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Abstract. We are dealing with solving planning problems by the GraphPlan algorithm. We con-
centrate on solving a problem of finding supporting actions for a goal. This problem arises as a 
sub-problem many times during search for a solution. We showed in the paper that the supports 
problem is NP-complete. In order to improve the solving process of the supports problems we 
proposed a new global consistency technique which we call projection consistency. We present 
a polynomial algorithm for enforcing projection consistency. The projection consistency was 
implemented within our experimental planning system which we used for empirical evaluation. 
The empirical tests showed improvements in order of magnitudes compared to the standard 
GraphPlan (both in time and number of constraint checks). A significant improvement was also 
reached compared to the recent similar technique based on maintaining of arc-consistency. 

Keywords: GraphPlan, Planning graphs, CSPs, Maintaining Consistency, Arc-consistency, Pro-
jection consistency, Constraint propagation 

1   Introduction 

In this paper, we would like to explain our new contribution to solving AI planning problems. We 
called our new concept a projection global consistency and it is designed to be used to help with 
pruning of the search space during solving planning problems over planning graphs.  
 Planning as a task of finding a sequence of actions resulting in achieving some goal is one of the 
most challenging problems of artificial intelligence [2]. It is necessary to solve planning problems 
almost every time when a complex autonomous behavior of a certain agent is required. It is the case 
of spacecrafts and vehicles for distant space and planetary exploration [1,3] as well as the case of 
unmanned military devices [5]. There are many successful approaches how to solve planning prob-
lems. One of them is usage of so called planning graphs on which we concentrate in this paper. The 
concept of planning graphs introduced by Blum and Furst [4] brought a substantial break-through in 
solving of planning problems. Many of the consequent achievements in planning are based on ideas 
of planning graphs. In this paper we are studying planning graph from the perspective of constraint 
programming [6]. We analyzed the original Blum’s and Furst’s GraphPlan algorithm [4] as well as 
other approaches based on that [10, 11, 15, 17]. Our conclusion was that there is a room for exploit-
ing some type of a global reasoning which is in constraint programming known as global con-
straints [20]. However an evident antagonism is that global constraints often work over numeric 
domains (with defined operations and orderings) while planning problems in its basic form are 
rather of a symbolic character. We found that even in a domain such as planning problems are it is 
possible to develop some kind of global reasoning. 

The paper is organized as follows. First we introduce basic definition of planning problems and 
also some definitions from constraint programming. Then we briefly explain planning graphs and 
related GraphPlan algorithm. The next section is devoted to a sub-problem which arises during the 
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search using GraphPlan algorithm. The main part of the paper describes the projection consistency 
and constraint which is designed to help to solve the mentioned sub-problem. Finally we present 
some empirical tests of the proposed concept and discuss our contribution in relation to other works. 

2   AI Planning and Constraint Programming Essentials 

For purposes of clarity we are using a simple language for expressing planning problems in this 
paper. A language is associated with a planning domain (in other words we consider different lan-
guages for different planning problems). To describe problem over a certain planning domain we 
use language L  with finitely many predicate and constant symbols. The set of predicates will be 
denoted as LP  and the set of constants as LC . Constants represent objects appearing in the planning 

world and predicate symbols are used to express relations over objects. Let us note that simplicity 
of the language is not at the expense of expressivity (in [8] Ghallab et al. show more approaches for 
describing planning problems). The following definitions assume a fixed language L . 

 
Definition 1 (Atom, Literal). An atomic formula is a construct of the form 1 2( , , , )np c c c… , where 

Lp P∈  and i Lc C∈  for 1,2, ,i n= … . Atomic formulas are called atoms in short. A literal is an atom 

or its negation. 
 

Definition 2 (State, Goal, Goal satisfaction). A state is a finite set of atoms. A goal is also a finite 
set of atoms. The goal g  is satisfied in the state s  if g s⊆ . 

 
States provide a formal description of a situation in the planning world (snapshot of the planning 

world at a moment). A goal is a formal description of a situation which we want to establish. The 
situation in the planning world is changed by actions. Actions formally define possible transitions 
between states. Action applied to the state results into a new state. 

