
Maintaining Arc-consistency over Mutex Relations in
Planning Graphs during Search

Pavel Surynek

Charles University
Faculty of Mathematics and Physics

Malostranské náměstí 2/25, 118 00, Praha 1, Czech Republic
surynek@ktiml.mff.cuni.cz

Abstract
We deal with the search process of the Graph-
Plan algorithm in this paper. We concentrate on
the problem of finding supports for a sub-goal
which arises during the search. We model the
problem of finding supports as a constraint satis-
faction problem in which arc-consistency is
maintained. Contrary to other works on the simi-
lar topic, we do not model the whole planning
problem as a CSP but only a small sub-problem
within the standard solving process. Our model is
based on dual views of the problem which are
connected by channeling constraints. We per-
formed experiments with several variants of
propagation in the constraint model through
channeling constraints. Experiments confirmed
that the dual view of the problem enhanced with
maintaining of arc-consistency is a good choice.

Introduction

Planning is an intensively studied area of artifi-
cial intelligence. The importance of studying
planning arises from needs of real-life applica-
tions such as industrial automation, transporta-
tion, robotics and other braches (Nau et al.,
1995). The research in planning is also motivated
by needs of researches in other areas. From the
traditional view of planning, the planning prob-
lem is posed as finding of a sequence of actions
which transform a specified initial state of the
planning world into a desired goal state of the
world (Allen et al., 1990; Ghallab et al., 2004).
The limitation is that only actions from a set of
allowed actions can be used. An individual action

typically makes a small local change of the state
of the world. Therefore it is necessary to carry
out a set of actions in the right order to achieve
the goal.
 Among the most successful techniques for
solving planning problems belong algorithms
based on state reachability analysis. The first
such algorithm was GraphPlan (Blum and Furst,
1997). The algorithm introduced a concept of so
called planning graphs. The planning graph is a
structure which makes easier answering ques-
tions whether a certain state of the planning do-
main can be reached by using a certain set of
actions. The structure of the planning graph al-
lows discovering majority of forbidden situations
quickly. This feature significantly helps to prune
the search space during search for solution. Un-
fortunately the planning graph does not allow
discovering all forbidden situations. Therefore
the search is still necessary.
 In this paper we concentrate on planning
graphs from the constraint programming perspec-
tive. Specifically, we use consistency techniques
for solving sub-problem of finding supports for a
sub-goal. This kind of sub-problem arises many
times during the GraphPlan style solving process.
Therefore the fast answering of this problem is a
key factor for the efficiency of the solving algo-
rithm. We build a constraint model for solving
the sub-goal sub-problem. The sub-goal sub-
problem is then solved as a constraint satisfac-
tion problem (Dechter, 2003) which significantly
improves the search since constraint program-
ming techniques can be used. Our technique of

choice is arc-consistency which is maintained
during the search over the sub-goal model. To
obtain further speedup we model the problem by
two different approaches which are combined
together by a special channeling constraint.
 The paper is organized as follows. First we put
our work into relation with other works. Then we
describe planning graphs and GraphPlan algo-
rithm. The main part of the paper is about our
enrichment of GraphPlan solving process with
sub-goal model and its consistency. Finally we
present some experimental results and discuss
our contribution. Several variants of our ap-
proach are compared with the standard version of
the GraphPlan algorithm in this last part.

Related Works
Lot of techniques for solving planning problems
are trying to directly translate the problem into
another formalism. After translation they solve
the problem in a new formalism. Many of these
approaches use Boolean formula (SAT) or con-
straint satisfaction as the target formalism. SAT
based planners are described in (Kautz et al.,
1996; Kautz and Selman, 1999). The drawback
of these methods is that the information induced
by the original formulation is often lost during
translation into the target formalism. Some plan-
ners are trying to overcome this drawback by
hand tailored encoding of a planning problem
into the target formalism (Van Beek and Chen,
1999).
 The significant breakthrough in planning was
done when reachability analysis using planning
graphs was incorporated into planners. Many of
the successful existing planners use some Boo-
lean formula or constraint satisfaction algorithms
to solve models based on planning graph formu-
lation of the planning problem (Baioletti et al.,
1998; Kambhampati, 2000; Kambhampati et al.,
1997; Kautz and Selman, 1999; Lopez and Bac-
chus, 2003). Constraint programming represents
a technique which is intensively used in this way
(Nareyek et al., 2005). This kind utilization of
constraint programming in planning is more typi-

