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Abstract

We provide a characterization of several graph parameters (the
acyclic chromatic number, the arrangeability, and a sequence of pa-
rameters related to the expansion of a graph) in terms of forbidden
subdivisions.

Let us start with several definitions. Throughout the paper, we consider
only simple undirected graphs. A graph G′ = sdt(G) is the t-subdivision of
a graph G, if G′ is obtained from G by replacing each edge by a path with
exactly t inner vertices. Similarly, G′ is a ≤ t-subdivision of G if the graph
G′ can be obtained from G by subdividing each edge by at most t vertices
(the number of vertices may be different for each edge).

A coloring of vertices of a graph G is proper if no two adjacent vertices
have the same color. The minimum k such that the graph G has a proper
coloring by k colors is called the chromatic number of G and denoted by
χ(G). A proper coloring of a graph G is acyclic if the union of each two
color classes induces a forest, i.e., there is no cycle colored by two colors.
The minimum k such that the graph G has an acyclic coloring by k colors is
called the acyclic chromatic number of G and denoted by χa(G).

In this paper, we present an exact characterization of graph classes whose
acyclic chromatic number is bounded by a constant. As a motivation, let
us consider several older results. Borodin [2] have proved that the acyclic
chromatic number of every planar graph is at most 5. Nešetřil and Ossona
de Mendez [5] have proved that every graph G has a minor H such that
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χa(G) ≤ O
(

(χ(H))2). This implies that the acyclic chromatic number is
bounded by a constant for every nontrivial minor-closed class of graphs.
However, this result does not describe all graph classes with bounded acyclic
chromatic number, e.g., sd1(Kn,n) has acyclic chromatic number 3, but it
contains Kn as a minor.

On the other hand, Wood [15] has proved that the acyclic chromatic
number of sd1(G) is bounded by a function of the chromatic number of the
graph G and vice versa:

Theorem 1 (Wood [15], Corollary 3) For each graph G,

√

χ(G)

2
< χa(sd1(G)) ≤ max(3, χ(G)).

A simple corollary of this theorem is the following characterization:

Corollary 2 Let G be a graph with χa(G) = c. If H is a graph such that
χ(H) ≥ 2c2, then G does not contain sd1(H) as a subgraph.

In Section 1, we prove that this statement essentially describes all graphs
with bounded acyclic chromatic number, i.e., that if G has high acyclic chro-
matic number, it contains as a subgraph a ≤ 1-subdivision of a graph with
high chromatic number:

Theorem 3 Let c ≥ 4 be an arbitrary integer and d = 56(c−1)2 log(c−1)
log c−log(c−1)

.

Let G be a graph with acyclic chromatic number greater than c(c − 1)c(d
2),

i.e., χa(G) ≈ exp(c7 log3 c). If χ(G) ≤ c, then G contains a subgraph G′ =
sd1(G

′′) such that the chromatic number of the graph G′′ is c.

This result generalizes the result of Nešetřil and Ossona de Mendez [5],
although our bound is much weaker than the quadratic one. The consequence
of Theorem 3 and Corollary 2 is the following characterization of graph classes
with the bounded acyclic chromatic number:

Corollary 4 Let G be any class of graphs such that the chromatic number
of every graph in G is bounded by a constant. The acyclic chromatic number
of graphs in G is bounded by a constant if and only if there exists a constant
c such that every graph G such that sd1(G) is a subgraph of a graph in G
satisfies χ(G) ≤ c.
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The acyclic chromatic number of a graph is also related to several other
graph parameters – the arrangeability, the greatest reduced average density,
and the game chromatic number. We provide similar characterizations for
the first two of these parameters, and outline the relationship with the game
chromatic number in the Final Remarks section.

For a vertex v of a graph G, let N(v) denote the open neighborhood of
v. Given a linear ordering L of the vertices of a graph G, let L+(v) be the
set of vertices of G that are after v in this ordering, and L−(v) the set of
vertices that are before it. A graph G is p-arrangeable if there exists a linear
ordering L of vertices of G such that every vertex v of G satisfies

∣

∣

∣

∣

∣

∣

L−(v) ∩
⋃

u∈N(v)∩L+(v)

N(u)

∣

∣

∣

∣

∣

∣

≤ p.

