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Abstract 
We deal with the search process of the Graph-
Plan algorithm in this paper. We concentrate on 
the problem of finding supports for a sub-goal 
which arises during the search. We model the 
problem of finding supports as a constraint satis-
faction problem in which arc-consistency is 
maintained. Contrary to other works on the simi-
lar topic, we do not model the whole planning 
problem as a CSP but only a small sub-problem 
within the standard solving process. Our model is 
based on dual views of the problem which are 
connected by channeling constraints. We per-
formed experiments with several variants of 
propagation in the constraint model through 
channeling constraints. Experiments confirmed 
that the dual view of the problem enhanced with 
maintaining of arc-consistency is a good choice. 

Introduction  

Planning is an intensively studied area of artifi-
cial intelligence. The importance of studying 
planning arises from needs of real-life applica-
tions such as industrial automation, transporta-
tion, robotics and other braches (Nau et al., 
1995). The research in planning is also motivated 
by needs of researches in other areas. From the 
traditional view of planning, the planning prob-
lem is posed as finding of a sequence of actions 
which transform a specified initial state of the 
planning world into a desired goal state of the 
world (Allen et al., 1990; Ghallab et al., 2004). 
The limitation is that only actions from a set of 
allowed actions can be used. An individual action 

typically makes a small local change of the state 
of the world. Therefore it is necessary to carry 
out a set of actions in the right order to achieve 
the goal. 
 Among the most successful techniques for 
solving planning problems belong algorithms 
based on state reachability analysis. The first 
such algorithm was GraphPlan (Blum and Furst, 
1997). The algorithm introduced a concept of so 
called planning graphs. The planning graph is a 
structure which makes easier answering ques-
tions whether a certain state of the planning do-
main can be reached by using a certain set of 
actions. The structure of the planning graph al-
lows discovering majority of forbidden situations 
quickly. This feature significantly helps to prune 
the search space during search for solution. Un-
fortunately the planning graph does not allow 
discovering all forbidden situations. Therefore 
the search is still necessary. 
 In this paper we concentrate on planning 
graphs from the constraint programming perspec-
tive. Specifically, we use consistency techniques 
for solving sub-problem of finding supports for a 
sub-goal. This kind of sub-problem arises many 
times during the GraphPlan style solving process. 
Therefore the fast answering of this problem is a 
key factor for the efficiency of the solving algo-
rithm. We build a constraint model for solving 
the sub-goal sub-problem. The sub-goal sub-
problem is then solved as a constraint satisfac-
tion problem (Dechter, 2003) which significantly 
improves the search since constraint program-
ming techniques can be used. Our technique of 



choice is arc-consistency which is maintained 
during the search over the sub-goal model. To 
obtain further speedup we model the problem by 
two different approaches which are combined 
together by a special channeling constraint.  
 The paper is organized as follows. First we put 
our work into relation with other works. Then we 
describe planning graphs and GraphPlan algo-
rithm. The main part of the paper is about our 
enrichment of GraphPlan solving process with 
sub-goal model and its consistency. Finally we 
present some experimental results and discuss 
our contribution. Several variants of our ap-
proach are compared with the standard version of 
the GraphPlan algorithm in this last part. 

Related Works 
Lot of techniques for solving planning problems 
are trying to directly translate the problem into 
another formalism. After translation they solve 
the problem in a new formalism. Many of these 
approaches use Boolean formula (SAT) or con-
straint satisfaction as the target formalism. SAT 
based planners are described in (Kautz et al., 
1996; Kautz and Selman, 1999). The drawback 
of these methods is that the information induced 
by the original formulation is often lost during 
translation into the target formalism. Some plan-
ners are trying to overcome this drawback by 
hand tailored encoding of a planning problem 
into the target formalism (Van Beek and Chen, 
1999). 
 The significant breakthrough in planning was 
done when reachability analysis using planning 
graphs was incorporated into planners. Many of 
the successful existing planners use some Boo-
lean formula or constraint satisfaction algorithms 
to solve models based on planning graph formu-
lation of the planning problem (Baioletti et al., 
1998; Kambhampati, 2000; Kambhampati et al., 
1997; Kautz and Selman, 1999; Lopez and Bac-
chus, 2003). Constraint programming represents 
a technique which is intensively used in this way 
(Nareyek et al., 2005). This kind utilization of 
constraint programming in planning is more typi-

