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Abstract

We study vertex-colorings of plane graphs that do not contain a rainbow
face, i.e., a face with vertices of mutually distinct colors. If G is 3-connected
plane graph with n vertices, then the number of colors in such a coloring
does not exceed

⌊

7n−8
9

⌋

. If G is 4-connected, then the number of colors is
at most

⌊

5n−6
8

⌋

, and for n ≡ 3 (mod 8), it is at most
⌊

5n−6
8

⌋

− 1. Finally,
if G is 5-connected, then the number of colors is at most

⌊

43
100n − 19

25

⌋

. The
bounds for 3-connected and 4-connected plane graphs are the best possible
as we exhibit constructions of graphs with colorings matching the bounds.

1 Introduction

Colorings of graphs embedded on surfaces with face-constraints have recently
drawn a substantial amount of attention. There are two natural questions derived
from hypergraph colorings that one may ask in this setting:

1. What is the minimal number of colors needed to color an embedded graph in
such a way that each of its faces is incident with vertices of at least two different
colors, i.e., there is no monochromatic face?

2. What is the maximal number of colors that can be used in a coloring of an
embedded graph that contains no face with vertices of mutually distinct colors,
i.e., that contains no rainbow face?
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The first question can be traced back to work of Zykov [24] and was further
explored by Kündgen and Ramamurthi [17]. It can be shown [8] that every graph
embedded on a surface of genus ε has a coloring with O( 3

√
ε) colors that avoids

a monochromatic face. Let us remark that this type of coloring can be also
formulated in the terms of colorings of so-called face hypergraphs of embedded
graphs. Also let us mention that colorings that avoid both monochromatic and
rainbow faces have been also studied, see, e.g., [7, 14, 16]. For instance, the
results of Penaud [20] and Diwan [5] imply that each plane graph with at least
five vertices has a coloring with two colors as well as a coloring with three colors
that avoid both monochromatic and rainbow faces.

In this paper, we focus on the second question. A non-rainbow coloring of a
plane graph G is a vertex-coloring such that each face of G is incident with at
least two vertices with the same color. Unlike in the case of ordinary colorings,
the goal is to maximize the number of used colors and the maximum number of
colors that can be used in a non-rainbow coloring of a plane graph G is denoted by
χf(G). Let us remark at this point that the graphs considered in this paper can
contain parallel edges unless they form a bigon in the embedding of G. Though it
may take some time to digest this definition, the setting is so natural that it has
recently appeared independently in the work of Ramamurthi and West [22] and
Negami [19] (see also [1, 2, 18] for some even earlier results of this favor). Negami
addressed the following anti-Ramsey extremal question (equivalent to our second
one):

Problem 1. What is the smallest number k(G) of colors such that every vertex-
coloring of a plane graph G with k(G) colors contains a rainbow face?

It is easy to see that χf(G) = k(G) − 1 and the results obtained in either of
the scenarios translate smoothly to the other one.

Let us briefly survey some results from this area. Ramamurthi and West [21]
noticed that every plane graph G has a non-rainbow coloring with at least α(G)+1
colors, in particular, every plane graph G of order n has a coloring with at least
⌈

n
4

⌉

+1 colors by the Four Color Theorem. Also, Grötzsch’s theorem [9, 23] implies
that every triangle-free plane graph has a non-rainbow coloring with

⌈

n
3

⌉

+ 1
colors. Ramamurthi et al. [21] conjectured that this bound can be improved to
⌈

n
2

⌉

+1. Partial results on this conjecture were obtained in [15] and the conjecture
has been eventually proven in [13]. More generally, Jungić et al. [13] proved that
every planar graph of order n with girth g ≥ 5 has a non-rainbow coloring with

at least
⌈

g−3
g−2

n − g−7
2(g−2)

⌉

colors if g is odd, and
⌈

g−3
g−2

n − g−6
2(g−2)

⌉

colors if g is even.