The arrangeability of the graph is an important parameter that bounds its
acyclic chromatic number, the game chromatic number ([11]), and the Ram-
sey number ([3]) in a natural way. In Section 2, we show a precise character-
ization of graphs G with bounded arrangeability in terms of average degrees
of graphs whose ≤ 1-subdivisions are subgraphs of G, analogical to Theo-
rem 3 and Corollary 4. Rödl and Thomas [13] have shown that every graph
with arrangeability p8 contains a subdivision of the clique Kp as a subgraph;
a result similar to ours is implicit in their proof. However, the result we ob-
tained is slightly stronger. Komlós and Szemerédi [14] have proved that every
simple graph with average degree at least d2 contains a subdivision of Kd as
a subgraph, hence Theorem 9 implies that every graph with arrangeability
Ω(p6) contains a subdivision of Kp as a subgraph.

Another parameter that admits a similar characterization is the expansion
of a graph. A graph H is a rank r contraction of a graph G if there exists
a set S of vertex disjoint induced connected subgraphs of G such that each
member of S has radius at most r, and H is the simple graph obtained from
G by contracting all edges of the subgraphs in S (the arising parallel edges
are suppressed). For example, the only rank 0 contraction of G is the graph G

itself, and a rank 1 contraction is obtained from G by contracting edges of a
star forest. The maximum average degree mad(G) of graph G is the maximum
of average degrees over all subgraphs of G. The rank r greatest reduced

average density 2 of G (denoted by ∇r(G)) is the maximum of mad(G′)
2

over
all rank r contractions G′ of the graph G. A class of graphs G has bounded

2The greatest reduced average density is usually defined in terms of densities of the
subgraphs. In this paper, we want to stress the relationship with the average and minimum
degree of specific subgraphs, thus we define it using maximum average degree.
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expansion with bounding function f , if for each G ∈ G, ∇r(G) ≤ f(r).
For example, nontrivial minor closed classes have the expansion bounded by
a constant function. The class of graphs with maximum degree ≤ c has
expansion bounded by the function cr.

This graph parameter was recently introduced and studied by Nešetřil
and Ossona de Mendez, see [7], [8] and [9]. In particular, in [6] they proved
that the arrangeability of a graph G is bounded by a function of ∇1(G) (this
fact is also an easy consequence of Theorem 9). Therefore, the expansion of
a graph bounds also the acyclic chromatic number and the other discussed
parameters. If G is a ≤ 2r-subdivision of a graph with minimum degree d,
then ∇r(G) ≥ d. In Section 3, we prove that on the other hand, graphs with
large ∇r(G) contain ≤ 2r-subdivisions of graphs with high minimum degree.

1 Acyclic Chromatic Number

The goal of this section is to prove Theorem 3. We use probabilistic argu-
ments. Let Prob [K] denote the probability of the event K and E [X] the
expected value of the random variable X. We use the following variants of
the well-known estimates, see e.g. [1] for reference.

Lemma 5 (Markov Inequality) If X is a nonnegative random variable
and a > 0, then

Prob [X ≥ a] ≤ E [X]

a
.

Lemma 6 (Chernoff Inequality) Let X1, . . . , Xn be independent random
variables, each attaining values 1 with probability p and 0 with probability
1 − p. Let X =

∑n

i=1 Xi. For any t ≥ 0,

Prob [X ≥ np + t] < e
− t2

2(np+t/3) ,

and

Prob [X ≤ np − t] < e
− t2

2(np+t/3) .

We first prove a lemma regarding the graphs with high density. Note
that a graph G with acyclic chromatic number less than c cannot have high
density, as G is a union of

(

c

2

)

forests. A graph G is d-degenerated if each
subgraph of G contains a vertex of degree at most d. Note that the average
degree of a d-degenerated graph is at most 2d, hence every graph with average
degree at least t contains a subgraph whose minimum degree is at least t

2
.
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Lemma 7 Let c ≥ 4 be an integer and let G be a graph with the minimum
degree d > 56(c − 1)2 log(c−1)

log c−log(c−1)
, (i.e., d = Ω(c3 log c)). Then the graph G

contains a subgraph G′ that is the 1-subdivision of a graph with chromatic
number c.