cal than the direct translation of the problem
from one formalism into another.
 We use constraint programming techniques to
solve a small sub-problem which arises during
the GraphPlan style solving process. This is in
contrast to other approaches which use constraint
programming formalism on the planning problem
as a whole (Kambhampati, 2000). The way how
we model our problem can be viewed as a syn-
thesis of the encoding style of the planning graph
as a CSP known from GP-CSP planner (Kamb-
hampati, 2000) and the Boolean formula satisfac-
tion approach known from SATPlan planner
(Kautz and Selman, 1999).

GraphPlan Algorithm

The GraphPlan algorithm (Blum and Furst, 1997)
relies on the idea of state reachability analysis.
The state reachability analysis is done by con-
structing a data structure called planning graph
in the GraphPlan algorithm. The algorithm works
in two interleaved phases. In the first phase plan-
ning graph is incrementally expanded. The sec-
ond phase consists of an extraction of a valid
plan from the extended planning graph. If the
second phase is unsuccessful the process contin-
ues with the first phase - the planning graph is
extended again.
 The planning graph for a planning problem
P = (s0, g, A), where s0 is an initial state (finite
set of atoms), g is a goal (finite set of literals) and
A is a set of actions (each action has precondi-
tions, positive effects and negative effects), is
defined as follows. It consists of two alternating
structures called proposition layer and action
layer. The initial state s0 represents the 0th
proposition layer P0. The layer P0 is just a list of
atoms occurring in s0. The rest of the planning
graph is defined inductively. Consider that the
planning graph with layers P0, A1, P1, A2, P2,...,
Ak, Pk has been already constructed (Ai denotes
the ith action layer, Pi denotes the ith proposition
layer). The next action layer Ak+1 consists of ac-
tions whose preconditions are included in the kth
proposition layer Pk and which satisfy the addi-

tional condition. This additional condition re-
quires that no two propositions of the action are
mutually excluded (we briefly say that they are
mutex).

Definition 1 (Independence). A pair of actions
{a, b} is independent if and only if:
(i) effects-(a) ∩ (precond(b) ∪ effects+(b)) = Ø
 and
(ii) effects-(b) ∩ (precond(a) ∪ effects+(a)) = Ø.
Otherwise {a, b} is a pair of dependent actions.

Definition 2 (Action mutex / mutex
propagation). We call the two actions a and b
within the action layer Ai a mutex if and only if
either the pair {a, b} is dependent or an atom of
the precondition of a is mutex with an atom of the
precondition of b (defined in the following defini-
tion).

Definition 3 (Proposition mutex / mutex
propagation). We call the two atoms p and q
within the proposition layer Pi a mutex if and
only if every action a within the layer Ai where
p ∈ effects+(a) is mutex with every action b
within the layer Ai for which q ∈ effects+(b) and
layer Ai does not contain any action c for which
{p, q} ⊆ effects+(c).

Theorem 1 (Necessary condition on state
reachability). Consider a state s containing at-
oms p and q that are mutex in layer Pi. Then the
state s cannot be reached from the initial state s0
by any sequence of actions determined by the
action layers A1, A2, ..., Ai.

We omit the proof of the theorem since it is
given in details in (Blum and Furst, 1997). The
theorem gives the necessary condition for the
existence of a solution of the planning problem.
 The key elements of the standard GraphPlan
algorithm are shown here as algorithm 1. The
program consists of functions for extraction of a
plan from the planning graph. The program sup-
poses that the planning graph is built for a certain