All these bounds are the best possible.
Negami [19] investigated non-rainbow colorings of plane triangulations G and

showed that α(G) + 1 ≤ χf (G) ≤ 2α(G). Jendrol’ and Schrötter [12] determined
the number χf(G) for all semiregular polyhedra. In addition, Jendrol’ [10] estab-
lished that n

2
+ α∗

1 − 2 ≤ χf(G) ≤ n − α∗

0 for 3-connected cubic plane graphs G
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where α∗

0 is the independence number of the dual graph G∗ of G and α∗

1 is the
size of the largest matching of G∗. He also conjectured [10, 11] the following (let
us remark that the former conjecture was proven in [6]):

Conjecture 1. Every cubic 3-connected plane graph G of order n has χf(G) =
n
2

+ α∗

1 − 2.

Conjecture 2. A non-rainbow coloring of a plane 3-connected graph G of order
n uses at most

⌊

3n−1
4

⌋

colors.

Motivated by Conjecture 2, we establish tight upper bounds on the maximal
numbers of colors used in non-rainbow colorings of plane 3-connected and 4-
connected graphs and close lower and upper bounds on the maximal number of
such colors for 5-connected plane graphs. We show that a non-rainbow coloring
of a plane 3-connected graph of order n always use at most

⌊

7n−8
9

⌋

colors and
a non-rainbow coloring of a plane 4-connected graph always use at most

⌊

5n−6
8

⌋

colors, and for n ≡ 3 (mod 8), it is at most
⌊

5n−6
8

⌋

− 1 colors. All these bounds
are the best possible. Let us also remark that the optimal bound for 2-connected
plane graphs is n − 1 and is achived for a cycle.

For 5-connected plane graphs G, we show that the number of colors of a non-
rainbow coloring of G does not exceed

⌊

43
100

n − 19
25

⌋

≈ .430 n where n is the order
of G. On the other hand, we construct plane 5-connected graphs G of order n
with non-rainbow colorings with almost 171

400
n ≈ .428 n colors. We were not able

to close the gap between our lower and upper bounds in this case and conjecture
(see Conjecture 3 at the end of the paper) that the correct bound is 3

7
n + const..

Let us now briefly introduce several definitions that will be useful in our
further considerations. Most of them are standard graph theory definitions, but
we like to include them for the sake of completeness. A color class of a vertex-
coloring is the set of vertices with the same color. A monochromatic path or cycle
is a path or a cycle such that all its vertices have the same color. We often refer
to a cycle of length k as to a k-cycle.

If G is a graph embedded in the plane and C a cycle of G, then Int(C) is
the subgraph of G lying in the closed region bounded by C, in particular, the
subgraph Int(C) includes the cycle C. Similarly, Ext(C) is the subgraph of G
lying outside the open region bounded by C. If both Int(C) and Ext(C) contain
more vertices than C, then the cycle C is said to be separating. Observe that if
G is a 3-connected plane graph and C is a separating triangle, then both Int(C)
and Ext(C) are 3-connected. Conversely, the following is also true: if G and H
are two graphs with 3-cycles u1u2u3 and v1v2v3, then the graph obtained from G
and H by identifying the 3-cycles u1u2u3 and v1v2v3 is called the 3-sum of G and
H. If both G and H are 3-connected, then their 3-sum is also 3-connected.
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2 Counting argument

Our upper bounds are proved using the counting argument based on the lemmas
established in this section. Let G be a colored plane graph of minimum degree
at least d. We define a d-weight wd(H) of a connected monochromatic subgraph
H of G as k − 1

2

∑

v∈V (H)(degG(v) − d), where k is the number of faces of G

that share at least one edge with H, and degG(v) is the degree of v in G. The
next lemma provides a simple (and in most cases good enough) upper bound on
the d-weight of a monochromatic subgraph of G. We say that a subgraph H is
a maximal connected monochromatic subgraph of G if all the vertice of H have
the same color, H is connected and there is no supergraph of H with these two
properties.

Lemma 1. Let G be a colored plane graph of minimum degree at least d. If H
is a maximal connected monochromatic subgraph of G, then

wd(H) ≤ 1

2

∑

v∈V (H)

min{2 degH(v), d} ≤ d

2
|V (H)| .

Proof. The second inequality of the statement of the lemma obviously holds and
thus we focus on proving the first one. For a vertex v of H, let kv be the number
of faces of G that contain an edge e of H incident with v. By the definition, the
d-weight of H is at most

1

2

∑

v∈V (H)

(kv + d − degG(v))

since each face incident with a monochromatic edge of H is counted in at least
two variables kv (note that a single face can be incident with more edges of H).