Proof. Every graph contains a bipartite subgraph with at least half of the
edges of the original graph, i.e., G contains a bipartite subgraph G1 with
average degree more than d

2
. The graph G1 cannot be d

4
-degenerated, since

otherwise the average degree of G1 would be at most d
2
. Let G2 be a subgraph

of G1 with minimum degree at least d2 = d
4
. The graph G2 is bipartite, let

V (G2) = A ∪ B be a partition of its vertices to two independent sets such
that |A| ≤ |B|. Let a = |A| and b = |B|.

Let q = 7 log(c−1)
log c−log(c−1)

. We construct a graph G3 in the following way: if

b ≥ qa, then let G3 = G2, A′ = A and B′ = B. Otherwise, we choose sets
A′ and B′ as described in the next paragraph, and let G3 be the subgraph of
G2 induced by A′ and B′:

Let A′ be a subset of A obtained by taking each element of A randomly
independently with probability p = b

qa
. Note that d2

q
≥ 10. Also, since the

minimum degree of G2 is at least d2, it follows that b ≥ d2. The expected
size of A′ is ap = b

q
, and by Chernoff Inequality, the size of A′ is more

than 2b
q

with probability less than e−
3b
8q ≤ e−

3d2
8q ≤ e−

15
4 < 0.5. Consider

a vertex v of B with degree s ≥ d2 in G2, and let s′ be the number of
neighbors of v in B′ and r(v) = s′

s
. The expected number of neighbors of v

in A′ is ps. By Chernoff Inequality, the probability that s′ < p

2
s is less than

e−
3ps
28 ≤ e

3
28

· b
a
·
d2
q ≤ e−

15
14 < 0.35. Let B′ be the set of vertices v of B such that

r(v) ≥ p

2
. The expected value of |B \ B ′| is less than 0.35b, and by Markov

Inequality, Prob [|B \ B ′| ≥ 0.7b] ≤ 0.5. Therefore, the probability that the
set A′ has size at most 2b

q
while the set B′ has size at least 0.3b is greater

than zero. We let A′ and B′ be a pair of sets that satisfies these properties.
Let a′ = |A′| and b′ = |B′|. Observe that the degree of every vertex of B ′

in G3 is at least b
2qa

d2 ≥ 1
2q

d2 = (c − 1)2 = d3, and that b′ ≥ 0.3b ≥ 0.15qa′.
Let D1, . . . , Db′ ≥ d3 be the degrees of vertices of B ′.

We show that the graph G3 contains as a subgraph the 1-subdivision of a
graph with chromatic number c. Suppose for contradiction that each graph
whose 1-subdivision is a subgraph of G3 has chromatic number at most c−1.
Let us consider only the subgraphs whose vertices of degree 2 created by
subdividing edges belong to B ′. There are exactly NG =

∏b′

i=1

(

Di

2

)

such

subgraphs and NC = (c − 1)a′

colorings of A′ by c − 1 colors.
Let us for each coloring ϕ of A′ determine the number of subgraphs H

such that all vertices of B ′ have degree 2 in H, and ϕ is a proper coloring of
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the graph obtained from H by suppressing the vertices in B ′. Let us consider
a vertex v in B′ of degree D. Since ϕ is proper, the two edges incident with
v in H lead to vertices with different colors. Let M be the neighborhood of
v, |M | = D. Let mi be the number of vertices of M colored by ϕ with the
color i. The number s of the pairs of neighbors of v that have different colors
satisfies

s =
∑

1≤i<j≤c−1

mimj =
1

2

∑

1≤i,j≤c−1,i6=j

mimj =
1

2

c−1
∑

i=1

mi(D − mi)

s =
1

2

(

D2 −
c−1
∑

i=1

m2
i

)

≤ 1

2

(

D2 − D2

c − 1

)

.

