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Abstract. Subfitness and its relation to openness and complete-
ness is studied in the context of Heyting semilattices. A formally
weaker condition (c-subfitness) is shown to be necessary and suffi-
cient for openness and completeness to coincide. For a large class
of spatial frames, c-subfit ≡ subfit.

Introduction

Recall that a Heyting semilattice (also implicative semilattice [11], or
Brouwerian semilattice [10]) is a (meet-)semilattice with the (Heyting)
operation → satisfying

a ∧ b ≤ c iff a ≤ b→c.

We study ideals and complete ideals (see 2.2 below) in these objects,
show that some standard facts about subfitness (an important concept
of topology and logic) hold in this general context, and discuss the
question of openness confronted with completeness.

One of the motivations comes from modelling open continuous maps
in point-free topology. The condition that images of open sublocales
under a frame homomorphism h : L → M are open reduces to the
existence of a map φ : M → L such that

(Open) x ∧ φ(a) = y ∧ φ(a) iff h(x) ∧ a = h(y) ∧ a.

From this equivalence one can easily deduce the famous theorem by
Joyal and Tierney ([9]) stating that

h : L → M is open iff it is a complete Heyting homomorphism,
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that is, if it preserves all joins, all meets and, moreover, also the Heyting
operation (always existing due to the frame distributivity).

The condition (Open) can be viewed as a comparison of two frame
congruences

E = {(x, y) | x∧φ(a) = y∧φ(a)} and F = {(x, y) | h(x)∧a = h(y)∧a}.

Now under a certain condition (called fitness, weaker then the point-
free variant of regularity), frame congruences coincide iff the classes of
the top element do, and (Open) further reduces to

x ∧ φ(a) = φ(a) iff h(x) ∧ a = a,

that is,

φ(a) ≤ x iff a ≤ h(x).

Hence, h is here open iff it is complete, the Heyting part being auto-
matic.

In fact, fitness is not really necessary, and the question naturally
arises how far it can be relaxed. It turns out that for every complete
homomorphism h : L → M being Heyting, it suffices that L is subfit
(in spaces, a condition weaker than T1). We prove a necessary and
sufficient condition (formally weaker than subfitness, but a dividing
example is still lacking).

Working in the context of Heyting semilattices makes the results
substantially more general. The point is, however, not in generaliz-
ing for generalization sake (although even this has its merits, making
several facts more transparent). Our main aim is, rather, to prove as
much as possible without using infinite joins or meets (completeness,
for instance, is expressed by the existence of a Galois adjoint, not by
preserving arbitrary meets — which do not have to exist at all).

The paper is divided into five sections. After the necessary pre-
liminaries (Section 1) we study, in Section 2, the ideals in Heyting
semilattices, the central notion of our investigation. Section 3 is de-
voted to subfitness and a formally weaker c-subfitness (the necessary
and sufficient condition mentioned above); the results are then applied
in Section 5 to frames (here we also show that for TD-spaces the two
conditions coincide, and subfitness is hence necessary and sufficient for
every complete homomorphism being open).

1. Preliminaries

1.1. We use the standard notions and notation for posets (partially
ordered sets) as e.g. in [3]. We write ↑M = {x ∈ X | x ≥ m ∈ M} and
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similarly ↓M for M ⊆ X = (X,≤). The least (resp. largest) element,
if it exists, will be usually denoted by 0 (resp. 1).

Monotone maps f : X → Y and g : Y → X are (Galois) adjoint (f
on the left, g on the right) if

f(x) ≤ y iff x ≤ g(y).

It is a well-known fact that

(∗) left (resp. right) adjoints preserve all the existing suprema
(resp. infima).

1.2. A (meet-)semilattice is a poset L = (X,≤) such that every
couple {x, y} ⊆ X has an infimum, usually called meet and denoted by
x ∧ y. If all the {x, y} ⊆ X also have suprema these will be denoted
by x ∨ y and referred to as joins; L is then said to be a lattice.

1.2.1. Convention. We use the symbol sup{x, y} (as opposed to
x ∨ y) in the cases where the suprema do not have to exist. Thus,
“sup{a, b} = c” states that sup{a, b} exists and is equal to c; or, if 1
exists, “sup{a, b} 6= 1” states that a and b have a common upper bound
c < 1.