Observe that kv ≤ min{2 degH(v), degG(v)}. We infer from kv ≤ 2 degH(v)
that kv + d − degG(v) ≤ kv ≤ 2 degH(v) and from kv ≤ degG(v) that kv + d −
degG(v) ≤ d. Hence, kv + d− degG(v) ≤ min{2 degH(v), d}. The assertion of the
lemma now follows.

The following lemma provides an upper bound on the number of colors used
in a non-rainbow coloring. Note that we assume that each face of a given graph
contains a monochromatic edge in the statement of Lemma 2 and not only that
c is a rainbow coloring. As we see in the rest of the paper, this does not decrease
the generality of our considerations.

Lemma 2. Let G be a plane connected graph of order n and with minimum
degree at least d, let c be a vertex-coloring of G such that each face of G contains a
monochromatic edge, and let H1, . . . , Ht be all maximal connected monochromatic
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subgraphs of G. If there exist α > 0 and β1, . . . , βt ≥ 0 such that wd(Hi) ≤
α(|V (Hi)| − 1) − βi for every i = 1, . . . , t, then the coloring c uses at most

(

1 − d − 2

2α

)

n − 2 +
∑t

i=1 βi

α

colors.

Proof. Let ni be the number of vertices of Hi and ki the number of faces of G
incident with an edge of Hi.

Since each face of G is incident with a monochromatic edge, the number f of
faces of G is at most

∑t

i=1 ki. By Euler’s formula, we have the following:

t
∑

i=1

ki ≥ f =
1

2

∑

v∈V (G)

deg(v) − n + 2 =
1

2

∑

v∈V (G)

(deg(v) − d) +
d − 2

2
n + 2 .

We now plug our assumption that the d-weight of Hi is at most α(|V (Hi)−1)−βi

to the above estimate:

d − 2

2
n + 2 ≤

t
∑

i=1

ki −
1

2

∑

v∈V (G)

(degG(v) − d)

≤
t

∑

i=1



ki −
1

2

∑

v∈V (Hi)

(degG(v) − d)





≤
t

∑

i=1

(α(ni − 1) − βi) .

We infer from this inequality that

α t ≤ α n − d − 2

2
n − 2 −

t
∑

i=1

βi

which yields that

t ≤
(

1 − d − 2

2α

)

n − 2 +
∑t

i=1 βi

α
.

This finishes the proof of the lemma since the number of colors used by c is at
most t.

In Sections 3–5, we apply Lemma 2 with different values of α and βi (setting
βi = 0 in most cases).
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3 3-connected plane graphs

In this section, we prove our lower and upper bounds on the number of colors of
non-rainbow colorings of 3-connected plane graphs. The upper bound is rather
easy once we have established Lemma 2.

Theorem 3. If G is a plane 3-connected graph with n ≥ 4 vertices, then the
number of colors used by any non-rainbow coloring c of G does not exceed

⌊

7n−8
9

⌋

.

Proof. By adding edges to G, we can assume without loss of generality that
each face of G is incident with a monochromatic edge. In addition, we can
assume that each color class induces a connected subgraph of G; otherwise, we
can recolor one of the components to increase the number of used colors. Let
H be a subgraph induced by one of the color classes (note that H is a maximal
connected monochromatic subgraph of G) and let n′ be the number of its vertices.

Since G is 3-connected, it has minimum degree three and thus we can apply
Lemma 2 with d = 3. We now estimate the 3-weight of H. If n′ = 1, then
the 3-weight of H is non-positive. If n′ = 2, then H is a single edge and thus
w3(H) ≤ 2 ≤ 9

4
(n′ − 1) by Lemma 1. If n′ ≥ 3, then w3(H) ≤ 3

2
n′ ≤ 9

4
(n′ − 1)

again by Lemma 1. Therefore, the assumption of Lemma 2 is satisfied for α = 9
4
,

βi = 0 and d = 3. The upper bound 7n−8
9

on the number of colors used by c
easily follows.

In the rest of this section, we show that the bound established in Theorem 3
is the best possible. Let us start with the following lemma that allows us to
construct larger examples that match the bound from smaller ones. Notice that
in Lemma 4, the monochromatic triangle can be both facial or separating.