Therefore, the number of the subgraphs of G3 for that ϕ is proper is at

most NP =
(

1
2

(

1 − 1
c−1

))b′ ∏b′

i=1 D2
i . For each subgraph of G3 there exists at

least one proper coloring, hence NG ≤ NCNP , and we obtain

(c − 1)a′

(

1

2

(

1 − 1

c − 1

))b′ b′
∏

i=1

D2
i ≥

b′
∏

i=1

(

Di

2

)

(c − 1)a′

(

1 − 1

c − 1

)b′

≥
b′
∏

i=1

(

1 − 1

Di

)

≥
(

1 − 1

d3

)b′

Since b′ ≥ 0.15qa′ and
(

1 − 1
d3

)

(

1 − 1
c−1

)−1
= c

c−1
> 1, it follows that

(c − 1)a′ ≥
(

(

1 − 1

d3

)(

1 − 1

c − 1

)−1
)0.15qa′

(c − 1) ≥
(

c

c − 1

)0.15q

This is a contradiction, since

(

c

c − 1

)0.15q

>

(

c

c − 1

)

log(c−1)
log c−log(c−1)

= c − 1.

�

Let us now prove the main theorem of this section.
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Proof of Theorem 3 We prove the contravariant implication: “Let G be
a graph with χ(G) ≤ c. If all graphs whose 1-subdivision is a subgraph of G

have chromatic number at most c− 1, then G has acyclic chromatic number

at most c1 = c(c − 1)c(d
2).”

Let us assume that G is a graph with chromatic number at most c, such
that all graphs whose 1-subdivision is a subgraph of G have chromatic number
at most c−1. By Lemma 7, the graph G is d-degenerated. Let L = v1, . . . , vn

be an ordering of the vertices of G in such a way that each vertex has at most
d neighbors after it; let Nt = L+(vt) ∩ N(v) be the set of the neighbors of vt

that are after vt in the ordering L, and let vt,j be the j-th of these neighbors.
Suppose that there exists a proper coloring ϕ such that each set Nt is

rainbow (i.e., no two vertices in Nt have the same color). Let us consider an
arbitrary cycle C in G. Let v be the vertex of C that appears first in the
ordering L, and let u and w be the neighbors of v in C. The colors ϕ(u),
ϕ(v) and ϕ(w) are mutually distinct, hence C is not colored by two colors.
Therefore, the coloring ϕ is acyclic.

Let us now construct a coloring ϕ that satisfies this property. Let ϕ0 be a
fixed proper coloring of G by c colors. For i = 1, . . . , c and 1 ≤ j1 < j2 ≤ d,
we define the graph Gi,j1,j2 in the following way: the vertices of Gi,j1,j2 are
the vertices of G, and for each t such that ϕ0(vt) = i, we join by an edge
the pair of vertices vt,j1 and vt,j2 (if both of the vertices exist). Note that the
1-subdivision of Gi,j1,j2 is a subgraph of G, hence Gi,j1,j2 can be colored by
c − 1 colors. Let ϕi,j1,j2 be such a coloring.

We color each vertex v of G with the c
(

d

2

)

+ 1-tuple ϕ(v) consisting of
ϕ0(v) and ϕi,j1,j2(v) for i = 1, . . . , c and 1 ≤ j1 < j2 ≤ d. Each Nt is rainbow
in this coloring, as the vertices vt,a and vt,b get distinct colors in the coloring
ϕϕ0(vt),a,b. Also, the coloring ϕ is proper since the coloring ϕ0 is proper.
Therefore, we found the acyclic coloring ϕ of G by c1 colors, hence the claim
of the theorem holds. �

2 Arrangeability

Let us start with a simple observation regarding the arrangeability. Let G

be the 1-subdivision of a graph with minimum degree d, and consider the
ordering L that shows that its arrangeability is at most p. Let v be the last
vertex of degree greater than two in this ordering. Note that |N(v)∩L−(v)| ≤
p+1 and |N(v)∩L+(v)| ≤ p. Since the degree of v is at least d, the graph G is
not p-arrangeable for p < d−1

2
. The goal of this section is to prove that on the

other hand, every graph with large arrangeability contains a ≤ 1-subdivision
of a graph with large minimum degree.
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Let us define several concepts and notation we use in the proofs. A
double-star is the 1-subdivision of a star. The ray vertices of a double-star
are its vertices of degree one, and the middle vertices are the vertices created
by subdividing the edges; the remaining vertex is the center of the double-
star. The middle edges of a double star are the edges that are incident with
the center, while the remaining edges are the ray edges. Given a double-
star S and a set X of vertices, let dX