cal than the direct translation of the problem 
from one formalism into another.  
 We use constraint programming techniques to 
solve a small sub-problem which arises during 
the GraphPlan style solving process. This is in 
contrast to other approaches which use constraint 
programming formalism on the planning problem 
as a whole (Kambhampati, 2000). The way how 
we model our problem can be viewed as a syn-
thesis of the encoding style of the planning graph 
as a CSP known from GP-CSP planner (Kamb-
hampati, 2000) and the Boolean formula satisfac-
tion approach known from SATPlan planner 
(Kautz and Selman, 1999). 

GraphPlan Algorithm 

The GraphPlan algorithm (Blum and Furst, 1997) 
relies on the idea of state reachability analysis. 
The state reachability analysis is done by con-
structing a data structure called planning graph 
in the GraphPlan algorithm. The algorithm works 
in two interleaved phases. In the first phase plan-
ning graph is incrementally expanded. The sec-
ond phase consists of an extraction of a valid 
plan from the extended planning graph. If the 
second phase is unsuccessful the process contin-
ues with the first phase - the planning graph is 
extended again. 
 The planning graph for a planning problem 
P = (s0, g, A), where s0 is an initial state (finite 
set of atoms), g is a goal (finite set of literals) and 
A is a set of actions (each action has precondi-
tions, positive effects and negative effects), is 
defined as follows. It consists of two alternating 
structures called proposition layer and action 
layer. The initial state s0 represents the 0th 
proposition layer P0. The layer P0 is just a list of 
atoms occurring in s0. The rest of the planning 
graph is defined inductively. Consider that the 
planning graph with layers P0, A1, P1, A2, P2,..., 
Ak, Pk has been already constructed (Ai denotes 
the ith action layer, Pi denotes the ith proposition 
layer). The next action layer Ak+1 consists of ac-
tions whose preconditions are included in the kth 
proposition layer Pk and which satisfy the addi-



tional condition. This additional condition re-
quires that no two propositions of the action are 
mutually excluded (we briefly say that they are 
mutex).  
 
Definition 1 (Independence). A pair of actions 
{a, b} is independent if and only if: 
(i) effects-(a) ∩ (precond(b) ∪ effects+(b)) = Ø  
    and  
(ii) effects-(b) ∩ (precond(a) ∪  effects+(a)) = Ø. 
Otherwise {a, b} is a pair of dependent actions. 
  
Definition 2 (Action mutex / mutex 
propagation). We call the two actions a and b 
within the action layer Ai a mutex if and only if 
either the pair {a, b} is dependent or an atom of 
the precondition of a is mutex with an atom of the 
precondition of b (defined in the following defini-
tion). 
 
Definition 3 (Proposition mutex / mutex 
propagation). We call the two atoms p and q 
within the proposition layer Pi a mutex if and 
only if every action a within the layer Ai where 
p ∈ effects+(a) is mutex with every action b 
within the layer Ai for which q ∈ effects+(b) and 
layer Ai does not contain any action c for which 
{p, q} ⊆ effects+(c). 
 
Theorem 1 (Necessary condition on state 
reachability). Consider a state s containing at-
oms p and q that are mutex in layer Pi. Then the 
state s cannot be reached from the initial state s0 
by any sequence of actions determined by the 
action layers A1, A2, ..., Ai. 
 