1.2.2. If there are suprema and infima of all subsets one speaks of
a complete lattice. Here one has the converse of the (∗) above, namely

a monotone map between complete lattices preserving all the
suprema (resp. infima) is a left (resp. right) adjoint.

1.3. A pseudocomplement of an element a of a semilattice L with a
least element is an a∗ ∈ L such that

x ∧ a = 0 iff x ≤ a∗.

1.4. A non-empty semilattice is a Heyting semilattice if there is a
binary operation → satisfying

(H) a ∧ b ≤ c iff a ≤ b→c.

Note that

if a Heyting semilattice has a least element 0, it has pseudocom-
plements, namely a∗ = a→0.

Lattices with an operation → satisfying (H) are called Heyting
algebras.

1.5. A few Heyting formulas. In the sequel, the use of (H) is
mostly automatic.

Proposition. In a Heyting semilattice H we have:
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(1) a ≤ b→c iff b ≤ a→c,
(2) a→(b ∧ c) = (a→b) ∧ (a→c),
(3) there is a largest element 1 and a→a = 1 for all a,
(4) a ≤ b iff a→b = 1,
(5) a ≤ b→a,
(6) a→b = a→(a ∧ b),
(7) a ∧ (a→b) = a ∧ b,
(8) a ∧ b = a ∧ c iff a→b = a→c,
(9) (a ∧ b)→c = a→(b→c).

If H is a Heyting algebra we have, furthermore, that

(10) H is a distributive lattice, and
(11) for every a, b ∈ H, b = (b ∨ a) ∧ (a→b).

Proof. (1) follows immediately from (H) and the commutativity of
∧. - (2) since a→(−) is a right adjoint (recall 1.1). - (3): x ≤ a→a
iff x∧a ≤ a, that is, always. - (4): 1 ≤ a→b iff a = 1∧a ≤ b. - (5)
since a ∧ b ≤ a. - (6): by (2) and (3). - (7): a ∧ (a→b) ≤ b since
a→b ≤ a→b, and a ∧ b ≤ a ∧ (a→b) by (5). - (8) follows from (2)
and (7). - (9): x ≤ (a ∧ b)→ c iff x ∧ a ∧ b ≤ c iff x ∧ a ≤ b→ c iff
x ≤ a→(b→c). - (10): (−)∧ a is a left adjoint and hence preserves
all the existing suprema. - (11): b ≤ (b ∨ a)∧ (a→b) by(5); by (10)
and (7), (b ∨ a) ∧ (a→b) = (b ∧ (a→b)) ∨ (a ∧ (a→b)) ≤ b. �

2. Ideals in Heyting semilattices

2.1. There are two main reasons for working with Heyting semilat-
tices. First, the central notion of ideal fits to this structure rather than
to Heyting algebras. Second, in the facts about subfitness (Section 3,
applied in Section 5) the join does not play any role. Some specific
facts concerning Heyting algebras are discussed in Section 4.

The system of Heyting semilattices can be viewed as a variety of
algebras (if we use the suggestive + for ∧ and ·, or just a juxtaposition,
for →, it can be determined by the equations

a + (b + c) = (a + b) + c, a + b = b + a, a + a = a,

a(b + c) = ab + ac, a + b(a + b) = a, a + ab = a + b ;

since one of the equations is the one-sided distributivity law the defi-
nition of ideal below is natural: it is a non-void subset S ⊆ H closed
under + and such that for s ∈ S and any a ∈ H, as ∈ S).

2.2. A non-void subset S of a Heyting semilattice H is an ideal if

(I1) s, t ∈ S ⇒ s ∧ t ∈ S, and
(I2) a ∈ H & s ∈ S ⇒ a→s ∈ S.
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We speak of a strong ideal if, moreover,

(Istr) the embedding jS : S ⊆ H is a right adjoint, that is, there is a
mapping νS : H → S such that

∀a ∈ H, s ∈ S, νS(a) ≤ s iff a ≤ s

(in other words, νSjS = id, and jSνS ≥ id).

A complete ideal has, furthermore, a left adjoint φS to νS (hence νS is
both a right and a left adjoint), that is

(Icpl) there is a mapping φS : S → H such that

∀a ∈ H, s ∈ S, φS(s) ≤ a iff s ≤ νS(a)

(in other words, νSφS ≤ id, and φSνS = id).