2 (S) be the number of ray vertices
of S in X. Given a fixed ordering L of the vertices of a graph G, let the
back-degree d−(v) of a vertex v be the number of neighbors of v before it
in L, d−(v) = |N(v) ∩ L−(v)|. Let the double back-degree d−

2 (v) be the

maximum of d
L−(v)
2 (S) over all double-stars S that are subgraphs of G and

have center v. First, we show the following characterization of graphs with
small arrangeability:

Lemma 8 If G is a p-arrangeable graph, then there exists ordering L of
vertices of G such that each vertex has the back-degree at most p + 1 and
the double back-degree at most 2p + 1. On the other hand, if there exists an
ordering L of vertices of a graph G such that the back-degree of each vertex
is at most d1 and the double back-degree is at most d2, then the graph G has
arrangeability at most d1d2.

Proof. Suppose first that the graph G is p-arrangeable, and let L be an
ordering of the vertices of G that witnesses its arrangeability. Let S be a
double-star in G with center v. The back-degree of v is at most p + 1, hence
S has at most p + 1 middle vertices in L−(v). By the p-arrangeability of
G, the double-star S also has at most p middle vertices in L+(v) whose ray
vertex belongs to L−(v). Therefore, d−

2 (v) ≤ 2p + 1.
Let us now assume that L is an ordering of vertices of the graph G such

that for each v, d−(v) ≤ d1 and d−
2 (v) ≤ d2. Consider an arbitrary vertex v,

and let X = L−(v)∩
⋃

u∈N(v)∩L+(v) N(u). For each vertex x ∈ X, let us choose

one of its neighbors ux ∈ N(v)∩L+(v) arbitrarily, and let U = {ux : x ∈ X}.
By the definition of the double back-degree, |U | ≤ d2. On the other hand,
each vertex in U has at most d1 neighbors before it, hence |X| ≤ d1d2.
Therefore, the ordering L witnesses that G is d1d2-arrangeable. �

Let us formulate the main theorem of this section:

Theorem 9 Let d ≥ 1 be an arbitrary integer and p = 4d2(4d+5). Let G be
a d-degenerated graph. If G is not p-arrangeable, then G contains a subgraph
G′ = sd1(G

′′) such that the minimum degree of G′′ is at least d.
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Proof. Let G be a d-degenerated graph that is not p-arrangeable and let n

be the number of vertices of G. Let d1 = 4d and d2 = d(4d+5) and consider
the following algorithm that attempts to construct an ordering of vertices of
G such that for each vertex v, d−(v) ≤ d1 and d−

2 (v) ≤ d2: We set G0 = G.
In the step i > 0, if there exists a vertex v of Gi−1 such that the degree of v

in Gi−1 is at most d1 and d
V (Gi−1)
2 (S) ≤ d2 for each double-star S in G with

center v (note that we consider also the double-stars that are not subgraphs
of Gi−1), then let vn−i+1 = v and Gi = Gi−1 − v. Obviously, if this algorithm
succeeds in each step, the ordering L = v1, v2, . . . , vn satisfies the required
properties.

By Lemma 8, since p = d1d2 and G is not p-arrangeable, this algorithm
fails on G. This means that there exists i such that each vertex v of Gi−1 has
more than d1 neighbors in Gi−1, or is a center of a star in G with more than
d2 ray vertices in V (Gi−1). Let V1 be the set of vertices of degree greater
than d1 in Gi−1, and let V2 = V (Gi−1)\V1. Let n1 = |V1| and n2 = |V2|. Each
vertex v in V2 has degree at most d1 in Gi−1, hence v is a center vertex of
a double-star with more than d2 − d1 ray vertices in V (Gi−1) and all middle
vertices in V (G)\V (Gi−1); let us choose such a star Sv for each vertex v ∈ V2

arbitrarily. Let X be the set of the chosen double-stars, X = {Sv|v ∈ V2}.
Let M be the set of middle vertices of double-stars in X, let m = |M |,