We omit the proof of the theorem since it is 
given in details in (Blum and Furst, 1997). The 
theorem gives the necessary condition for the 
existence of a solution of the planning problem. 
 The key elements of the standard GraphPlan 
algorithm are shown here as algorithm 1. The 
program consists of functions for extraction of a 
plan from the planning graph. The program sup-
poses that the planning graph is built for a certain 

length (i.e. action and proposition layers are con-
structed and action and proposition mutexes are 
propagated according to the defined rules). Then 
the plan is extracted recursively using backtrack-
ing search. The algorithm is trying to satisfy a 
goal by finding a set of actions which have this 
goal as their effect. Preconditions of actions from 
this resolving set form a new goal which is recur-
sively satisfied in the same way. 
 Let us describe the process in more details. 
Suppose we have a goal for which we are trying 
to find a plan starting in the initial state. Next 
suppose that we know how long the planning 
graph should be. The process starts by construc-
tion of the planning graph of a given length. Af-
ter the construction of the planning graph the 
algorithm starts to satisfy the goal in the last ac-
tion layer by finding a set of non-mutex actions 
that satisfy the goal (we say these actions support 
the goal). The set of supporting actions have pre-
conditions which also have to be satisfied. Pre-
conditions of supporting actions form a new goal 
for the previous layer of the planning graph. The 
plan extracting procedure is recursively called at 
this point with parameters specifying the new 
goal and the intention to extract this goal in the 
previous layer. If the recursive call of the proce-
dure is unsuccessful the algorithm continues with 
further attempts to find another set of non-mutex 
actions supporting the original goal. 



Algorithm 1. Basic procedures of the GraphPlan 
algorithm as a pseudo-code. We use a special notation 
for the planning graph structure. It is denoted as pG in 
the code. pg/Propositions[i] denotes a set of proposi-
tions in the ith proposition layer (Pi), pG/Actions[i] 
denotes a set of action in the ith action layer (Ai), 
pG/PMutexes[i] denotes a set of proposition mutexes 
between propositions in the ith proposition layer, 
pG/AMutexes[i] denotes a set of action mutexes be-
tween actions in the ith action layer and 
pG/Nogoods[i] denotes a set of nogoods for the ith 
proposition layer. The resulting plan is a sequence of 
sets of actions. A concatenation operation is denoted 
by ‘.’ (dot). Function ExtractPlan gets parameters pG 
- planning graph of a certain length, l - layer in which 
the specified goal has to be satisfied and g - the goal. 
The result of the function is plan consisting of actions 
from action layers 1 to l of pG (an element of the 
resulting sequence is a set of actions from a single 
action layer) satisfying the specified goal g or failure 
if no such plan exists. Function ExtractPlanFrom-
Layer gets parameters pG - planning graph, l - layer 
in which the specified goal has to be satisfied, g - the 
goal and p - plan consisting of action from the speci-
fied layer. The main purpose of this function is to find 
supports for the goal in the specified layer.  

function ExtractPlan(pG,l,g):sequence 
1  if l = 0 then 
2    if g ⊆ pG/Proposition[0] then return (<>) 
3    else return (<failure>) 
4  if g ∈ pG/Nogoods[l] then return (<failure>) 
5  p ← ExtractPlanFromLayer(pG,l,g,Ø) 
6  if p = <failure> then 
7    pG/Nogoods[l] ← pG/Nogoods[l]∪{g} 
8    return (<failure>) 
9  else return (p) 

function 
ExtractPlanFromLayer(pG,l,g,p):sequence 
1  if g = Ø then 
2    g1 ← {precond(a)| a∈p} 
3    P ← ExtractPlan(g1,PG,l-1) 
4    if P = <failure> return (<failure>) 
5    else return (P.p) 
6  else 
7    select q ∈ g 
8    supports ← {a| a∈pG/Actions[l] &  
9                    & q∈effects+(a)} 
10   if supports = Ø then return (<failure>) 
11   for each s∈supports do 
12     if CheckSupport(pG,s,p,l) then 

13      g2 ← g-effects+(s) 
14      p2 ← p∪{s} 
15      return ExtractPlanFromLayer(pG,l,g2,p2) 
16   return (<failure>) 

function CheckSupport(pG,s,p,l):boolean 
1  for each r∈p do 
2    if (r,s) ∈ pG/AMutexes[l] then 
3      return (False) 
4  return (True) 

The very weak point (as it is evident from our 
experiments) of this version of the GraphPlan 
algorithm is the search for a set of non-mutex 
supporting actions. From the constraint pro-
gramming point of view the search for support-
ing actions is a satisfaction process over the net-
work of mutex constrains.  