2.3. Observations. (1) Each ideal contains the top 1 (indeed, let
s ∈ S; then 1 = s→s ∈ S).

(2) Ideals in H are Heyting sub-semilattices of H.

2.4. Obviously, the intersection of any system Si, i ∈ J , of ideals is
an ideal. The complete lattice of ideals of H will be denoted by

Idl(H).

Note that the least element in this lattice is O = {1}.

2.4.1. Proposition. The join of two ideals in Idl(H) is given by

S ∨ T = {s ∧ t | s ∈ S, t ∈ T}.

Proof. Obviously any ideal U containing S, T contains S ∨ T which
is an ideal (as a→(s ∧ t) = (a→s) ∧ (a→ t) by 1.5(2)). �

2.4.2. Proposition. If S, T are strong ideals then S ∨ T is strong.
Thus, the system

Ĩdl(H)

of strong ideals is a sub-join-semilattice of Idl(H).
Proof. Set ν(x) = νS(x) ∧ νT (x). Thus, for a general x, x ≤ ν(x),

and for s ∧ t (s ∈ S, t ∈ T ) we have ν(s ∧ t) = νS(s ∧ t) ∧ νT (s ∧ t) =
s ∧ νS(t) ∧ νT (s) ∧ t = s ∧ t. �

2.5. Proposition. Idl(H) is a distributive lattice.
Proof. Let S1, S2, T be ideals. Then trivially (S1∩S2)∨T ⊆ (S1∨T )∩

(S2∨T ). Now let x ∈ (S1∨T )∩(S2∨T ). Then x = s1∧t1 = s2∧t2 with
si ∈ Si and t1, t2 ∈ T . Set t = t1 ∧ t2. Then x = (s1 ∧ t1) ∧ (s2 ∧ t2) ≤
si∧ t ≤ x and we have s1∧ t = x = s2∧ t, and by 1.5(8) t→s1 = t→s2.
Thus t→s1 ∈ S1 ∩ S2 and we have x = (t→s1) ∧ t ∈ (S1 ∩ S2) ∨ T . �
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Note. It has been pointed out to us by P.T. Johstone that the
first short proof of the distributivity in similar vein, for the case of
sublocales in frames, is due to Dana Scott — see also [8].

2.6. Proposition. Let S, T be ideals (strong ideals, complete ideals,
resp.) in H and let S ⊆ T . Then S is an ideal (strong ideal, complete
ideal, resp.) in T .

Proof. The statement for ideals is straightforward. Now for the
strong case, let jS : S ⊆ H, j ′ : S ⊆ T and jT : T ⊆ H be the
embeddings and let νS, νT be the adjoints. Thus,

νSjS = id, νT jT = id, jSνS ≥ id and jT νT ≥ id.

Set ν ′ = νSjT . Then ν ′j ′ = νSjT j ′ = νSjS = id, and jT j ′ν ′ = jSνSjT ≥
id · jT and hence (as jT is an order embedding), j ′ν ′ ≥ id.

For the complete case consider the left adjoints φS, φT to νS, νT . We
have

νSφS = id, νT φT = id, φSνS ≤ id and φT νT ≤ id.

Set φ′ = νT φS. Then φ′ν ′ = νT φSνSjT ≤ νT jT = id and ν ′φ′ =
νSjT νT φS = ν ′νT jT νT φS = ν ′νT φS = νSφS = id (ν ′νT = νS since
jT j ′ = jS , and νT jT νT = νT is standard). �

2.7. Open (principal) ideals. The operation → distributes over
meets on the left, and y→(a→x) = a→(y→x) (recall 1.5(9)). Thus,
we have the principal ideals in H

o(a) = {a→x | x ∈ H}

(in the (+,·)-notation of 2.1 of the distributivity a(x+y) = ax+ay and
the equation y(ax) = a(yx) we have o(a) = {ax | x ∈ H}). Because
of their role in pointfree topology we speak of them as of open ideals.
Observe that

(2.7.1) o(a) = {x | a→x = x}

(use 1.5(9)). Each o(a) is a complete ideal. It is strong (set νo(a)(x) =
a→x; then νj(x) = a→x = x and jν(y) = a→ y ≥ y), and we have
φo(a)(x) = a ∧ x adjoint to νo(a).