and let GX be the bipartite graph on V2 ∪ M (note that V2 and M are
disjoint) whose set of edges consists of all the middle edges of the double-
stars in X. Since the graph G is d-degenerated, the average degree of GX

is at most 2d. On the other hand, each vertex in V2 has degree at least
d2 − d1 in GX , hence d(m + n2) ≥ |E(GX)| ≥ n2(d2 − d1). It follows that

m ≥ n2(d2−d1−d)
d

= 4dn2 = d1n2. For each vertex u ∈ M , let us choose an
arbitrary double-star Tu ∈ X such that u is a middle vertex of Tu. Let us
remove u together with the corresponding ray vertex from each double-star
in X except for Tu. Let X ′ be the set of double-stars obtained this way. The
double-stars in X ′ have disjoint middle vertices, and in total m rays (the ray
vertices do not have to be disjoint).

Let us consider the graph H with the vertex set V1∪V2 in that the vertices
u and v are connected by an edge if:

1. u ∈ V1 and uv is an edge of Gi−1, or

2. u is a center of a star T ∈ X ′, and v is a ray vertex of T .

A ≤ 1-subdivision of H is a subgraph of G. Observe that the graph H

has n1 +n2 vertices, and at least 1
2
(n1d1 + m) edges. Using the lower bound

m ≥ d1n2, we conclude that |E(H)| ≥ d1

2
(n1 + n2).
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Let H ′ be the subgraph of H, whose edges are only the edges connecting
the ray vertices of the double-stars in X ′ with their centers. The graph G is
d-degenerated, hence H ′ has at least (d1

2
− d)(n1 + n2) = d(n1 + n2) edges.

Therefore, the average degree of H ′ is at least 2d. It follows that H ′ has a
subgraph G′′ with the minimum degree at least d. The graph G′ = sd1(G

′′)
is a subgraph of G that satisfies the claim of the theorem. �

3 Expansion

We now focus on the characterization of graphs with bounded expansion. A
non-empty graph H is an average (resp. minimum) degree (r, d)-witness if
there exists a (r, d)-witness decomposition D = {(S1, s1), (S2, s2), . . . , (Sk, sk)}
of H, i.e., a set of disjoint nonempty induced subgraphs S1, S2, . . . , Sk that
cover V (H), and vertices si ∈ V (Si) such that

• the subgraphs Si are trees, and

• for each vertex v ∈ Si, the distance of v from si in Si is at most r, and

• for each i 6= j, there is at most one edge between Si and Sj in H, and

• the average (resp. minimum) degree of the graph obtained from H by
identifying all the vertices of each tree Si with si is at least d.

Observe that ∇r(G) ≥ d if and only if G contains an average degree
(r, 2d)-witness as a subgraph. Therefore, if ∇r(G) ≥ d then G contains a
minimum degree (r, d)-witness as a subgraph.

The size of the decomposition is the number of its trees. The vertices si

of a witness decomposition are called centers. The edges that belong to the
trees of the decomposition are called internal and the remaining edges are
external. For a non-center vertex v ∈ V (Si), the unique internal edge from
v on the shortest path to si is called the parent edge and its vertex different
from v is called the parent vertex.

We always assume that each leaf of a tree Si is incident to at least
one external edge (if this is not the case, the leaf vertex may be removed
from the witness). When an external edge is removed from the decompo-
sition, we also repeatedly remove leaves that are incident to no external
edges. Similarly, the operation of removal of a tree from the decomposi-
tion D of a graph H is defined in the following way: The decomposition
D′ = {(S ′

1, s
′
1), . . .} of a graph H ′ =

⋃

i V (S ′
i) is obtained from the decomposi-

tion {(S1, s1) . . . , (St−1, st−1), (St+1, st+1), . . .} by repeatedly removing leaves
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of trees that are incident with no external edges. Given an internal edge
e ∈ St, the decomposition D′ of the graph H is obtained from D by splitting
on e if D′ consists of trees S1, . . . , St−1, St+1, . . ., and the two trees S ′

t and
S ′′

t obtained from St by removing e. If st ∈ S ′
t then the center of S ′

t is st

and the center of S ′′
t is the common vertex of e and S ′′

t . The edge e becomes
external by this operation. Expunging of a center vertex v is performed by
first splitting on all the internal edges incident to v, and then removing the
tree consisting of v.