Goal Resolution Constraint Model 

A constraint satisfaction problem (CSP) is a tri-
ple (X,D,C) (Dechter, 2003), where X is a finite 
set of variables, D is a finite domain of values for 
the variables from X and C is a finite set of con-
straints over the variables from X. The constraint 
is an arbitrary relation over the elements of the 
domains of its variables. Having a constraint sat-
isfaction problem the task is to find an assign-
ment of values from D to all the variables from X 
such that all the constraints from C are satisfied. 
The problem of finding a solution of the con-
straint satisfaction problem is NP-hard in gen-
eral. 
 We designed a simple constraint model for 
finding supports for goals arising during the 
search by the GraphPlan algorithm (let us call 
these goals sub-goals to distinguish them from 
the major goal). This formulation of the sub-goal 
sub-problem allows us to use constraint pro-
gramming techniques to improve the solving 
process. Namely we are using arc-consistency 
(Mackworth, 1977) for pruning the search space 
during the search for supporting actions. 
 The constraint model is built whenever a sub-
goal arises in some layer of the planning graph. 
Suppose that the sub-goal g appeared in the ith 
level of the planning graph. We use two types of 



variables to model the problem of finding sup-
ports. 
Activity variables: A Boolean variable active(a) 
is included into the model for every action a 
from the ith action layer of the planning graph 
which supports some proposition in the sub-
goal g. 
Support variables: A variable support(p) is in-
cluded into the model for every proposition p∈g. 
The domain of the variable support(p) are all the 
actions from the ith action layer of the planning 
graph which support proposition p (i.e. the action 
in the domain of support(p) have p as one of its 
effects). 
 Constraints in the model are accumulated in 
two clusters. The first cluster is formed by con-
straints between Boolean activity variables and 
the second cluster is represented by constraints 
between support variables. There is one special 
channeling constraint between these two clusters. 
Activity mutex constraint: A binary constraint 
forbidding assignment of value true to the pair of 
Boolean activity variables active(a)  and ac-
tive(b)  (active(a)=true & active(b)=true is for-
bidden) is included into the model if and only if 
actions a and b are mutex in the ith layer of the 
planning graph. 
Support mutex constraint: A binary constraint 
between variables support(p) and support(q) is 
refined by adding a new forbidden assignment 
support(p)=a & support(q) = b if and only if 
actions s a and b are mutex in the ith layer of the 
planning graph. 
 Having this model the sub-goal resolution 
process on line 7 to 14 of the function Extract-
PlanFromLayer of the algorithm 1 can be re-
placed by solving of the proposed constraint 
model. Labeling is done by selecting a proposi-
tion with fewest supports from the current sub-
goal (some kind of simple variable ordering heu-
ristic) and by selecting a support for this proposi-
tion. The support selection for the proposition is 
done over the support variables. 
 The propagation in the model is ensured by 
several ways. Whenever the algorithm gets to 
know that an action must be performed to pro-