2.7.1. Proposition. (1) a ≤ b iff o(a) ⊆ o(b).
(2) o(a ∧ b) = o(a) ∩ o(b).
Proof. (1.5(9) used repeatedly)
(1) If a ≤ b and x = a→ y ∈ o(a) we have b→ x = b→ (a→ y) =

(b ∧ a)→y = a→y = x ∈ o(b).
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Let o(a) ⊆ o(b) then a→ (a ∧ b) is in o(b) and hence a→ (a ∧ b) =
b→ (a→ (a ∧ b)) = (a ∧ b)→ (a ∧ b) = 1 so that a ≤ a ∧ b and finally
a ≤ b.

(2) Trivially o(a) ∩ o(b) ⊇ o(a ∧ b). Now let x ∈ o(a) ∩ o(b). Then
x = a→x = b→x and hence (a∧ b)→x = a→(b→x) = a→x = x. �

2.7.2. Proposition. For any open ideal oS(a) in an ideal S ⊆ H
we have oS(a) = o(a)∩S. Consequently, an open ideal in an open ideal
in H is itself an open ideal in H.

Proof. The first is obvious: we have oS(a) = {x | x ∈ S, a→x = x}.
Now in particular oo(b)(a) = o(a) ∩ o(b) = o(a ∧ b) = o(a), by 2.7.1(2)
(a ∧ b = a by 2.7.1(1)). �

2.8. Proposition. An ideal S ⊆ H is open iff it is complete and if
νS preserves the Heyting operation.

Proof. Let S = o(a) be open. We already know it is complete.
Now for ν = νo(a) we have ν(x → y) = a → (x → y) = (a ∧ x) →
y = (a ∧ (a → x)) → y (by 1.5(7) and (9)) and proceed, by 1.5(9),
... = (a→x)→(a→y) = ν(x)→ν(y).

Conversely, let S be complete and let ν = νS preserve the Heyting
operation. Set a = φS(1). Then we have νS(a→x) = ν(φ(1))→ν(x) =
1→ν(x) = ν(x) and hence

a→x ≤ ν(x).

On the other hand, 1 = ν(x)→ ν(x) = ν(ν(x))→ ν(x) = ν(ν(x)→ x)
and hence a = φ(1) ≤ ν(x)→x, a ∧ ν(x) ≤ x, and finally

ν(x) ≤ a→x, and hence ν(x) = a→x,

and S = ν[H] = {a→x | x ∈ H} = o(a). �

2.8.1. Corollary. Principal ideals are retracts in the category of
Heyting semilattices.

2.9. Closed ideals. Those are

c(a) =↑a = {x | x ≥ a}.

c(x) is indeed an ideal : meet is trivial and if x ≥ a then (by 1.5(5))
y→x ≥ x ≥ a. In the general case it is not strong, but see 4.2 below.

2.10. For an ideal S set

n(S) = {x ∈ H | x ≤ s ∈ S ⇒ s = 1}, ∂S =↓(S r {1}).

2.10.1. Observations. (1) In the strong case, n(S) = ν−1
S (1).

(2) For closed ideals, n(c(a)) = {x | sup{a, x} = 1}.
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2.10.2. Lemma. If a ∈ n(S) then for every s ∈ S, a→s = s.
Proof. As a ∧ (a → s) ≤ s, we have a ≤ (a → s) → s, hence

(a→s)→s = 1 and a→s ≤ s, while s ≤ a→s is trivial. �

2.10.3. Proposition. The following statements are equivalent:

(1) S ⊆ o(a),
(2) ∂S ⊆ ∂o(a),
(3) a ∈ n(S) (in the strong case, νS(a) = 1),
(4) c(a) ∩ S = O.

Proof. (1)⇒(2) is trivial.
(2)⇒(3): Let a ≤ s ∈ S. Suppose s /∈ n(S), that is, s ∈ ∂S. Then

s ∈ ∂o(a) and there is an x < 1 such that s ≤ x = a → x, hence
a = s ∧ a ≤ x, and x = a→x = 1, a contradiction. For the statement
on the ν see Observation 2.10.1.

(3)⇔(4) is just a reformulation.
(3)⇒(1) follows from 2.10.2. �

2.11. Comparing (1) and (4) in 2.10.3 we immediately obtain

Corollary. o(a) is the pseudocomplement of c(a) in Idl(A).