 
Definition 3 (Action, Applicability, Application). An action a  is a triple ( ( ), ( ), ( ))p a e a e a+ − , 

where ( )p a  is a precondition of the action,  ( )e a+  is a positive effect of the action and ( )e a−  is a 
negative effect of the action. All the action tree components are finite sets of atoms. An action a  is 
applicable to the state s  if ( )p a s⊆ . The result of the application of the action a  to the state s  is a 

new state ( , )s aγ , where ( , ) ( )s a s e eγ − += − ∪ . 
 
For purposes of planning graphs there are also assumed so called no-op actions which represent 

no operation. For every atom t  we assume a no-op action ( , , )tnoop t t= ∅ . Briefly said a no-op 

action preserves an atom into the next state. 
Given a set of allowed actions and a goal the objective is to transform a given initial state into a 

state satisfying the goal. State transitions to achieve the objective are carried out by applying actions 
from the set of allowed actions. We suppose that the number of preconditions, the number of posi-
tive and the number of negative effects are bounded by a constant. In other words we do not allow 
actions of arbitrary size. 
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Definition 4 (Planning problem). A planning problem P  is a triple 0( , , )s g A , where 0s  is an ini-

tial state, g  is a goal and A  is a finite set of allowed actions. 
 

Definition 5 (Application of sequence of actions, Solution). We inductively define application of 
a sequence of actions 1 2( , , , )na a aφ = …  to a state 0s  in the following way: 1a  must be applicable to 

0s , let us inductively denote the result of application of the action ia  to the state 1is −  as is  for all 

1,2, ,i n= … ; the condition that ia  is applicable to the state 1is −  for all 2,3, ,i n= …  must hold. The 

result of application of the sequence of actions φ  to the state 0s  is the state ns . Sequence 

1 2( , , , )na a aξ = …  is a solution of the planning problem 0( , , )P s g A=  if the sequence ξ  is applica-

ble to the initial state 0s  and the goal g  is satisfied in the result of application of the sequence ξ  

and ia A∈  for all 1,2, ,i n= … . 

 
A method developed in this paper regards some problems from the constraint programming per-

spective. Although the method is described in self containing style some basic definitions from con-
straint programming are necessary. The key concept is a constraint satisfaction problem. 

 
Definition 6 (Constraint satisfaction problem) [6]. A constraint satisfaction problem (CSP) is a 
triple ( , , )X D C , where X  is a finite set of variables, D  is a finite domain of values for variables 
from the set X  and C  is a finite set of constraints. A constraint is an arbitrary relation over the 
domains of its variables. A set of variables constrained by a constraint c  is denoted as cX . 

 
Definition 7 (Solution of CSP) [6]. A solution of a constraint satisfaction problem ( , , )X D C  is an 
assignment of values to the variables : X Dψ →  such that all the constrains are satisfied for ψ , 

that is 1 2( )[ , , , ]k cc C x x x X∀ ∈ = ⇒…  1 2[ ( ), ( ), , ( )]kx x x Cψ ψ ψ ∈… . 

 
CSPs are often solved using so called constraint propagation. If a domain of a variable is 

changed then this change of information is propagated into the domains of other variables through 
constraints. Often the quality of the solving algorithm is tightly connected with the quality of 
propagation algorithms for individual constraints. It is especially true for so called global con-
straints which bind large number of variables and perform fine grained and effective propagation 
throughout the whole problem (for example Regin’s allDifferent constraint [20]). Our method is 
trying to follow the concept of such global propagation. 

3   Planning Graphs and GraphPlan Algorithm 

The GraphPlan algorithm is due to Blum and Furst [4]. It relies on the idea of state reachability 
analysis. The state reachability analysis is done by constructing a special data structure called plan-
ning graph. The algorithm itself works in two interleaved phases. In the first phase planning graph 
is incrementally expanded. Then in the second phase an attempt to extract a valid plan from the ex-
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tended planning graph is performed. If the second phase is unsuccessful the process continues with 
the first phase, that is the planning graph is extended again. 