vide the sub-goal with supports, the sub-goal is 
refined by deleting all the propositions which are 
effects of the action. This situation corresponds 
to activity variable with singleton set {true} as 
its actual domain or to the support variable with 
the singleton set {a} as its actual domain. The 
latter case means that a is the only supporting 
action for some proposition. The model is also 
refined in this case. All the propositions satisfied 
by the selected action are removed from the 
model (i.e. corresponding support variables are 
removed from the model and constraint graph is 
appropriately modified). 
 The most important propagation is done 
through the special channeling constraint which 
connects the cluster of activity variables and the 
cluster of support variables. We proposed three 
variants of propagation through both clusters. 
The method of propagation through the channel-
ing constraint strongly relate the way how con-
sistency is enforced in the model. We maintain 
arc-consistency along the whole solving process. 
Every time when the labeling step is performed 
the consistency is enforced in the model (or more 
precisely, consistency is enforced in a selected 
part of the model). As we mentioned, arc-
consistency is used in the model. Let us recall the 
definition. 
 
Definition 4 (Arc-consistency). The value d of 
the variable x is arc-consistent if and only if for 
every variable y connected to x by the constraint 
c there exists a value e in the domain of y such 
that the assignment x = d & y = e is allowed by 
the constraint c. The constraint satisfaction prob-
lem (X, C, D) is arc consistent if and only if every 
value of every variable is arc-consistent. 
 
Propagation of variant A: When a supporting 
action is selected to satisfy a proposition in the 
sub-goal the corresponding activity variable is set 
to be true. Then consistency is enforced in the 
cluster of activity variables. And the last step 
consists of propagation of the changes in the 
cluster of activity variables into the cluster of 
support variables through the channeling con-



straint. The channeling constraint is defined as 
follows in this variant. If an activity variable is 
definitely false, then the corresponding action is 
removed from actual domains of all the support-
ing variables. If an activity variable is definitely 
true, then the current sub-goal is updated and 
corresponding support variables are removed 
from the model. 
Propagation of variant B: We proceed similarly 
as in the variant A. When a supporting action is 
selected to satisfy some proposition the corre-
sponding activity variable is set to be true. Then 
consistency is enforced in the cluster of activity 
variables and changes are propagated into the 
cluster of support variables. This propagation is 
done in the same way as in the variant A. In addi-
tion to the variant A, changes in the cluster of 
support variables are propagated back to the clus-
ter of activity variables. It is done in the follow-
ing way. When a support variable has a singleton 
set as its actual domain (the proposition has the 
only support) the corresponding activity variable 
is set to be true and consistency is enforced again 
in the cluster of activity variables. The process is 
repeated until changes are made. 
Propagation of variant C: This variant further 
evolves the previous variant. Now consistency is 
enforced in both clusters. After selecting the ac-
tion to support the given proposition a corre-
sponding activity variable is set to be true and 
consistency is enforced in the cluster of activity 
variables. Then changes are propagated into the 
cluster of support variables where same type of 
consistency is enforced too. The last step of the 
iteration consists of propagation of changes from 
the cluster of support variables into the cluster of 
activity variables. Propagation in both direction 
between variable clusters through channeling 
constraint is done in the same way as in previous 
variants. The whole process is again repeated 
until the model in changing. 
 It is expectable that the constraint model with 
maintained consistency would provide better 
search space pruning than the approach used 
within the standard Graphplan. The question is 
which variant performs best and what type of 

consistency is better. Experiments showed that 
variant C is not always the best choice. 

Experimental Results  

We made several experiments with simple plan-
ning domains. All the planning problems which 
were used for experiments are available at the 
web site: 
http://ktiml.mff.cuni.cz/~surynek/research/flairs2
007/. 
Dock Worker Robots planning domain. This 
planning domain consists of a traffic network, 
transportation robots and of cranes. Each trans-
portation robot has a certain capacity of packages 
and can move within the traffic network. There 
are two types of places within the traffic network 
called locations and sites. A location is an ordi-
nary place which represents a node in the traffic 
network. A site is a special place where packages 
can be loaded and unloaded to and from the 
transportation robot. Each site has certain num-
ber of cranes and certain number of piles of 
packages (packages in pile behave like a stack - 
LIFO). Each crane can load and unload a pack-
age to and from a transporter. Typically, not all 
piles within a site are reachable by a single crane 
so the cooperation among cranes on the site is 
necessary. 
 The task within this planning domain is usually 
to transport some packages from one site to an-
other site and to put them on piles in the right 
order. 
Refueling Planes planning domain. Consider 
that we need to plan how to refuel planes in order 
to get to far destinations. For simplicity we have 
several airports in a line and several planes with 
certain fuel capacities. Planes can travel between 
the airports. A plane consumes certain amount of 
fuel to travel a unit of distance. Some extra fuel 
is also necessary for landing and taking-off. Each 
airport has an unlimited source of fuel and planes 
can refuel at the airport. The important ability of 
planes is to transfer fuel from one plane to an-
other plane in-flight. 