2.12. Properties of νS. (1) For every x ∈ H and s ∈ S, x→ s =
νS(x)→s.

(2) x ≤ νS(x), νS(νS(x)) = νS(x).
(3) νS(x ∧ y) = νS(x) ∧ νS(y).
Proof. (1): y ≤ x → s iff x ≤ y → s iff (by (I2)) νS(x) ≤ y → s iff

y ≤ νS(x)→s.
(2) is in condition (Istr) in 2.2.
(3): x ∧ y ≤ ν(x ∧ y), hence x ≤ y → ν(x ∧ y), hence ν(x) ≤ y →

ν(x∧ y), hence y ≤ ν(x)→ν(x∧ y), ν(y) ≤ ν(x)→ν(x∧ y) and finally
ν(x) ∧ ν(y) ≤ ν(x ∧ y). The other inequality is trivial. �

Note. The properties in (2) and (3) are the properties of a nucleus
as considered in the case of complete Heyting algebras (frames).

3. Subfit Heyting semilattices

3.1. A Heyting semilattice is subfit (cf. [6], conjunctive in [14],[15])
if we have the implication

(subfit) a � b ⇒ ∃c, sup(a, c) = 1 6= sup(b, c).

(Recall 1.2.1: “sup(a, c) = 1 6= sup(b, c)” says that a, c do not have a
common upper bound in H other than the top while b, c do.)



IDEALS IN HEYTING SEMILATTICES 9

3.2. Theorem. Let H be a Heyting semilattice. Then the following
statements are equivalent.

(1) H is subfit.
(2) For a strong ideal S ⊆ H, S r {1} is cofinal in H r {1} only if

S = H.
(3) If S is a strong ideal such that S 6= L then there is a closed

c(x) 6= {1} such that S ∩ c(x) = {1}.
(4) Each open ideal o(a) is the supremum in Idl(H) of the system

{c(x) | sup(x, a) = 1}.
(5) Each open ideal in H is a supremum in Idl(H) of a system of

closed ideals.

Proof. (1)⇒(2): Let b ∈ H and a = νS(b). Let sup(a, b) = 1 and
let x > 1 be such that x ≥ b, c. By the cofinality there is an s ∈ S,
x ≤ s < 1. Then s ≥ b and being in S, it is ≥ a. Thus s ≥ a, c, hence
s = 1, a contradiction proving that b = a ∈ S.

(2)⇒(3): (3) is just a reformulation of (2).
(3)⇒(4): By 2.10.3, o(a) is an upper bound of the system. Now let S

be a general upper bound; thus, for all x with sup(a, x) = 1, S ⊇ c(x).
Let c(y) ∩ (c(a) ∨ S) = {1}. Then in particular c(y) ∩ c(a) = {1} and
hence sup(y, a) = 1, by 2.10.3(4), and c(y) ⊆ S. Thus, c(y) = c(y) ∩
(c(a)∨S) = {1} and by (3), c(a)∨S = H, and o(a) = o(a)∩(c(a)∨S) =
o(a) ∩ S, and o(a) ⊆ S.

(4)⇒(5) is trivial.
(5)⇒(1): If a � b we have c(b) * c(a) and hence o(a) * o(b). If

o(a) is a supremum of a system of closed ideals there is a c such that
c(c) ⊆ o(a), so that sup(a, c) = 1, while c(a) * o(b) and consequently
sup(c, b) 6= 1. �

3.3. From 2.7.2 and 3.2.(5) we immediately obtain

Corollary. An open ideal in a subfit Heyting semilattice is itself
subfit.

3.4. Proposition. Let S be a complete ideal in a subfit Heyting
semilattice. Then S is open.

Thus, completeness yields in the subfit case the automatic preserva-
tion of the Heyting operation.

Proof. Set a = φS(1). Then, first, νS(a) = νS(φS(1)) ≥ 1 and hence,
by 2.10.3, S ⊆ o(a).

We will show that S r {1} is cofinal in o(a) r 1. Indeed, if 1 6=
x = a → y is an element of o(a) then a � y, hence a ∧ a � y and
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φ(1) = a � a→ y = x so that 1 � ν(x), that is, x ≤ ν(x) 6= 1. Thus,
by 3.3 and 3.2(2), S = o(a). �

3.5. Note. In the previous proof, in fact, the subfitness was not
used in formally the full strength. It would have sufficed to replace
(subfit) by the formally weaker

(c-subfit) for a complete ideal S ⊆ H, S r {1} is cofinal in H r {1}
only if S = H.

