE has at least n−µ∗ components. Color now the
vertices of each of the components of GE with the same color and vertices
of distinct components with distinct colors. Observe that all the faces of G
covered by M are not rainbow. For each face f of G that is not covered by
M choose any two vertices v and w incident with f and if they have different
colors, recolor all the vertices that have the same color as w with the color
of v. In this way, the number of colors is decreased by at most f −2µ∗ where
f is the number of faces of G. Hence, the final number of colors used in the
constructed coloring is at least

n − µ∗ − (f − 2µ∗) = n + µ∗ − f .

By Euler’s formula, we have that

n + f =
3

2
n + 2

since the graph G is cubic. We eventually infer the following lower bound on
χf (G):

χf (G) ≥ n + µ∗ − f = n/2 + µ∗ − 2 .

Next, we prove the opposite inequality, i.e., χf (G) ≤ n
2

+ µ∗ − 2. Let us
consider a vertex coloring of G with χf (G) colors that does not contain a
rainbow face, and let A1, . . . , Aχf (G) be its color classes. For each face choose
arbitrarily two vertices incident with it that have the same color and color
this face with the color of the chosen vertices. Let Fi be the set of the faces
colored with the i-th color. By Lemma 2, the subgraph of G∗ induced by
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the vertices corresponding to the faces of Fi has a matching of size at least
|Fi| − |Ai| + 1. Hence, the size of the maximum matching of G∗ is at least:

µ∗ ≥
χf (G)
∑

i=1

(|Fi| − |Ai| + 1) = χf (G) + f − n = χf (G) − n

2
+ 2 .

This finishes the proof of the theorem.

4 2-connected cubic graphs

Let us first describe a construction of cubic 2-connected plane graphs G`,
` ≥ 0, which are our example graphs. Start with two paths v0u1v1u2v2 . . . u`v`

and v′

0u
′

1v
′

1u
′

2v
′

2 . . . u′

`v
′

` and add the edges uiu
′

i for i = 1, . . . , `. Next, add an
edge ab and join both a and b to both v0 and v′

0. At the other ends of the
paths, add an edge a′b′ and join both a′ and b′ to v` and v′

`. Finally, add the
edges viv

′

i, i = 1, . . . , ` − 1, in such a way that they are drawn in the outer
face. The graphs G1, G2, G3 and G4 can be found in Figure 12. Observe
that the graph G` is a 2-connected cubic graph with n = 4` + 6 vertices and
f = 2`+5 faces. Also observe that the maximum matching of the dual graph
G∗

` has size ` + 2.

Theorem 4. For every integer m, there exists a 2-connected cubic plane
graph with n vertices such that

χf (G) >
n

2
+ µ∗ − 2 + m .

Proof. Consider a graph G` for ` = 3m + 1 and color the following pairs of
vertices with the same color (distinct pairs with distinct colors): a and b, a′

and b′, ui and u′

i for i = 1, 4, . . . , `, and vi and v′

i for i = 2, 5, . . . , `− 2. Each
of the remaining vertices gets a unique color. In this way, we construct a
non-rainbow coloring of G with 4` + 6 − (2m + 3) = 10m + 7 colors. Hence,
we have the following:

χf (G) − n

2
− µ∗ + 2 ≥ 10m + 7 − (6m + 5) − (3m + 3) + 2 = m + 1 .

The statement of the lemma now follows.
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Figure 12: The graphs G1, G2, G3 and G4.
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5 Concluding remarks

As shown in Theorem 4, the statement of Theorem 3 cannot be extended to
all cubic plane graphs without any further assumptions. Though, it can be
possible to efficiently describe the quantity χf (G) given a cubic plane graph
G, in particular, to determine χf (G) algorithmically in polynomial time. It
seems natural to consider a dynamic programming approach based on the
structure of cuts of sizes one and two in the graph G. Such an algorithm can
utilize the following generalization of Theorem 3:

Theorem 5. If G is a plane 3-connected cubic graph and F a subset of its
faces, then

χF
f (G) = n + µ∗ − |F |

where χF
f (G) is the maximum number of colors that can be used in a coloring

such that no face of F is rainbow, and µ∗ is the size of a maximum matching
of G∗[F ].

The proof of Theorem 5 follows the lines of the proof of its counterpart.
Though we believed that this approach should have led to a polynomial-time
algorithm for determining χf (G) of all cubic graphs, we were not able to
obtain such an algorithm and we suspect the problem could be NP-complete.
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[9] S. Jendrol’, Š. Schrötter: On rainbowness of semiregular polyhedra, sub-
mitted.
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