Lemma 10 Let H be a minimum degree (r, d)-witness with a decomposition

D = {(S1, s1), (S2, s2), . . .} and let d1 = r+1

√

d
4
. There exists a minimum de-

gree (r, d1)-witness H ′ ⊆ H with a decomposition D′ = {(S ′
1, s

′
1), (S

′
2, s

′
2), . . .}

such that the degree of each center is at least d1.

Proof. We construct the new decomposition D′ by repeatedly expunging
the vertices v such that v is a center and its degree is less than d1, as long
as any such vertices exist. Let us show that the decomposition D′ obtained
by this construction is non-empty.

Let k be the size of D and let e be the number of external edges of
D. Note that e ≥ d

2
k. Let us count the number of external edges that get

removed by expunging the vertices. If an edge e is removed by expunging a
vertex v, let us assign e to the tree in D that contains the vertex v. When
a vertex is expunged, its degree is less than d1. The depth of each tree
in the decomposition D is at most r, thus there are at most dr+1

1 edges
assigned to each tree. Therefore, at most dr+1

1 k external edges are removed.
Since e ≥ d

2
k > dr+1

1 k, the decomposition D′ is non-empty, and it obviously
satisfies the claim of the lemma. �

Consider a minimum degree (r, d)-witness H with decomposition D such
that the degree of each center is at least d. Given a non-center vertex v ∈ Si,
let B(v) be the component of Si − si that contains v. The non-center vertex
v ∈ Si is called lonely if there is only one external edge incident to the vertices
in B(v) and this edge is incident to v. Note that in this case, B(v) is a path
with the end vertex v. An external edge e = {u, v} is called critical if u or v

is lonely, and bicritical if both u and v is lonely. Observe that there exists a
(r, d)-witness H ′ ⊆ H with a decomposition D′ such that the degree of each
center is at least d and each external edge is critical.

Theorem 11 Let r, d ≥ 1 be arbitrary integers and let p = 4 (4d)(r+1)2. If
∇r(G) ≥ p, then G contains a subgraph G′ that is a ≤ 2r-subdivision of a
graph with minimum degree d.
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Proof. Let G be a graph with ∇r(G) ≥ p. As we noted before, there
exists a minimum degree (r, p)-witness H ⊆ G. Let d1 = r+1

√

p

4
= (4d)r+1.

By Lemma 10, there exists a minimum degree (r, d1)-witness H ′ ⊆ H with
a decomposition D′ = {(S ′

1, s
′
1), (S

′
2, s

′
2), . . .} such that the degree of each

center is at least d1. Furthermore, we may assume that each external edge
in the decomposition D′ is critical.

Let b = r+1
√

d1 = 4d. We create a new decomposition D′′ of a graph
H ′′ ⊆ H ′ by splitting on parent edges of all non-center vertices whose degree
is greater than b. After splitting on edge uv, where u is the parent vertex of
v, if u is not lonely, then we also remove the edge e. Let us call the center
vertices of D′ the old centers, and the center vertices of D′′ that are non-
center in D′ the new centers. The decomposition D′′ satisfies the following
properties:

1) All old centers have degree at least d1 and all new centers have degree
at least b, and

2) all non-center vertices have degree at most b, and

3) all external edges are critical, and

4) all external edges between trees with the new centers are bicritical (all
such edges were internal in D′′), and

5) the lonely vertex of each external edge that is not bicritical belongs to
a tree whose center is old.

We construct a graph G′′ in the following way: For each tree S with
the center s in the decomposition D′′ and for each component C of S − s

that is incident with more than one external edge, we select one external
edge incident to a vertex in C arbitrarily. Let W be the set consisting of
all vertices incident with the selected edges and all vertices of the bicritical
edges of D′′. The graph G′′ is the induced subgraph of H ′′ with the vertex
set that consists of the centers of D′′, the vertices in W and the vertices on
the paths that join the vertices of W with the centers of their trees. Observe
that all the non-center vertices of G′′ have degree exactly 2, i.e., the graph
G′′ is a ≤ 2r-subdivision of some graph F ′′.