Lemma 4. Let G be a plane 3-connected graph with n vertices that has a non-
rainbow coloring c with k colors. If G contains a monochromatic triangle, then
there exists a plane 3-connected graph G′ with n + 9 vertices that has a non-
rainbow coloring c′ with k + 7 colors and which also contains a monochromatic
triangle.

Proof. Let v1v2v3 be a monochromatic triangle contained in G. Split the triangle
into two copies, v′

1v
′

2v
′

3 and v′′

1v
′′

2v
′′

3 , and keep the rest of the graph (see Figure 1
for illustration). Next, insert a cycle w1w2w3w4w5w6 of length six between the
cycles v′

1v
′

2v
′

3 and v′′

1v
′′

2v
′′

3 as in the figure, and insert the following edges: v′

1w1,
v′′

1w2, v′

2w3, v′′

2w4, v′

3w5, and v′′

3w6. Let G′ be the resulting graph. The vertices of
Int(v′′

1v
′′

2v
′′

3) with same color as v′′

1 are recolored by a new color not previously used
by c. Six new colors are also assigned to the vertices w1, . . . , w6. We conclude
that the resulting coloring c′ uses k+7 colors. It follows that if c is a non-rainbow
coloring of G, then c′ is a non-rainbow coloring of G′.
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v1

v2

v3

v′
1

v′
2

v′
3

v′′
1

v′′
2

v′′
3

w1

w2 w3

w4

w5w6

Figure 1: A construction presented in Lemma 4. The monochromatic edges in
the configurations are drawn bold.

It remains to verify that the graph G′ is 3-connected. The 3-connectivity
of G implies that both Int(v1v2v3) and Ext(v1v2v3) are 3-connected. Since the
graph G′ can be viewed as the 3-sum of Int(v1v2v3), Ext(v1v2v3) and a 12-vertex
3-connected graph, G′ is also 3-connected.

We can now provide constructions of 3-connected graphs that witness that
the bound established in Theorem 3 is tight:

Theorem 5. For every n ≥ 4, there exists a plane 3-connected graph G with
n ≥ 4 vertices that has a non-rainbow coloring with

⌊

7n−8
9

⌋

colors.

Proof. The reader can find the graphs G for n = 4, . . . , 12 in Figure 2. Since
each of the graphs depicted in Figure 2 contains a monochromatic triangle, the
existence of graphs G for all n ≥ 13 follows from Lemma 4.

4 4-connected plane graphs

In this section, we prove our lower and upper bounds on the number of colors of
non-rainbow colorings of 4-connected plane graphs.

Theorem 6. Let G be a plane 4-connected graph with n ≥ 6 vertices. The number
of colors in a non-rainbow coloring of G does not exceed

⌊

5n−6
8

⌋

. Moreover, if
n ≡ 3 (mod 8), then the number of colors does not exceed

⌊

5n
8

⌋

− 1.

Proof. Fix a non-rainbow coloring c of G. Without loss of generality, we can
assume by adding edges that each face is incident with at least one monochromatic
edge. In addition, we can also assume that the vertices of each color induce a
connected subgraph of G; otherwise, recoloring one of the components with a new
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1 1

1

2

1 1

1

2

3

1 1

1

1

2 3

1 1

1

1

2 3

4
1 1

1

2

3 3

4 5

1 1

1

2
3 3

4 5

6

1 1

1

2 2

2

3 4

5 6 1 1

1

2 2

2

3

4 5 6 7 1 1

1

2 2

2

3

5 6 7 8

4

Figure 2: 3-connected plane graphs G with n vertices, n = 4, . . . , 12, that have
non-rainbow colorings with

⌊

7n−8
9

⌋

colors. The edges of G that are monochro-
matic in such a coloring are drawn bold. The colors assigned to the vertices are
represented by numbers.
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color yields a non-rainbow coloring of G with more colors. Let H be a subgraph
of G induced by the vertices of one of the colors and n′ the number of its vertices.
Our aim is to show that the 4-weight w4(H) of H is at most 8

3
(n′ − 1).