 
Algorithm 1: Plan extraction - a part of the GraphPlan algorithm 

function extractPlan ( , , )pG l g : sequence 
1:  if 0l =  then 
2:   if / [0]g pG Propositions∈  then return []  
3:   else return [ ]failure  
4:  if g  is subsumed in / [ ]pG Nogoods l  then return [ ]failure   
5:  ξ ← extractPlanFromLayer ( , , , )pG l g ∅  
6:  if [ ]failureξ =  then 
7:   / [ ] / [ ] { }pG Nogoods l pG Nogoods l g← ∪  
8:   return [ ]failure  
9:  else return ξ  

 
function extractPlanFromLayer ( , , , )pG l g ζ : sequence 
10:  if g =∅  then 
11:   ' { ( ) | }g p a a ξ← ∈  
12:   Ξ← extractPlan ( , 1, ')pG l g−  
13:   if [ ]failureΞ =  then return [ ]failure  
14:   else return concatenate ( , )ξΞ  
15:  else 
17:   select any t g∈  

18:   { | / [ ] & ( )}ts a a pG Actions l t e a+← ∈ ∈  

19:   if ts =∅  then return [ ]failure   

20   for each ta s∈  do 
21:    if checkSupports ( , , , )pG l aξ  then 

22:     ' ( )g g e a+← −  
23:     ' { }aξ ξ← ∪  
24:     return extractPlanFromLayer ( , , ', ')pG l g ξ  
25:  return [ ]failure  

 
function checkSupports ( , , , )pG l a ζ : boolean 
26:  for each b ξ∈ do 
27:   if ( , ) / [ ]a b pG Mutexes l∈  then return False  
28:  return True  

 
 

 The planning graph for a planning problem 0( , , )P s g A=  is defined as follows. It consists of two 

alternating structures called proposition layer and action layer. The initial state 0s  represents the 

0th proposition layer 0P . The layer 0P  is just a list of atoms occurring in 0s . The rest of the plan-
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ning graph is defined inductively. Consider that the planning graph with layers 

0P , 1A , 1P , 2A , 2P , … , kA , kP  has been already constructed ( iA  denotes the ith action layer, iP  

denotes the ith proposition layer). The next action layer 1kA +  consists of actions whose precondi-

tions are included in the kth proposition layer kP  and which satisfy the additional condition that no 

two propositions of the action are mutually excluded (we briefly say that they are mutex).  
 
Definition 8 (Independence of actions). A pair of actions { , }a b  is independent if 

( ) ( ( ) ( ))e a p b e b− +∩ ∪ =∅  and ( ) ( ( ) ( ))e b p a e a− +∩ ∪ =∅ . Otherwise { , }a b  is a pair of dependent 
actions. 
 
Definition 9 (Action mutex and mutex propagation). We call a pair of actions { , }a b  within the 

action layer iA  a mutex if either the pair { , }a b  is dependent or an atom of the precondition of the 

action a  is mutex with an atom of the precondition of the action b  (defined in the following defini-
tion). 

 
Definition 10 (Proposition mutex and mutex propagation). We call a pair of atoms { , }p q  within 

the proposition layer iP  a mutex if every action a within the layer iA  where ( )p e a+∈  is mutex with 

every action b  within the action layer iA  for which ( )q e b+∈  and the action layer iA  does not con-

tain any action c  for which { , } ( )p q e c+⊆ . 

4   Problem of Finding Supports for a Sub-goal 

A problem of finding supports for a sub-goal is definable for arbitrary action layer of the planning 
graph and for arbitrary goal. Consider an action layer of a given planning graph. Let A  be a set of 
actions of the action layer and let Aµ  be a set of mutexes between actions from A . Next let us 
have a goal g . For the given goal g  and action layer the question is to determine a set of actions 

Aζ ⊆  where no two actions from ζ  are mutex with respect to Aµ  and ζ  satisfies the goal g . 

The set of actions ζ   satisfies the goal g  if ( )ag e aζ
+

∈⊆ ∪  (notice that positive and negative ef-

fects of actions from the set of non-mutex actions does not interfere). The actions from the set ζ  
are called supports for the goal g  in this context. The goal g  is called a sub-goal to distinguish it 
from the global goal for which we are building a plan. Typically many sub-goals must be satisfied 
along the search for the global goal in the standard GraphPlan algorithm. The problem of finding 
supports for a sub-goal will be called a supports problem in short. 