Let us compute average degree of F ′′. Let nold be the number of old
centers, nnew the number of new centers, n = nold + nnew the number of
vertices of F ′′ and m the number of edges of F ′′. The properties 1), 3), 4)
and 5) of D′′ imply that the degree of each new vertex in F ′′ is at least b,
hence m ≥ b

2
nnew. On the other hand, the total number of external edges in
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D′′ is at least d1

2
nold, and by the properties 2) and 3) of D′′, the number of

external edges is decreased at most br times during the construction of G′′,
i.e., m ≥ d1

2br nold = b
2
nold. Hence m ≥ b

4
n, and the average degree of F ′′ is

at least b
2
.

Therefore, there exists a subgraph F ′ ⊆ F ′′ such that the minimum degree
of F ′ is at least b

4
= d. The corresponding subgraph G′ ⊆ G′′ is a ≤ 2r-

subdivision of F ′, hence the claim of the theorem holds. �

4 Final Remarks

The graph coloring game with k colors and a graph G has the following rules:
There are two players, Alice and Bob, who take turns. Each move of Alice or
Bob consists of coloring a so far uncolored vertex of G by one of the k colors
in such a way that the obtained partial coloring of G is proper. Alice wins if
the whole graph G is colored, while Bob wins if he prevents this, i.e., manages
to ensure that there is an uncolored vertex such that all k colors are used in
its neighborhood. The game chromatic number of a graph G is defined as the
minimum k such that Alice has a winning strategy. Zhu and Dinsky [4] have
proved that the game chromatic number of a graph is bounded by a function
of the acyclic chromatic number, and conjectured that each graph with high
acyclic chromatic number contains a subgraph with high game chromatic
number. The consequence of Corollary 4 is that this conjecture is implied by
the following conjecture:

Conjecture 1 There exists a function f such that for each graph G, if
χ(G) ≥ f(c) then the game chromatic number of sd1(G) is at least c.

It is easy to prove that the game chromatic number of sd1(Kn) is at least
log4 n. Rödl [12] has proved that a graph with large chromatic number con-
tains a large clique or a triangle-free subgraph with large chromatic number.
Hence, it would suffice to prove the following equivalent claim:

Conjecture 2 There exists a function f such that for each triangle-free
graph G, if χ(G) ≥ f(c) then the game chromatic number of sd1(G) is at
least c.

A simpler parameter related to the game chromatic number is a game
coloring number. The game coloring number of a graph G is the minimum
number k for that Alice wins a marking game: Alice and Bob are marking
vertices of a graph in such a way that in the moment when a vertex is marked,
it has at most k − 1 marked neighbors. Alice wins if all the vertices of the
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graph are marked, while Bob wins if this becomes impossible. It is easy to see
that the game coloring number is the upper bound on the game chromatic
number. There are known examples of graphs with acyclic chromatic number
3 and arbitrarily large game coloring number – Kierstead and Trotter [10]
have proved that the game coloring number of sd1(Kn,n) is θ(log n). On the
other hand, the game coloring number is bounded by the arrangeability of a
graph. It is natural to conjecture the following:

Conjecture 3 There exists a function f such that for each graph G, if G is
not f(c)-arrangeable then the game coloring number of G is at least c.

By Theorem 9, the equivalent statement is that there exists a function f ′

such that δ(G) ≥ f ′(c) implies that the game chromatic number of sd1(G) is
at least c.

The bounds of all our theorems can be improved. While the bounds
of Theorem 9 and Theorem 11 have basically the correct magnitude (there
are graphs G with maximum degree d, arrangeability Ω(d2) and ∇r(G) =
Ω(dr+1)), the gap between the bounds for Theorem 3 is quite large. The
graph sd1(Kn) has acyclic chromatic number θ (

√
n) and contains the 1-

subdivision of a graph with chromatic number n, but the bound of Theorem 3
is exponential. It would be interesting to decrease the upper bound or to find
an example showing that an exponential bound is necessary.
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