Or, in other words, by

(c-subfit’) for a complete ideal S ⊆ H, ν−1
S (1) = {1} only if S = H.

We do not know whether this formally weaker condition is really weaker
than (subfit). It seems to be likely, but we will show that in an im-
portant class of Heyting algebras these two conditions coincide; see 5.3
below.

3.6. Proposition. A Heyting semilattice is subfit (resp. satisfies
(c-subfit)) iff for a strong ideal (resp. a complete ideal) S and any open
ideal o(a)

∂S = ∂o(a) ⇒ S = o(a).

Proof. ⇐ is obvious: apply the formula for a = 1, that is, o(a) = H.
⇒: By 2.10.3, S ⊆ o(a). Since o(a) is subfit (see 3.3), and since

∂S = ∂o(a) makes the subset S ⊆ o(a) cofinal, S = o(a) by 3.2. �

3.7. Proposition. A Heyting semilattice satisfies (c-subfit) iff every
complete ideal in H is open.

Proof. We already know that the condition suffices. Now let each
complete ideal be open. By 3.6, to show that it is necessary it suffices
to prove that ∂o(a) = ∂o(b) implies a = b. Now if the first holds we
have νo(b)(x) = 1 iff νo(a) = 1, that is, b→x = 1 iff a→x = 1, that is
a ≤ x iff b ≤ x. �

4. Intermezzo: The case of Heyting algebras

4.1. In this section we will discuss Heyting algebras H instead of
Heyting semilattices (recall 1.4).

In this case every strong ideal S is again a Heyting algebra, with the
binary join being νS(x∨y) and the mapping νS a lattice homomorphism.

If H is a complete Heyting algebra (frame) then the fact that jS has
a left adjoint says precisely that S ⊆ H is closed under arbitrary meets,
so that the condition (Istr) is in fact an extension of (I1) to all meets.
S is then again a frame, with the joins given by νS(

∨
ai), and νS is a

frame homomorphism (a sublocale, modelling a generalized subspace



IDEALS IN HEYTING SEMILATTICES 11

if a frame is viewed as a generalized space; the o(a) resp. c(a) then
model the open resp. closed ones).

If S is complete, νS is a complete lattice homomorphism. Frame
homomorphisms (preserving finite meets and general joins) model con-
tinuous maps, and complete Heyting homomorphisms model the open
continuous ones (see also 5.1 below).

4.2. Observation. If H is a Heyting algebra then each c(a) is a
strong ideal, with νc(a)(x) = a ∨ x.

4.3. Proposition. If H is a Heyting algebra then o(a) and c(a) are

complements to each other in Idl(H) (and in Ĩdl(H)).
Proof. If x ∈ o(a) ∩ c(a) then x ≥ a and x = a→x = 1. If x ∈ H is

general, then, by 1.5(11), x = (x ∨ a) ∧ (a→x) ∈ o(a) ∨ c(a). �

4.4. Proposition. Let S ⊆ H be a strong ideal in a Heyting algebra.
Then

S =
⋂

{c(x) ∨ o(y) | νS(x) = νS(y)}.

Proof. Let a ∈ S and let νS(x) = νS(y). Then x → a = νS(x) →
a = νS(y)→ a = y → a and (recall 1.5(11)) a = (a ∨ x) ∧ (x → a) =
(a ∨ x) ∧ (y→a) ∈ c(x) ∨ o(y) (as y→(y→a) = y→a).

Let a be in the intersection. Then for any x, y with νS(x) = νS(y),
a ∈ c(x)∨o(y). In particular, a ∈ c(νS(a))∨o(a) so that a = x∧(a→y)
for some x ≥ νS(a) ≥ a, and y ∈ H. Then by 1.5(3), (2) and (9),
1 = a → a = (a → x) ∧ (a → (a → y)) = 1 ∧ (a → y) = a → y, and
a = x ≥ νS(a). �

4.5. A Heyting algebra is fit (cf. [6]) if we have the implication

(fit) a � b ⇒ ∃c, a ∨ c = 1, c→b 6= b.

4.6. Recall the ∂S from 2.10.

Theorem. Let H be a Heyting algebra. Then the following state-
ments are equivalent.

(1) H is fit.
(2) For a strong ideal S and an ideal T ,

∂T ⊆ ∂S ⇒ T ⊆ S.