The effectiveness of a method for solving supports problem has a major impact on the perform-
ance of the planning algorithm as a whole. Unfortunately the supports problem is NP-complete. 
This claim can be easily proved by using reduction of Boolean formula satisfaction problem (SAT) 
to supports problem. 

 
Theorem 1 (Complexity of supports problem). The problem of finding supports for a sub-goal is 
NP-complete. 
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Proof: The supports problem is obviously in NP. It is sufficient treat sets as lists to prove the claim. 
Having a set of actions ζ  it is possible to check whether it is a solution of the supports problem for 

a goal g  in ( ( ))O A A gζ µ+ +  steps. First we need check if all the actions from ζ  are also from 

A . It takes Aζ  steps to check if Aζ ⊆  holds. Next we check if no two actions from ζ  are 

mutex. A mutex { , }i ja a  where ,i ja a A∈  can be checked against ζ  in 2 ζ  steps. For all mutexes 

this can be done in 2 Aζ µ  steps. Computing of the set ( )a e aζ
+

∈∪  takes d ζ  steps where d  is 

the action size bounding constant (that is ( )a A∀ ∈  max( ( ) , ( ) , ( ) )d p a e a e a+ −≥ ). Checking 

whether ( )ag e aζ
+

∈⊆ ∪  takes d gζ  steps. The total number of steps for verifying the solution is 

2A A d gζ ζ µ ζ+ +  which is ( ( ))O A A gζ µ+ + . The resulting expression is polynomial in 

size of the input. 
Completeness with respect to NP class can be proved by using polynomial reduction of Boolean 

formula satisfaction problem (SAT) to supports problem. Consider a Boolean formula B . It is pos-
sible to assume that the formula B  is in the form of conjunction of disjunctions, that is 

1 1
imn i

i j jB x= == ∧ ∨ , where i
jx  is a variable or a negation of a variable. For each clause 1

im i
j jx=∨  where 

1,2, ,i n= …  we introduce a literal il  into the constructed goal g . Next we introduce an action 

( ,{ }, )i
j ia l= ∅ ∅  into the set of actions A  for each i

jx  from the clause (the action has the only one 

positive effect and no preconditions and no negative effects). Actions are introduced in this way for 
all the clauses from B . If for some , {1,2, , }i k n∈ … ; {1,2, , }ij m∈ … ; {1,2, , }kl m∈ … i k

j lx x= ¬  or 
i k
j lx x¬ =  holds we introduce a mutex { , }i k

j la a  into the set of mutexes Aµ . The constructed sets 

A , Aµ  and the goal g  constitute the instance of the supports problem. The size of the resulting 

supports problem is 
2( )O B , where B  is the number of literals appearing in B . 

Having a set of actions ζ  solving the constructed instance of the supports problem we can con-

struct valuation f  as follows ( )ijf x true=  (that is: if i
jx v=  for some variable v  then ( )f v true= , 

if i
jx v= ¬  then ( )f v false= ) for each i

ja A∈ . The truth values for the remaining variables in B  

can be selected arbitrarily. Mutexes ensure that the valuation f  is correctly defined function. 

Moreover we have 1( )im i
j jf x true=∨ =  for 1,2, ,i n= … . Thus every clause of B  is positively valued. 

This is implied by the fact that whole the goal g is satisfied by ζ . The solution of the original Boo-

lean formula satisfaction problem is obtained from ζ  in ( )O B  steps.  

5   Projection Constraint and Projection Consistency 

We proposed a new global constraint to improve the search of the GraphPlan planning algorithm in 
the phase of plan extraction from the planning graph. We called the constraint projection constraint 
according to the way how propagation is done through that. We use the projection constraint to 
model and to improve the solving of the supports problem. The supports problem must be solved 
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many times along the search for a plan in plan extraction phase (as it is done by the standard 
GraphPlan algorithm). A part of the algorithm which solves the supports problem is responsible for 
majority of backtracks (this observation is evident from our experiments, see the section about ex-
periments). That is why the efficiency of solving of this sub-problem has significant impact on the 
efficiency of the whole planning algorithm. 