length (i.e. action and proposition layers are con-
structed and action and proposition mutexes are
propagated according to the defined rules). Then
the plan is extracted recursively using backtrack-
ing search. The algorithm is trying to satisfy a
goal by finding a set of actions which have this
goal as their effect. Preconditions of actions from
this resolving set form a new goal which is recur-
sively satisfied in the same way.
 Let us describe the process in more details.
Suppose we have a goal for which we are trying
to find a plan starting in the initial state. Next
suppose that we know how long the planning
graph should be. The process starts by construc-
tion of the planning graph of a given length. Af-
ter the construction of the planning graph the
algorithm starts to satisfy the goal in the last ac-
tion layer by finding a set of non-mutex actions
that satisfy the goal (we say these actions support
the goal). The set of supporting actions have pre-
conditions which also have to be satisfied. Pre-
conditions of supporting actions form a new goal
for the previous layer of the planning graph. The
plan extracting procedure is recursively called at
this point with parameters specifying the new
goal and the intention to extract this goal in the
previous layer. If the recursive call of the proce-
dure is unsuccessful the algorithm continues with
further attempts to find another set of non-mutex
actions supporting the original goal.

Algorithm 1. Basic procedures of the GraphPlan
algorithm as a pseudo-code. We use a special notation
for the planning graph structure. It is denoted as pG in
the code. pg/Propositions[i] denotes a set of proposi-
tions in the ith proposition layer (Pi), pG/Actions[i]
denotes a set of action in the ith action layer (Ai),
pG/PMutexes[i] denotes a set of proposition mutexes
between propositions in the ith proposition layer,
pG/AMutexes[i] denotes a set of action mutexes be-
tween actions in the ith action layer and
pG/Nogoods[i] denotes a set of nogoods for the ith
proposition layer. The resulting plan is a sequence of
sets of actions. A concatenation operation is denoted
by ‘.’ (dot). Function ExtractPlan gets parameters pG
- planning graph of a certain length, l - layer in which
the specified goal has to be satisfied and g - the goal.
The result of the function is plan consisting of actions
from action layers 1 to l of pG (an element of the
resulting sequence is a set of actions from a single
action layer) satisfying the specified goal g or failure
if no such plan exists. Function ExtractPlanFrom-
Layer gets parameters pG - planning graph, l - layer
in which the specified goal has to be satisfied, g - the
goal and p - plan consisting of action from the speci-
fied layer. The main purpose of this function is to find
supports for the goal in the specified layer.

function ExtractPlan(pG,l,g):sequence
1 if l = 0 then
2 if g ⊆ pG/Proposition[0] then return (<>)
3 else return (<failure>)
4 if g ∈ pG/Nogoods[l] then return (<failure>)
5 p ← ExtractPlanFromLayer(pG,l,g,Ø)
6 if p = <failure> then
7 pG/Nogoods[l] ← pG/Nogoods[l]∪{g}
8 return (<failure>)
9 else return (p)

function
ExtractPlanFromLayer(pG,l,g,p):sequence
1 if g = Ø then
2 g1 ← {precond(a)| a∈p}
3 P ← ExtractPlan(g1,PG,l-1)
4 if P = <failure> return (<failure>)
5 else return (P.p)
6 else
7 select q ∈ g
8 supports ← {a| a∈pG/Actions[l] &
9 & q∈effects+(a)}
10 if supports = Ø then return (<failure>)
11 for each s∈supports do
12 if CheckSupport(pG,s,p,l) then

13 g2 ← g-effects+(s)
14 p2 ← p∪{s}
15 return ExtractPlanFromLayer(pG,l,g2,p2)
16 return (<failure>)

function CheckSupport(pG,s,p,l):boolean
1 for each r∈p do
2 if (r,s) ∈ pG/AMutexes[l] then
3 return (False)
4 return (True)

The very weak point (as it is evident from our
experiments) of this version of the GraphPlan
algorithm is the search for a set of non-mutex
supporting actions. From the constraint pro-
gramming point of view the search for support-
ing actions is a satisfaction process over the net-
work of mutex constrains.