The inequality w4(H) ≤ 8
3
(n′ − 1) clearly holds if n′ = 1. If n′ ≥ 4, w4(H) ≤

2n′ ≤ 8
3
(n′ − 1) by Lemma 1. If n′ = 2, H is a single edge and thus the degree

of both the vertices of H is one. Hence, by Lemma 1, we have w4(H) ≤ 2 <
8
3
(n′ − 1). If n′ = 3, H is either a 3-vertex path or a triangle. In the former case,

w4(H) ≤ 1 + 2 + 1 ≤ 8
3
(n′ − 1) by Lemma 1. If H is a triangle, then it bounds a

3-face of G since G is 4-connected. Therefore, the edges of H are incident with
at most four distinct faces of G, and w4(H) ≤ 4 < 8

3
(n′ − 1) by the definition of

the d-weight. We infer from Lemma 2 applied with α = 8
3
, βi = 0, and d = 4 that

the number of colors used by c is at most 5n−6
8

. This establishes the theorem for
n 6≡ 3 (mod 8).

Let us consider the case n ≡ 3 (mod 8). It is straightforward to verify that
unless H is a single vertex or n′ = 4, the estimates established in the previous
paragraph yield w4(H) ≤ 8

3
(n′−1)− 2

3
. If n′ = 4, then w4(H) ≤ 6 ≤ 8

3
(n′−1)− 2

3

unless H is a 4-cycle. Therefore, if there is a maximal connected monochromatic
subgraph H1 of G different from a vertex or a 4-cycle, we can apply Lemma 2
with α = 8

3
, β1 = 2

3
, βi = 0 with i 6= 1, and d = 4 to obtain the desired bound.

We conclude that if the number of colors used by c is greater than 5n
8
− 1, then

each color class is either a single vertex or a 4-cycle. We analyze this case in the
next paragraph.

Let f the number of faces of G and s the number of monochromatic 4-cycles
of G. Since each face of G is incident with a monochromatic edge, it follows that
f ≤ 8s. On the other hand, since G is 4-connected, its minimum degree is at
least four, and thus the number of its edges is at least 2n. Hence, by Euler’s
formula, we get the following:

8s ≥ n + f − n ≥ (2n + 2) − n = n + 2 .

Since n ≡ 3 (mod 8), we infer the following:

s ≥
⌈

n + 2

8

⌉

=
n + 5

8
.

We conclude that the number of colors used by c, which is equal to n − 3s, is at
most

n − 3s ≤ n − 3 · n + 5

8
=

5n − 15

8
≤ 5n

8
− 1 .

In the rest of this section, we show that the bound established in Theorem 6
is tight. We start with a lemma that allows us to construct larger examples of
graphs for which the bound of the theorem is tight from smaller ones.

9



v1 v2

v3v4

v′
1

v′
2

v′
3

v′
4

w1 w2

w3w4

v′′
1

v′′
2

v′′
3

v′′
4

Figure 3: A construction presented in Lemma 7. The monochromatic edges in
the configurations are drawn bold.

Lemma 7. Let G be a plane 4-connected graph with n vertices that has a non-
rainbow coloring c with k colors. If G contains a separating monochromatic 4-
cycle, then there exists a 4-connected plane graph with n + 8 vertices that has
a non-rainbow coloring with k + 5 colors and with a separating monochromatic
4-cycle.

Proof. Let v1v2v3v4 be a monochromatic 4-cycle of G. Split the cycle to two cycles
v′

1v
′

2v
′

3v
′

4 and v′′

1v
′′

2v
′′

3v
′′

4 . Each vertex of G adjacent to vi is adjacent to v′

i or to v′′

i

in such a way that the resulting graph is still plane, see Figure 3. In addition, add
a new cycle w1w2w3w4 between the two cycles v′

1v
′

2v
′

3v
′

4 and v′′

1v
′′

2v
′′

3v
′′

4 , and add
edges v′

iwi and v′′

i wi, i = 1, 2, 3, 4. Let G′ be the obtained graph. The vertices v′

i

keep the color of the vertices vi, the vertices v′′

i and all the vertices with the same
color in Int(v′′

1v
′′

2v
′′

3v
′′

4) are recolored by a new color and each of the vertices wi

also receives a new color. Hence, G′ is a graph of order n+8 and the constructed
coloring is a non-rainbow coloring of G′ with k + 5 colors.