In [22] and [23] Surynek examined the effect of maintaining arc-consistency and singleton arc-
consistency for solving the supports problem. He obtained substantive speedups using these types of 
reasoning compared to pure backtracking based method. However both arc-consistency and single-
ton arc-consistency provides only some type of a local reasoning over the problem. Whereas the 
term local means here that a small part of the problem is considered at once. This feature of the con-
sistency technique may lead to high number of iterations of the given consistency enforcing algo-
rithm till the consistency is established. Moreover if the cost of an iteration of such local technique 
is too high there remains only a little advantage against the pure backtracking (namely this is the 
case of maintaining singleton arc-consistency [23]). 

By contrast the projection constraint introduces some type of a global reasoning over the supports 
problem. That is we consider the problem as a whole at once. The important requirement on the 
method for solving the supports problem within the plan extraction phase of the GraphPlan is its 
completeness. It means if there exists a solution of a given supports problem the method must guar-
antee finding of that solution. On the other hand if there is no solution of a given supports problem 
the method must prove this fact. Specifically it is necessary to enumerate solutions of the supports 
problem within plan extraction.  

The projection constraint was motivated by the observation of mutex graphs of layers of the 
planning graph. These mutex graphs embody high density of edges on majority of testing planning 
problems (however our method works with sparse mutex graphs as well). The high density of edges 
is caused by various factors. Nevertheless we regard the set of actions that change states of an ob-
ject or group of objects of the planning domain as the most important one. Actions from such set are 
pair wise mutually excluded since they change a single property (for example imagine a robot at 
coordinates [3,2] , the robot can move to coordinates in its neighborhood, so the actions are: 

([2,2])moveTo ,  ([2,3])moveTo , ([3,3])moveTo , … ). That is such set of actions induces a clique 
within a mutex graph. 

The knowledge of clique decomposition of the mutex graph would allow us to identify the above 
described strong correspondence among actions from a clique (at most one action from a clique can 
be selected). Such knowledge can be used for some kind of advanced reasoning afterwards. This is 
just the first part of the idea how projection constraint works. The second part of the idea of projec-
tion constraint is to take a subset of literals of a given goal and to calculate how a certain clique of 
action contributes to satisfaction of the subset of literals. This reasoning can be used to discover that 
some actions within a certain clique do not contribute enough to the goal and therefore can be ruled 
out. Actions that are ruled out are no more considered along the search and hence the search speeds 
up since smaller number of alternatives must be considered. 

5.1   Preprocessing Step: Clique Decomposition of Mutex Graph 

Projection constraint assumes that a clique decomposition of a mutex graph of a given action layer 
of the planning graph is known. Thus we need to perform a preprocessing step in which a clique 
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decomposition (clique cover) of the mutex graph is constructed. Let ( , )G A Aµ=  be a mutex graph 
(vertexes are represented by actions, edges are represented by mutexes). The task is to find a parti-
tion of the set of vertexes 1 2 nA C C C= ∪ ∪ ∪…  such that i jC C∩ =∅  for every 

, {1,2, , }&i j n i j∈ ≠…  and iC  is a clique with respect to Aµ  for {1,2, , }i n= … . Cliques of the 

partitioning do not cover all the mutexes in general case. That for 2 2 2
1 2( )nmA A C C Cµ= − ∪ ∪ ∪…  

mA ≠ ∅  holds in general (where 2 {{ , } | , & }C a b a b C a b= ∈ ≠ ). Our requirement is to minimize n  

and mA . Unfortunately the problem of clique cover of the defined property is NP-complete on a 

graph without any restriction. The proof of this claim was provided by Golumbic in [9]. 
 

                     

Fig. 1. Illustration of a clique decomposition of a mutex graph obtained from the action layer from the plan-
ning graph for a complex dock worker robot problem. The smaller window shows original graph which 
seems to be unstructured. The larger window shows the same graph decomposed into cliques by the greedy 
algorithm. The individual cliques of actions are depicted by grouping of vertexes into clusters. 