(3) For each strong ideal S ⊆ H,

S =
⋂

{o(x) | νS(x) = 1}.
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(4) For each closed ideal,

↑a =
⋂

{o(x) | a ∨ x = 1}.

Remark. Note that in (2) one will not use even the (I1).
Proof. (1)⇒(2): Let ∂T ⊆ ∂S and let b ∈ T , b 6= 1. Set a = νS(b).
Suppose a ∨ c = 1; if b ∨ c ≤ s ∈ S we have a ≤ s, hence s ≥

a∨ c = 1. Thus, b∨ c /∈ ∂S and hence b∨ c /∈ ∂T . We have, by 1.5(11),
b = (b∨ c)∧ (c→b) so that b∨ c ≤ (c→b)→b ∈ T , and (c→b)→b = 1.
Hence c→b ≤ b, that is, c→b = b. Thus, a ≤ b, and b = νS(b) ∈ S.

(2)⇒(3): Set T =
⋂
{o(x) | νS(x) = 1}. By 2.10.3, S ⊆ T . Now let

a ∈ ∂T . Then there is a t 6= 1, t ∈ T and a ≤ t. Since t ∈ T we have
x→ t = t whenever νS(x) = 1. Suppose a /∈ ∂S. Then νS(a) = 1 and
we have a→ t = t. But since a ≤ t we have (1.5(4)) a→ t = 1 and a
contradiction t = 1. Thus, ∂T ⊆ ∂S and, by (2), T ⊆ S.

(3)⇒(4) is immediate.
(4)⇒(1): If ↑a =

⋃
{o(x) | a ∨ x = 1} then if c→b = b for all c such

that a ∨ c = 1 we obtain a ≤ b and H is fit. �

4.7. Proposition. Let H be a subfit Heyting algebra and let S be a
strong ideal in H that has a complement in Idl(H). Then S is subfit.

Proof. Obviously if S1 is a strong ideal in S and if S is a strong ideal
in H then S1 is one in H. Now let S1 r {1} be cofinal in S r {1}. Let
S ∨ T = H and S ∩ T = {1}. Consider S1 ∨ T . If 1 6= a ∈ H then in a
representation a = s∧ t, s ∈ S, t ∈ T , either t 6= 1 and a ≤ t ∈ S1 ∨ T ,
or s 6= 1 and we have s1 ∈ S1, s ≤ s1 < 1, and a ≤ s1 ∈ S1 ∨ T .
Thus, S1 ∨ T r {1} is cofinal in H r 1, hence S1 ∨ T = H by 3.2, and
S = S ∩ (S1 ∨ T ) = S ∩ S1 ⊆ S1 ⊆ S. �

4.8. Compare 4.7 with 3.3. Also, recall 3.6 and compare it with

“ for any two strong ideals S, T , ∂S = ∂T implies S = T ”

that holds for fit Heyting algebras by 4.6(2). We have here a similar
statement for a special T . It is natural to ask how special the T has
to be. Now, a particular feature of the open ideal o(a) is that it is
complemented, and hence subfit whenever H is. This may lead to
the conjecture that something like the complementarity might be the
required special property. But this statement does not hold even for
closed ideals.

Indeed, consider a Heyting algebra H that is subfit but not fit, and
such that intersections of strong ideals are strong (for instance, the
lattice of the open sets of a T1-space that is not fit). Then there exists
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a closed ideal ↑a such that

c(a) =↑a 6= S =
⋂

{o(a) | x ∨ a = 1}.

We will prove that, however, ∂(↑a) = ∂S, or, in other words, νS(x) = 1
iff νc(a)(x) = x∨ a = 1. First, obviously νS ≤ νc(a) since ↑a ⊆ S. Hence
if νS(x) = 1 then x ∨ a = 1. On the other hand, let x ∨ c = 1 and let
x ≤ t ∈ S. Then in particular s ∈ o(x), that is, x→ s = s. As x ≤ s,
x→s = 1, and νS(x) = 1. �

5. The case of spatial frames

5.1. Recall 4.1. A typical frame is the lattice O(X) of open sets
of a topological space X, and if f : X → Y is a continuous map then
O(f) = (U 7→ f−1(U)) is a frame homomorphism O(Y ) → O(X).
Frame homomorphisms give a good representation of continuous maps
since for a large class of spaces such h : O(Y ) → O(X) are precisely
the O(f). For more about frames see, e.g., [7] or [12].