Goal Resolution Constraint Model

A constraint satisfaction problem (CSP) is a tri-
ple (X,D,C) (Dechter, 2003), where X is a finite
set of variables, D is a finite domain of values for
the variables from X and C is a finite set of con-
straints over the variables from X. The constraint
is an arbitrary relation over the elements of the
domains of its variables. Having a constraint sat-
isfaction problem the task is to find an assign-
ment of values from D to all the variables from X
such that all the constraints from C are satisfied.
The problem of finding a solution of the con-
straint satisfaction problem is NP-hard in gen-
eral.
 We designed a simple constraint model for
finding supports for goals arising during the
search by the GraphPlan algorithm (let us call
these goals sub-goals to distinguish them from
the major goal). This formulation of the sub-goal
sub-problem allows us to use constraint pro-
gramming techniques to improve the solving
process. Namely we are using arc-consistency
(Mackworth, 1977) for pruning the search space
during the search for supporting actions.
 The constraint model is built whenever a sub-
goal arises in some layer of the planning graph.
Suppose that the sub-goal g appeared in the ith
level of the planning graph. We use two types of

variables to model the problem of finding sup-
ports.
Activity variables: A Boolean variable active(a)
is included into the model for every action a
from the ith action layer of the planning graph
which supports some proposition in the sub-
goal g.
Support variables: A variable support(p) is in-
cluded into the model for every proposition p∈g.
The domain of the variable support(p) are all the
actions from the ith action layer of the planning
graph which support proposition p (i.e. the action
in the domain of support(p) have p as one of its
effects).
 Constraints in the model are accumulated in
two clusters. The first cluster is formed by con-
straints between Boolean activity variables and
the second cluster is represented by constraints
between support variables. There is one special
channeling constraint between these two clusters.
Activity mutex constraint: A binary constraint
forbidding assignment of value true to the pair of
Boolean activity variables active(a) and ac-
tive(b) (active(a)=true & active(b)=true is for-
bidden) is included into the model if and only if
actions a and b are mutex in the ith layer of the
planning graph.
Support mutex constraint: A binary constraint
between variables support(p) and support(q) is
refined by adding a new forbidden assignment
support(p)=a & support(q) = b if and only if
actions s a and b are mutex in the ith layer of the
planning graph.
 Having this model the sub-goal resolution
process on line 7 to 14 of the function Extract-
PlanFromLayer of the algorithm 1 can be re-
placed by solving of the proposed constraint
model. Labeling is done by selecting a proposi-
tion with fewest supports from the current sub-
goal (some kind of simple variable ordering heu-
ristic) and by selecting a support for this proposi-
tion. The support selection for the proposition is
done over the support variables.
 The propagation in the model is ensured by
several ways. Whenever the algorithm gets to
know that an action must be performed to pro-

vide the sub-goal with supports, the sub-goal is
refined by deleting all the propositions which are
effects of the action. This situation corresponds
to activity variable with singleton set {true} as
its actual domain or to the support variable with
the singleton set {a} as its actual domain. The
latter case means that a is the only supporting
action for some proposition. The model is also
refined in this case. All the propositions satisfied
by the selected action are removed from the
model (i.e. corresponding support variables are
removed from the model and constraint graph is
appropriately modified).
 The most important propagation is done
through the special channeling constraint which
connects the cluster of activity variables and the
cluster of support variables. We proposed three
variants of propagation through both clusters.
The method of propagation through the channel-
ing constraint strongly relate the way how con-
sistency is enforced in the model. We maintain
arc-consistency along the whole solving process.
Every time when the labeling step is performed
the consistency is enforced in the model (or more
precisely, consistency is enforced in a selected
part of the model). As we mentioned, arc-
consistency is used in the model. Let us recall the
definition.

Definition 4 (Arc-consistency). The value d of
the variable x is arc-consistent if and only if for
every variable y connected to x by the constraint
c there exists a value e in the domain of y such
that the assignment x = d & y = e is allowed by
the constraint c. The constraint satisfaction prob-
lem (X, C, D) is arc consistent if and only if every
value of every variable is arc-consistent.