 
 

Algorithm 2: Greedy algorithm for finding clique cover 

function cliqueCover ( , )A Aµ : pair 
1:  1n← ; mA←∅  
2:   while A ≠ ∅  do 
3:   nC ←∅ ; nA A← ; nA Aµ µ←  

4:   while nA ≠ ∅  do 

5:    ( , ) ( , )| ( )deg ( ) deg ( )
n n n nn n A A A Aa A b A a bµ µ∈ ∀ ∈ ≥  

6:    { }n nC C a← ∪  

7:    {{ , } |{ , } & { , } 0}n n nA a b a b A a b Cµ µ← ∈ ∩ ≠  

8:    { | ( ){ , } }n n nA b c C b c Aµ← ∃ ∈ ∈  

9:   {{ , } |{ , } & { , } 1}nmA mA a b a b A a b Cµ← ∪ ∈ ∩ =  

10:   nA A A← −  

11:   2( )nA A C mAµ µ← − ∪  
12:   1n n← +  
13:  return 1 2({ , , , }, )nC C C mA…  
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As an exponential amount of time spent in preprocessing step is unacceptable it is necessary to 

abandon the requirement on optimality of clique cover. It is sufficient to find some clique cover to 
be able to introduce projection constraint. However the better the clique cover is (with respect to n  
and mA ) the better is the performance of projection constraint. Our experiments showed that a 

simple greedy algorithm provides satisfactory results. The greedy algorithm is listed as algorithm 2. 
Its complexity is polynomial in size of the input graph which is acceptable for preprocessing step. 

 
Observation 1 (Complexity of the greedy clique cover algorithm). The greedy algorithm for 
finding clique cover (algorithm 2) for a graph ( , )G A Aµ=  can be implemented to run in 

2( )O A Aµ+  steps. 

 
Proof: Suppose that all the sets appearing in the algorithm are implemented as lists. Selection of a 
vertex of highest degree takes ( )O A  steps and must be performed ( )O A  times. Each edge from 

Aµ  is considered at most constant number of times. More precisely each directed edge is either 
included into the constructed clique or into the set of remaining edges mA .  

5.2   Projection Consistency 

For the following description of projection constraint consider an action layer of the planning graph 
for which a clique cover 1 2 nA C C C= ∪ ∪ ∪…  of the set of actions A  with respect to the set of 

mutexes Aµ  was computed. Further suppose we have the set mA  consisting of mutexes outside the 
clique cover. Projection consistency is defined over the above decomposition for a goal p . The 
goal p  is called a projection goal in this context. The fact that at most one action from a clique can 
be selected allows us to introduce the following definition. 
 
Definition 11 (Clique contribution). A contribution of a clique 1 2{ , , , }nC C C C∈ …  to the projec-

tion goal p  is defined as max( ( ) | )e a p a C+ ∩ ∈ . The contribution of a clique C  to the projection 

goal p  is denoted as ( , )c C p . 
 
The concept of clique contribution is helpful when we are trying to decide whether it is possible 

to satisfy the projection goal using the actions from the clique cover. If for instance 
1 ( , )n

i ic C p p=∑ <  holds then the projection goal p  cannot be satisfied. Nevertheless the projection 

constraint can handle more general case as it is described in the following definitions. 
 

Definition 12 (Projection consistency: supported action). An action ia C∈  for {1,2, , }i n∈ …  is 

supported with respect to projection consistency with the projection goal p  if 

1, ( , ) ( )n
j j i jc C p p e a+
= ≠∑ ≥ −  holds. 
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Definition 13 (Projection consistency of a problem). The preprocessed instance of the supports 
problem consisting of actions 1 2 nA C C C= ∪ ∪ ∪… , mutexes Aµ  and the goal g  is projection 

consistent with respect to a projection goal p g⊆ , p ≠ ∅  if every ia C∈  for 1,2, ,i n= …  is sup-

ported  
 
If cliques of the clique cover are regarded as CSP variables and actions from the cliques are re-

garded as values for these variables then we can introduce a projection constraint. The projection 
constraint bounds domains of all the clique variables. That is the constraints bounds all the variables 
of the CSP problem. The constraint with respect to the projection goal p g⊆  is satisfied for an 

assignment 1 1 2 2( , , , )n nC a C a C a= = =…  if 1 ( )n
iip e a+

=⊆ ∪ . To enforce projection consistency over 

the supports problem for some projection goal p  we can easily remove values from the domains of 
variables. Specifically it is necessary to rule out actions which are not supported according to the 
definition 8 for the projection goal p . But notice that projection consistency is not a sufficient con-
dition to obtain a solution. There still remain assignments for which the constraint is not satisfied. 
The second note is on the slight difference of the definition of a solution of the constraint satisfac-
tion problem over the clique variables from the standard definition. We do not necessarily need to 
assign all the clique variables to solve the problem. The solution requires satisfaction of the projec-
tion goal only. 