 The task is typically to get a fleet of planes 
from one airport to some distant one. The task is 
especially interesting when planes need an inter-
mediate landing on some middle airport or in-
flight refueling. 
Towers of Hanoi planning domain. This plan-
ning domain is a generalization of the well 
known puzzle. The original game consists of 
three pegs and a number of discs of different 
sizes stacked on pegs. It is possible to move a 
disc on the top of one peg to another peg in each 
turn. The condition that a smaller disc is always 
on larger disc must be preserved throughout the 
game. Our generalization is that we use arbitrary 
number of pegs and more than one disc can be 
moved in each turn. We can pick for example 
two discs and then place them in a different order 
than they were picked. 
 The original game starts with all disc stacked 
on the first peg. However we allow arbitrary con-
figuration (satisfying the condition on disc sizes) 
as the starting point in our generalization. Origi-
nally, the objective is to move all discs to the last 
third peg. Again we allow arbitrary valid con-
figuration as a goal. 
 For our experiments we used our own imple-
mentation of the described techniques in C++ 
language. The tests were performed on a machine 
with AMD AthlonXP-M 3000+ (1600MHz) and 
512 MB of memory running Mandrake Linux 
10.0. The implementation was compiled with gcc 
compiler version 3.3.2 with maximum optimiza-
tion for the target machine (-O9 -mtune=athlon). 
 The following tables show our results. For each 
of our three resting domains we selected four 
problems of various difficulties. For each prob-
lem we counted number of backtracks of the al-
gorithm, number of actions which were tried to 
be part of the resulting plan, number of mutex 
checks and the overall time. Since our current 
implementation consumes (relatively) lot of time 
by construction of the planning graph we meas-
ured planning graph construction time and plan 
extraction time separately. 

Table 1. Plan lengths for Dock Worker Robots do-
main (planning graph length / plan length) 

Problem dwr_01 dwr_05 dwr_07 dwr_11 
Plan length 6/9 14/24 16/36 8/32 

Table 2. Experimental results for Dock Worker Ro-
bots domain 

Problem Standard AC (A) AC (B) AC (C) 
Backtracks 

dwr_01 18238 575 281 110 
dwr_05 590245 7180 5840 549 
dwr_07 N/A 145976 109708 4322 
dwr_11 236 224 50 25 

Actions 
dwr_01 1717 446 394 266 
dwr_05 61695 3157 3151 943 
dwr_07 N/A 73997 73659 7997 
dwr_11 224 224 224 224 

Mutex checks 
dwr_01 133324 20015 19774 38134 
dwr_05 5879590 733457 733457 939520 
dwr_07 N/A 12824724 12824376 4263763 
dwr_11 3166 11345 11345 29389 

Time (planning graph building/plan extraction)[seconds] 
dwr_01 7.4/5.7 7.1/0.9 7.4/0.9 7.4/1.5 
dwr_05 86.5/252.5 87.0/38.4 87.3/38.5 88.3/35.4 
dwr_07 > 2 hours 145/726 146/689 143/157 
dwr_11 24.5/0.8 25.3/0.5 24.7/0.5 24.7/0.9 

Table 3. Plan lengths for Refueling Planes domain 
(planning graph length / plan length) 