Propagation of variant A: When a supporting
action is selected to satisfy a proposition in the
sub-goal the corresponding activity variable is set
to be true. Then consistency is enforced in the
cluster of activity variables. And the last step
consists of propagation of the changes in the
cluster of activity variables into the cluster of
support variables through the channeling con-

straint. The channeling constraint is defined as
follows in this variant. If an activity variable is
definitely false, then the corresponding action is
removed from actual domains of all the support-
ing variables. If an activity variable is definitely
true, then the current sub-goal is updated and
corresponding support variables are removed
from the model.
Propagation of variant B: We proceed similarly
as in the variant A. When a supporting action is
selected to satisfy some proposition the corre-
sponding activity variable is set to be true. Then
consistency is enforced in the cluster of activity
variables and changes are propagated into the
cluster of support variables. This propagation is
done in the same way as in the variant A. In addi-
tion to the variant A, changes in the cluster of
support variables are propagated back to the clus-
ter of activity variables. It is done in the follow-
ing way. When a support variable has a singleton
set as its actual domain (the proposition has the
only support) the corresponding activity variable
is set to be true and consistency is enforced again
in the cluster of activity variables. The process is
repeated until changes are made.
Propagation of variant C: This variant further
evolves the previous variant. Now consistency is
enforced in both clusters. After selecting the ac-
tion to support the given proposition a corre-
sponding activity variable is set to be true and
consistency is enforced in the cluster of activity
variables. Then changes are propagated into the
cluster of support variables where same type of
consistency is enforced too. The last step of the
iteration consists of propagation of changes from
the cluster of support variables into the cluster of
activity variables. Propagation in both direction
between variable clusters through channeling
constraint is done in the same way as in previous
variants. The whole process is again repeated
until the model in changing.
 It is expectable that the constraint model with
maintained consistency would provide better
search space pruning than the approach used
within the standard Graphplan. The question is
which variant performs best and what type of

consistency is better. Experiments showed that
variant C is not always the best choice.

Experimental Results

We made several experiments with simple plan-
ning domains. All the planning problems which
were used for experiments are available at the
web site:
http://ktiml.mff.cuni.cz/~surynek/research/flairs2
007/.
Dock Worker Robots planning domain. This
planning domain consists of a traffic network,
transportation robots and of cranes. Each trans-
portation robot has a certain capacity of packages
and can move within the traffic network. There
are two types of places within the traffic network
called locations and sites. A location is an ordi-
nary place which represents a node in the traffic
network. A site is a special place where packages
can be loaded and unloaded to and from the
transportation robot. Each site has certain num-
ber of cranes and certain number of piles of
packages (packages in pile behave like a stack -
LIFO). Each crane can load and unload a pack-
age to and from a transporter. Typically, not all
piles within a site are reachable by a single crane
so the cooperation among cranes on the site is
necessary.
 The task within this planning domain is usually
to transport some packages from one site to an-
other site and to put them on piles in the right
order.
Refueling Planes planning domain. Consider
that we need to plan how to refuel planes in order
to get to far destinations. For simplicity we have
several airports in a line and several planes with
certain fuel capacities. Planes can travel between
the airports. A plane consumes certain amount of
fuel to travel a unit of distance. Some extra fuel
is also necessary for landing and taking-off. Each
airport has an unlimited source of fuel and planes
can refuel at the airport. The important ability of
planes is to transfer fuel from one plane to an-
other plane in-flight.

 The task is typically to get a fleet of planes
from one airport to some distant one. The task is
especially interesting when planes need an inter-
mediate landing on some middle airport or in-
flight refueling.
Towers of Hanoi planning domain. This plan-
ning domain is a generalization of the well
known puzzle. The original game consists of
three pegs and a number of discs of different
sizes stacked on pegs. It is possible to move a
disc on the top of one peg to another peg in each
turn. The condition that a smaller disc is always
on larger disc must be preserved throughout the
game. Our generalization is that we use arbitrary
number of pegs and more than one disc can be
moved in each turn. We can pick for example
two discs and then place them in a different order
than they were picked.
 The original game starts with all disc stacked
on the first peg. However we allow arbitrary con-
figuration (satisfying the condition on disc sizes)
as the starting point in our generalization. Origi-
nally, the objective is to move all discs to the last
third peg. Again we allow arbitrary valid con-
figuration as a goal.
 For our experiments we used our own imple-
mentation of the described techniques in C++
language. The tests were performed on a machine
with AMD AthlonXP-M 3000+ (1600MHz) and
512 MB of memory running Mandrake Linux
10.0. The implementation was compiled with gcc
compiler version 3.3.2 with maximum optimiza-
tion for the target machine (-O9 -mtune=athlon).
 The following tables show our results. For each
of our three resting domains we selected four
problems of various difficulties. For each prob-
lem we counted number of backtracks of the al-
gorithm, number of actions which were tried to
be part of the resulting plan, number of mutex
checks and the overall time. Since our current
implementation consumes (relatively) lot of time
by construction of the planning graph we meas-
ured planning graph construction time and plan
extraction time separately.