It remains to verify that G′ is 4-connected. Let A′ be a vertex cut of G′ formed
by at most three vertices. Note that each component of G′ \ A′ contains at least
one original vertex of G, i.e., a vertex different from v ′

i, v′′

i and wi. Let A be
the set obtained from A′ by replacing v′

i, v′′

i or wi by the vertex vi. Note that A
contains at most three vertices. It is easy to verify that if G′ \A′ is disconnected,
the graph G \ A is also disconnected. This contradicts our assumption that G is
4-connected.

We finish this section with a construction of graphs for which the bound
proven in Theorem 6 is tight.

Theorem 8. For every n ≥ 6, n 6≡ 3 (mod 8), there exists a plane 4-connected
graph G with n vertices that has a non-rainbow coloring with

⌊

5n−6
8

⌋

colors. More-
over, for n ≥ 6 and n ≡ 3 (mod 8), there exists such a graph G that has a
non-rainbow coloring with

⌊

5n
8

⌋

− 1 colors.
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1

1

1 2 1 3

1

1

1 2 1 3 1

1

1

1 2 1 3 1 4

1

1

1 2 3 4 1

1

1

1 2 3 4 5

1

1

1 2 3 4 5 1

2 2

2

2

1 1

11

3

4

5

6

2 2

2

2

1 1

11

3

4
5

6

7

Figure 4: 4-connected plane graphs G with n vertices, n = 6, 7, . . . , 13, that have
non-rainbow colorings with

⌊

5n−6
8

⌋

colors if n 6= 11, i.e., n 6≡ 3 (mod 8), and with
⌊

5n
8

⌋

− 1 = 5 colors, if n = 11. The edges of G that are monochromatic in such
a coloring are drawn bold. The colors assigned to the vertices are represented by
numbers (some vertices are not labeled with numbers; those vertices are colored
with 1).

11



Proof. The construction of graphs G for n = 6, 7, . . . , 13 can be found in Figure 4,
and the existence of the graphs G for n ≥ 14 follows from Lemma 7 by induction
on n.

5 5-connected plane graphs

In the last section of the paper, we focus on bounds on 5-connected plane graphs.
We start with showing the upper bound on the number of the colors.

Theorem 9. Let G be a plane 5-connected graph with n vertices. The number of
colors in a non-rainbow coloring of G does not exceed

⌊

43
100

n − 19
25

⌋

.

Proof. By adding edges if necessary, we can assume that each face of G is incident
with a monochromatic edge. Our aim is to apply Lemma 2 with α = 50

19
and

d = 5. In particular, we have to show that w5(H) ≤ 50
19

(n′ − 1) for each maximal
connected monochromatic subgraph H of G, where n′ is the number of vertices
of H.

If n′ = 1, the estimate on w5(H) clearly holds. If n′ ≥ 20, then w5(H) ≤
5
2
n′ ≤ 50

19
(n′ − 1) by Lemma 1. In the rest, we consider the case 1 < n′ < 20.

Let kv be the number of faces of G that contain a monochromatic edge of H
incident with a vertex v. As explained in the proof of Lemma 1, it holds that

w5(H) ≤ 1

2

∑

v∈V (H)

(kv + 5 − degG(v)) where (1)

kv + 5 − degG(v) ≤ min{2 degH(v), 5} for every v ∈ V (H). (2)

In particular, a vertex v contributes at most one to the sum in (1) if degH(v) = 1,
at most two if degH(v) = 2, and it contributes at most 5

2
otherwise.

Since the graph G is 5-connected, each face f of H such that the boundary
of f is a single 3-cycle or 4-cycle is also a face of G. For each such face f of H,
choose one of its edges to be its representative; let ef be the chosen edge. Since
each edge of H is incident with at most two faces and there are at least three
edges incident with each face, we infer from Hall’s theorem that all the edges ef

can be chosen to be pairwise distinct. Observe that for each edge ef = uv, we
can decrease both ku and kv in (1) by 1/2 without violating the inequality, since
we count the face f at least three times (at each of the three or four vertices
incident with it) instead of counting it only twice.