 
Proposition 1 (Correctness of projection consistency). Projection consistency is correct. That is 
the set of solutions of the supports problem S  is the same as the set of solutions of the supports 
problem S ′  which we obtain from S  by enforcing projection consistency with respect to a projec-
tion goal p g⊆ . 

 
Proof: The proposition is easy to prove by observing that an unsupported action cannot participate 
in any assignment satisfying the projection constraint for the goal p . Let ia C∈  be an unsupported 

action for {1,2, , }i n∈ … , that is 1, ( , ) ( )n
j j i jc C p p e a+
= ≠∑ < −  holds. It is obvious that after the selec-

tion of the action a  there is no chance to satisfy the projection goal p .  
 
A useful property of the projection consistency with a single projection goal p  is that removal of 

an unsupported action does not affect any of the remaining supported actions. We call this property 
a monotonicity. The usefulness consist in the fact that it is enough check each action of the problem 
only once to enforce the projection consistency. 

 
Proposition 2 (Monotonicity of projection consistency). Projection consistency with a projection 
goal p  is monotone. That is if an arbitrary unsupported a  action is removed from a clique iC  for 

{1,2, , }i n∈ …  the set of supported actions within the problem remains unchanged. 
 

Proof: Let jb C∈  be an unsupported action after removal of a  from iC . That is after removal of a  

from iC  1, ( , ) ( )n
k k j kc C p p e b+
= ≠∑ < −  holds. First let us investigate the case when i j= . It is obvi-

ous that removal of a  has no effect on the truth value of the expression 
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1, ( , ) ( )n
k k j kc C p p e b+
= ≠∑ < − . Hence the action b  was unsupported even before a  was removed. For 

the case when i j≠  the situation is similar. If ( , ) ( { }, )i ic C p c C a p= −  then the removal of the ac-

tion a  has effect on the truth value of the expression 1, ( , ) ( )n
k k j kc C p p e b+
= ≠∑ < − . If 

( , ) ( { }, )i ic C p c C a p> − , then ( ) ( , )ip e a c C p+∩ = . From the assumption 

1, ( , ) ( )n
j j i jc C p p e a+
= ≠∑ < −  we have 1 ( , )n

k kc C p p=∑ < . Hence also 1, ( , ) ( )n
k k j kc C p p e b+
= ≠∑ < −  

holds.  

5.3   Propagation Algorithm 

In order to be able to discuss complexity issues of our approach we have to formally define propa-
gation algorithm for projection consistency. The propagation algorithm for projection consistency is 
shown as algorithm 3. The input of the algorithm is a projection goal p  and the clique decomposi-
tion. 

 
Algorithm 3: Projection consistency propagation algorithm 

function propagateProjectionConsistency 1 2( ,{ , , , })np C C C… : set 
1:  0γ ←  
2:  for 1,2, ,i n= …  do 
3:   ic ← calculateCliqueContribution ( , )ip C  

4:   icγ γ← +  
5:  for 1,2, ,i n= …  do 
6:   for each ia C∈  do 

7:    if ( ) ( ) ie a p p e a cγ + ++ ∩ < − +  then { }i iC C a← −  

8:  return 1 2{ , , , }nC C C…  
 

function calculateCliqueContribution ( , )p C : integer 
9:  0c←  
10:  for each a C∈  do 

11:   max( , ( ) )c c e a p+← ∩  

12:  return c  
 
 
Theorem 2 (Complexity of projection consistency). Propagation algorithm for projection consis-
tency with a projection goal p g⊆  over the supports problem consisting of actions 

1 2 nA C C C= ∪ ∪ ∪… , mutexes Aµ  and a goal g runs in ( )O p A  steps. 