Table 1. Plan lengths for Dock Worker Robots do-
main (planning graph length / plan length)

Problem dwr_01 dwr_05 dwr_07 dwr_11
Plan length 6/9 14/24 16/36 8/32

Table 2. Experimental results for Dock Worker Ro-
bots domain

Problem Standard AC (A) AC (B) AC (C)
Backtracks

dwr_01 18238 575 281 110
dwr_05 590245 7180 5840 549
dwr_07 N/A 145976 109708 4322
dwr_11 236 224 50 25

Actions
dwr_01 1717 446 394 266
dwr_05 61695 3157 3151 943
dwr_07 N/A 73997 73659 7997
dwr_11 224 224 224 224

Mutex checks
dwr_01 133324 20015 19774 38134
dwr_05 5879590 733457 733457 939520
dwr_07 N/A 12824724 12824376 4263763
dwr_11 3166 11345 11345 29389

Time (planning graph building/plan extraction)[seconds]
dwr_01 7.4/5.7 7.1/0.9 7.4/0.9 7.4/1.5
dwr_05 86.5/252.5 87.0/38.4 87.3/38.5 88.3/35.4
dwr_07 > 2 hours 145/726 146/689 143/157
dwr_11 24.5/0.8 25.3/0.5 24.7/0.5 24.7/0.9

Table 3. Plan lengths for Refueling Planes domain
(planning graph length / plan length)

Problem pln_01 pln_04 pln_05 pln_06
Plan length 5/9 5/9 6/14 9/14

Table 4. Experimental results for Refueling Planes
domain

Problem Standard AC (A) AC (B) AC (C)
Backtracks

pln_01 777 52 52 42
pln_04 565 59 41 31
pln_05 564657 5577 5048 1883
pln_06 7958435 36165 32631 8960

Actions
pln_01 125 62 62 56
pln_04 91 84 56 44
pln_05 51585 6059 4882 3220
pln_06 192217 28550 24911 23874

Mutex checks
pln_01 1669 2646 1646 1983
pln_04 1163 1047 1047 1180
pln_05 1757954 271254 271254 229287
pln_06 17162441 2399500 2399490 3198055

Time (planning graph building/plan extraction)[seconds]
pln_01 20.4/0.1 20.7/0.1 20.5/0.1 20.3/0.1
pln_04 5.4/0.0 5.3/0.0 5.3/0.0 5.5/0.0
pln_05 69.2/57.1 69.9/10.8 69.2/10.9 70.0/6.8
pln_06 80.3/460.6 80.8/91.8 80.7/94.5 80.0/86.0

Our experiments showed that maintaining
arc-consistency bring significant improvement in
number of backtracks, number of considered
actions in comparison with standard GraphPlan.
Maintaining arc-consistency brings also signifi-
cant improvement in overall time and mutex
checks.

Table 5. Plan lengths for Towers of Hanoi domain
(planning graph length / plan length)

Problem han_01 han_02 han_03 han_04
Plan length 6/6 14/14 30/30 10/12

Table 6. Experimental results for Towers of Hanoi
domain

Problem Standard AC (A) AC (B) AC (C)
Backtracks

han_01 79 37 20 11
han_02 4496 848 492 298
han_03 98308 13161 7983 4116
han_04 48558 2128 1530 660

Actions
han_01 40 87 62 48
han_02 1189 2471 1781 1665
han_03 20816 42491 29182 27799
han_04 5551 5697 4239 3970

Mutex checks
han_01 162 255 255 491
han_02 9566 9905 9899 20461
han_03 249137 213507 213474 437933
han_04 121174 55660 55662 97213