Problem pln_01 pln_04 pln_05 pln_06 
Plan length 5/9 5/9 6/14 9/14 

Table 4. Experimental results for Refueling Planes 
domain 

Problem Standard AC (A) AC (B) AC (C) 
Backtracks 

pln_01 777 52 52 42 
pln_04 565 59 41 31 
pln_05 564657 5577 5048 1883 
pln_06 7958435 36165 32631 8960 

Actions 
pln_01 125 62 62 56 
pln_04 91 84 56 44 
pln_05 51585 6059 4882 3220 
pln_06 192217 28550 24911 23874 

Mutex checks 
pln_01 1669 2646 1646 1983 
pln_04 1163 1047 1047 1180 
pln_05 1757954 271254 271254 229287 
pln_06 17162441 2399500 2399490 3198055 



Time (planning graph building/plan extraction)[seconds] 
pln_01 20.4/0.1 20.7/0.1 20.5/0.1 20.3/0.1 
pln_04 5.4/0.0 5.3/0.0 5.3/0.0 5.5/0.0 
pln_05 69.2/57.1 69.9/10.8 69.2/10.9 70.0/6.8 
pln_06 80.3/460.6 80.8/91.8 80.7/94.5 80.0/86.0 

 
Our experiments showed that maintaining 
arc-consistency bring significant improvement in 
number of backtracks, number of considered 
actions in comparison with standard GraphPlan. 
Maintaining arc-consistency brings also signifi-
cant improvement in overall time and mutex 
checks. 

Table 5. Plan lengths for Towers of Hanoi domain 
(planning graph length / plan length) 

Problem han_01 han_02 han_03 han_04 
Plan length 6/6 14/14 30/30 10/12 

Table 6. Experimental results for Towers of Hanoi 
domain 

Problem Standard AC (A) AC (B) AC (C) 
Backtracks 

han_01 79 37 20 11 
han_02 4496 848 492 298 
han_03 98308 13161 7983 4116 
han_04 48558 2128 1530 660 

Actions 
han_01 40 87 62 48 
han_02 1189 2471 1781 1665 
han_03 20816 42491 29182 27799 
han_04 5551 5697 4239 3970 

Mutex checks 
han_01 162 255 255 491 
han_02 9566 9905 9899 20461 
han_03 249137 213507 213474 437933 
han_04 121174 55660 55662 97213 

Time (planning graph building/plan extraction)[seconds] 
han_01 0.1/0.0 0.1/0.0 0.1/0.0 0.1/0.0 
han_02 1.2/0.4 1.2/0.4 1.2/0.4 1.2/0.6 
han_03 7.5/10.5 7.4/8.0 7.5/8.1 7.5/12.2 
han_04 5.9/5.0 6.0/2.5 6.0/2.6 6.0/3.1 

 
Experiments also showed that the dual view of 
the problem is useful. Constraint propagation in 
both clusters of variables gives different results. 
If these results are combined together by a chan-
neling constraint the obtained information is 
stronger than the information from individual 
cluster itself. Namely the variant C of propaga-

tion between clusters is most successful on hard-
est problems from our set of planning problems. 
 However the variant C of propagation is not 
always the best choice. For example on problems 
with Hanoi towers sometimes the variant C has 
higher number of mutex checks than the standard 
version of the GraphPlan algorithm. The reason 
is that these problems do not use parallel actions 
and therefore the sub-goal sub-problems are al-
most trivial. Maintaining arc-consistency to solve 
easy sub-problems represents a not very useful 
overhead in such case. 

Conclusions 
To summarize our contribution, we proposed a 
constraint model for solving sub-goal resolution 
sub-problem which arises in the GraphPlan style 
solving process of planning problems. We ex-
perimented with maintaining of arc-consistency 
in the model. The modified GraphPlan algorithm 
enhanced with the proposed model and 
arc-consistency is better in terms of number of 
backtracks as well as in terms of overall time. 
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