Open homomorphisms h : L → M between frames are characterized,
in among the frame homomorphisms, by the existence of a map φ :
M → L such that for all a ∈ M and x, y ∈ L

(Open) x ∧ φ(a) = y ∧ φ(a) iff h(x) ∧ a = h(y) ∧ a,

or equivalently

(Open’) x ∧ φ(a) ≤ y iff h(x) ∧ a ≤ h(y)

from which, by setting x = 1 we immediately infer that φ is a left
adjoint to h. In general the existence of a left adjoint does not suffice.
From (Open’) one easily infers

5.1.1. Theorem. (Joyal & Tierney, [9]) A frame homomorphism
h : L → M is open iff it is a complete homomorphism preserving the
Heyting operation.

(Compare with 2.8.)

5.2. Frame congruences on L (that is, equivalence relations preserv-
ing all joins and finite meets) can be equivalently represented by ideals
S ⊆ L resp. their nuclei νS, namely

νE(x) = νSE
(x) =

∨
{y | yEx}, SE = νE[L].

If the congruence preserves, furthermore, all meets we speak of a com-
plete congruence.

The open ideals o(a) above correspond to the open congruences

x∆ay ≡df x ∧ a = y ∧ a.
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The formula (Open) above says, hence, that

∆φ(a) = {(x, y) | h(x) ∧ a = h(y) ∧ a} = E.

Thus, requiring that a complete congruence be open is expressed by
the implication

∆φ(a)1 = E1 ⇒ ∆φ(a) = E.

Applying 3.6 we obtain

5.2.1. Proposition. For a frame L, the open homomorphisms
coincide with the complete frame homomorphisms iff

(c-subfit) for complete congruences E on L,
E1 = 1 ⇒ E = {(x, x) | x ∈ L}.

The condition (subfit) assumes this for any frame congruence. We
do not have a dividing example.

5.2.2. Note. Up to isomorphism, if L is a frame, the νS : L → S are
precisely the onto frame homomorphisms. Thus, the condition above
characterizes the L for which all the complete onto homomorphisms
are open, too. This is explained by the following

Observation. Each complete one-one frame homomorphism is open
(without any condition on the frames involved).

(Indeed, for the left adjoint φ to be a one-one homomorphism h :
L → M we have φh = id and hφ ≥ id. Consider the condition (Open’)
in 5.1. If x ∧ φ(a) ≤ y then h(x) ∧ a ≤ h(x) ∧ h(φ(a)) ≤ h(y), and if
h(x) ∧ a ≤ h(y) then x ∧ φ(a) = φ(h(x)) ∧ φ(a) ≤ φ(h(y)) = y.)

5.3. A subset A of a space X is quasiopen (see [5]) if for every open

U the set ↑(U ∩A) (↑ in the specialization order x ≤ y ≡ x ∈ {y}) is
open.

5.3.1. Proposition. ([4]) The congruence

UEAV ≡df U ∩ A = V ∩ A

is complete iff A is quasiopen.

5.3.2. Recall that a space X is TD (see, e.g.,[1]) if for every x ∈ X
there is an open U 3 x such that U r {x} is open. We will need a
weaker condition

(∗) if there is an x such that {x} 6= {x} then there is an a such that

{a} 6= {a} and an open U 3 a such that U r {a} is open.
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The role of (∗) in the following theorem is basically in localizing the
fact that in a TD space EA = EB ⇒ A = B ([13],[2]).

Theorem. Let L = O(X) and let X satisfy (∗). Then the following
statements are equivalent.

(1) A frame homomorphism h : L → M is open iff it is complete.
(2) L is subfit.
(3) X is T1.

Proof. (3)⇒(2) is trivial and (2)⇒(1) we already know.
(1)⇒(3): Let X not be T1; choose a as in (∗) and set A = X r {a}.

Then

A is not open, but it is quasiopen: if U ⊆ X is open then
U ∩ A = U r {a} and either U r {a} = U r {a} and it is open

itself, or there is an x in {a} ∩ U ∩ A and ↑(U ∩ A) = U .

Now if UEAX then U r {a} = X r {a} and hence U = X (since it
contains X r {a} and X r {a} is not open). Hence EAX is trivial
and if (1) holds then the whole of EA is trivial, by 5.2.1. But this is a
contradiction since for the U from (∗) we have UEA(U r {a}). �
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