Time (planning graph building/plan extraction)[seconds]
han_01 0.1/0.0 0.1/0.0 0.1/0.0 0.1/0.0
han_02 1.2/0.4 1.2/0.4 1.2/0.4 1.2/0.6
han_03 7.5/10.5 7.4/8.0 7.5/8.1 7.5/12.2
han_04 5.9/5.0 6.0/2.5 6.0/2.6 6.0/3.1

Experiments also showed that the dual view of
the problem is useful. Constraint propagation in
both clusters of variables gives different results.
If these results are combined together by a chan-
neling constraint the obtained information is
stronger than the information from individual
cluster itself. Namely the variant C of propaga-

tion between clusters is most successful on hard-
est problems from our set of planning problems.
 However the variant C of propagation is not
always the best choice. For example on problems
with Hanoi towers sometimes the variant C has
higher number of mutex checks than the standard
version of the GraphPlan algorithm. The reason
is that these problems do not use parallel actions
and therefore the sub-goal sub-problems are al-
most trivial. Maintaining arc-consistency to solve
easy sub-problems represents a not very useful
overhead in such case.

Conclusions
To summarize our contribution, we proposed a
constraint model for solving sub-goal resolution
sub-problem which arises in the GraphPlan style
solving process of planning problems. We ex-
perimented with maintaining of arc-consistency
in the model. The modified GraphPlan algorithm
enhanced with the proposed model and
arc-consistency is better in terms of number of
backtracks as well as in terms of overall time.

References
Allen, J.; Hendler, J.; and Tate, A. (editors). 1990.
Readings in Planning. Morgan Kaufmann Publishers.

Baioletti, M.; Marcugini, S.; and Milani, A. 1998. An
Extension of SATPLAN for Planning with Con-
straints. In Proceedings of 8th International Confer-
ence AIMSA (AIMSA-98), 39-49, LNCS 1480,
Springer-Verlag.

Blum, A. L., and Furst, M. L. 1997. Fast planning
through planning graph analysis. Artificial Intelli-
gence 90, 281-300, AAAI Press.

Dechter, R. 2003. Constraint Processing. Morgan
Kaufmann Publishers.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2004.
Automated Planning: theory and practice. Morgan
Kaufmann Publishers.

Kambhampati, S. 2000. Planning Graph as a (Dy-
namic) CSP: Exploiting EBL, DDB and other CSP
Search Techniques in Graphplan. Journal of Artificial
Intelligence Research 12 (JAIR 12), 1-34, AAAI
Press.

Kambhampati, S.; Parker, E. and Lambrecht, E..
1997. Understanding and Extending Graphplan. In
Proceedings of 4th European Conference on Planning
(ECP-97), 260-272, LNCS 1348, Springer-Verlag.

Kautz, H. A.; McAllester, D. A. and Selman, B. 1996.
Encoding Plans in Propositional Logic. In Proceed-
ings of the 5th Conference on Principles of Knowl-
edge Representation and Reasoning (KR-96), 374-
384, Morgan Kaufmann Publishers.

Kautz, H. A. and Selman, B.. 1999. Unifying SAT-
based and Graph-based Planning. In Proceedings of
the 16th International Joint Conference on Artificial
Intelligence (IJCAI-99), 318-325, Morgan Kaufmann
Publishers.

Lopez, A. and Bacchus, F.. 2003. Generalizing
Graphplan by Formulating Planning as a CSP. In
Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence (IJCAI-2003), 954-
960, Morgan Kaufmann Publishers.

Mackworth, A. K. 1977. Consistency in Networks of
Relations. Artificial Intelligence 8, 99-118.

Nareyek, A.; Freuder, E.C.; Fourer, R.; Giunchiglia,
E.; Goldman, R. P.; Kautz, H. A.; Rintanen, J.; and
Tate, A. 2005. Constraints and AI Planning. IEEE
Intelligent Systems 20(2), 62-72.

Nau, D. S.; Regli, W. C.; and Gupta K. S. 1995. AI
Planning versus Manufacturing Operation Planning:
A Case Study. In Proceedings of IJCAI-95, 1670-
1676, Morgan Kaufmann.

Van Beek, P., and Chen, X. 1999. A Constraint Pro-
gramming Approach to Planning. In Proceedings of
the 16th National Conference on Artificial Intelli-
gence (AAAI-99), 585-590, AAAI Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