Let H ′ be the subgraph of H obtained by removing all the edges ef . Note
that H ′ need not to be connected. We claim that if a vertex v has degree two in
H ′, then its contribution to the sum in (1) is at most two. In order to see this, we
distinguish two cases based on the degree δ of v in H. If δ = 2, then the claimed
bound matches the estimate given in the formula (2). If δ ≥ 3, then for each of
δ − 2 removed edges we can decrease kv by 1/2, and thus v contributes at most
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5
2
− (δ − 2)/2 ≤ 2 to the sum. Similarly, the contribution of a vertex of degree

one in H ′ is at most 3/2 and that of an isolated vertex of H ′ at most 1.
Since each face of H ′ is incident with at least five distinct vertices (we have

removed from each face of size three or four at least one edge and we have removed
different edges from different faces), the number of edges of H ′ is at most 5n′

−10
3

by Euler’s formula (note that the bound holds even if H ′ is not connected) unless
n′ = 2 or n′ = 3. If n′ = 2, then the monochromatic edge of H is contained in at
most two faces and thus w5(H) ≤ 2. In particular, w5(H) ≤ 50

19
(n′−1). If n′ = 3,

then w5(H) ≤ 4 as there are at most four faces containing a monochromatic edge
of H and w5(H) ≤ 50

19
(n′ − 1) as desired. Hence, we can assume in the rest that

n′ > 3, in particular, that the number of edges of H ′ does not exceed 5n′
−10
3

.
Let n′

0 be the number of isolated vertices of H ′, n′

1 the number of vertices of
degree one, n′

2 the number of vertices of degree two and m′ the number of its
edges. Since the sum of the degrees of the vertices of H ′ is 2m′, it holds that
3n′ − 3n′

0 − 2n′

1 − n′

2 ≤ 2m′. An easy counting argument now yields that

3n′

0 + 2n′

1 + n′

2 ≥ 3n′ − 2m′ ≥ 3n′ − 2 · 5n′ − 10

3
=

20 − n′

3
.

Hence, the 5-weight of H can be bounded as follows:

w5(H) ≤ n′

0 +
3

2
n′

1 + 2n′

2 +
5

2
(n′ − n′

0 − n′

1 − n′

2) =
5

2
n′ − 3

2
n′

0 − n′

1 −
n′

2

2
=

5

2
n′ − 1

2
(3n′

0 + 2n′

1 + n′

2) ≤
5

2
n′ − 20 − n′

6
=

8n′ − 10

3
.

We leave to the reader to verify that 8n′
−10
3

≤ 50
19

(n′ − 1) for n′ ≤ 20. Finally, the
upper bound of 43

100
n− 19

25
on the number of colors follows from Lemma 2 applied

with α = 50
19

, βi = 0 for all i, and d = 5.

Unfortunately, we were not able to find matching lower and upper bounds on
the number of colors in non-rainbow colorings of 5-connected plane graphs. The
best lower bound construction that we have found is given in the next theorem.

Theorem 10. For every real number ε > 0, there exists a plane 5-connected
graph G with n vertices that has a non-rainbow coloring with

(

171
400

− ε
)

n colors.

Proof. We construct plane 5-connected graphs by combining plane gadgets of two
different types, A-gadgets and B-gadgets.

An A-gadget is obtained as follows (the gadget is depicted in Figure 5): con-
sider three concentric cycles in the plane, the inner and outer ones of length 10
and the middle one of length 20, and join the vertices of the middle cycle in an
alternating way to the vertices of the inner and outer cycles. The graph obtained
in this way is the graph formed by bold edges in the left part of Figure 5. Into
each of the 20 pentagonal faces of the obtained graph, add a single vertex and

13



Figure 5: An A-gadget and its coloring (the monochromatic edges are bold). The
interconnecting edges between an A-gadget and two B-gadgets are depicted in
the left part of the figure and the interconnection between an A-gadget with an
additional vertex of degree 10 and a B-gadget surrounding it in the right part
of the figure. The vertices used to find five vertex-disjoint paths in the proof of
5-connectivity are drawn with empty circles.

join it with all the five vertices on its boundary. This completes the construction
of the gadget. Note that an A-gadget has 60 vertices.

We now describe the coloring of an A-gadget. The 40 vertices of the three
original cycles are colored with the same color and the 20 new vertices with
mutually distinct colors. In this way, a coloring of the gadget with 21 colors
avoiding a rainbow face is obtained (see Figure 5 for illustration).

The construction of a B-gadget is more complex. First, start with a copy of
the dodecahedron and subdivide each edge of two antipodal faces. Next, place a
copy of the dodecahedron into each of the ten pentagonal faces of the obtained
graph and join it by five edges to the rest of the graph as depicted in the left
part of Figure 6 (the gray pentagons represent the copies of the dodecahedron).
Finally, add a vertex to each of the eleven faces of each copy of the dodecahedron
and join this vertex to all the five vertices on the boundary of the face (see
Figure 6 for illustration). The obtained graph has 30 + 10 · 20 + 10 · 11 = 340
vertices.

We next describe the coloring of the vertices of the B-gadget. The vertices
of each copy of the dodecahedron are colored with the same color but vertices in
different copies receive different colors. The remaining vertices are colored with
mutually distinct colors. In this way, a coloring with 30+10+10 ·11 = 150 colors
that avoids a rainbow face is obtained. The coloring is also depicted in Figure 6.

We are now ready to construct plane graphs Gk. The graph Gk is obtained

14



Figure 6: A B-gadget (depicted in the left part of the figure) and its coloring
where the monochromatic edges are bold. Each of the gray parts of the gadget
is a copy of the drawing depicted in the right. The vertices used to find five
vertex-disjoint paths in the proof of 5-connectivity are drawn with empty circles.

Figure 7: Edges joining an A-gadget and a B-gadget.
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from k + 1 A-gadgets and k B-gadgets by placing the gadgets concentrically in
an alternating way, i.e., each B-gadget is surrounded by two A-gadgets. Next,
ten edges between each pair of two neighboring gadgets are added in such a way
that each vertex of the A-gadget is incident with one such edge and the vertices
of the B-gadget have degree at least five, say this is done in the way drawn
in Figure 7. A new vertex is placed in the most inner face and joined by ten
edges to the vertices in its boundary as depicted in the right part of Figure 5.
Similarly, a new vertex is added to the outer face. Hence, the graph Gk has
n = 60(k + 1) + 340k + 2 = 400k + 62 vertices in total.

A coloring of Gk with non-rainbow faces is obtained from the colorings of the
gadgets and vertices of different gadgets are colored with distinct colors. The
two vertices not contained in any of the gadgets are assigned colors different
from the colors of all the other vertices. In this way, a coloring of Gk with
21(k+1)+150k+2 = 171k+23 colors is obtained. Hence, for a sufficiently large
integer k, the coloring uses more than ( 171

400
− ε)n colors.

It remains to verify that the graph Gk is 5-connected. Since a complete proof
of this fact is very technical, we sketch only the main idea and the reader is invited
to check the missing details. In order to verify that the graph Gk is 5-connected,
it is enough to construct five vertex-disjoint paths between any pair of vertices u
and v of Gk. Assume first that u and v are contained in different gadgets. If u is
contained in an A-gadget, find five vertex-disjoint paths from u to the five vertices
depicted with empty cycles in right part of Figure 5 that surrounds the part of Gk

containing the vertex v. If u is contained in a copy of the dodecahedron in a B-
gadget, find first five vertex disjoint paths to the five vertices on the outer face of
the dodecahedron and then extend them to vertex-disjoint paths to the vertices
on the boundary of the gadget. Since the five vertices on the inner boundary
and the five vertices on the outer boundary that are drawn with empty cycles
in Figures 5 and 6 can be joined by five vertex-disjoint paths, there exist five
vertex-disjoint paths between u and v. We leave the remaining details to the
reader. Note that it is also necessary to verify the existence of five vertex-disjoint
paths between u and v if u and v are in the same gadget, or if one or both are
the vertices of degree 10.

We were not able to close the gap between the multiplicative constants in the
bounds that we provide in Theorems 9 and 10. We leave determining the optimal
multiplicative constant in the bounds as an open problem.

Conjecture 3. There exists a constant C such that a rainbow coloring of a 5-
connected plane graph with n vertices uses at most 3

7
n + C colors and there exist

5-connected plane graphs with n vertices (for arbitrarily large n) with non-rainbow
colorings with at least 3

7
n − C colors.

Note that the conjectured multiplicative constant of 3/7 is sandwiched be-
tween the bounds given in Theorems 9 and 10.
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