 
Proof: Since the algorithm for enforcing projection consistency is quite straightforward it is easy 
compute its complexity. The auxiliary function calculateCliqueContribution performs ( )O p C  

steps (the loop on lines 9-11 performs exactly C  iterations, each iteration of the loop takes d p  
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steps, where d  is the action size bounding constant). Hence lines 2-4 of the main function propa-

gateProjectionConsistency takes 
1

( ) ( )n

i
O p C O p A

=
=∑ . Finally lines 5-7 of the main function 

performs a conditional statement on line 7 A  times. Each check of the condition in the conditional 

statement on line 7 takes d p  steps. Hence we have ( )O p A  steps in total.  

5.4   How to Select Projection Goals 

We were not concerned with the question of how to select projection goals for a problem with a 
goal g . The only condition on a projection goal p  is that p g⊆  must hold. It is suitable to enforce 
projection consistency with respect to several projection goals. Each of these goals filters out differ-
ent actions from cliques of the decomposition. The selection of all the sub-goals of the goal g  is 

unaffordable since they are 2 g  which is too many. Hence we can select only a limited number of 
projection goals. At the same time the selection must be done carefully in order to achieve strongest 
possible filtration. We provide a brief analysis of projection goal selection here. The following ideas 
are concentrated on comparison of projection consistency with arc-consistency of the supports prob-
lem as it was introduced in [22, 23]. 

 
Definition 14 (Arc-consistency of the supports problem) [22, 23]. Let us have a supports problem 
S  with a goal g . For each atom t g∈  we introduce a so called support variable which contains all 
the actions that supports the atom t  in its domain (an action a  supports an atom t  if 

( ) & ( )t e a t e a+ −∈ ∉ , a set { | &ts a a A= ∈ supports atom }t  is called a set of supports for an atom 

t ) Between every two support variables there is a mutex constraint. The mutex constraint is satis-
fied by an assignment of actions to its variables if the actions of the assignment are non-mutex. The 
supports problem is arc-consistent if every mutex constraint is arc-consistent [18]. 

 
Depending on the quality of the clique decomposition of the mutex graph of the supports problem 

there may be a situation in which a projection goal can be selected to simulate arc-consistency by 
projection consistency. Moreover there may be situations when projection consistency is stronger 
than arc-consistency. Both cases are formally summarized in the following observations. Experi-
ments showed that such cases are not rare, especially projection goals are selected in order to prefer 
such cases. 

 
Observation 1 (Arc-consistency by projection consistency). For a given supports problem S  
with a goal g  there may be a projection goal p g⊆  such that if the problem S  is projection con-
sistent with the projection goal p  then it is arc-consistent. 

 
Proof: It is sufficient to investigate a case for a single constraint between two support variables. An 
action a  in the domain of a support variable v  should be removed i order to establish arc-
consistency if it does not have a support with respect to the given constraint. That is all the actions 
in the domain of the support variable u  which neighbors with v  through the given constraint are 
mutex with a . Hence ( )a dom u∉  holds. Let us suppose that { } ( )a dom u∪  is a part of a single ac-
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tion clique of the decomposition. Further let us suppose that action a  do not support the literal cor-
responding to the variable u  Then the projection consistency with respect to a projection goal p  
which contains the literal corresponding to the variable u  removes action a  from the action clique. 

 
 
Although situation for the projection consistency from the proof is rather artificial, our empirical 

experimentation gives us evidence that it is not a rare case. Moreover there are a lot of other situa-
tions when projection consistency gives the same results as arc-consistency. However these situa-
tions are difficult to be theoretically classified. Our last note to arc-consistency is that enforcing arc-

consistency by the standard AC-3 algorithm [18] takes 
3( )O g A  steps for the supports problem 

consisting of actions A . In contrast the projection consistency requires only ( )O p A  steps. 

 
Observation 2 (Strength of projection consistency). For a given supports problem S  with a goal 
g  there may be a projection goal p g⊆  such that the problem S  is arc-consistent but it is not pro-
jection consistent with the projection goal p . 

 
Proof: We will prove the observation by constructing an instance of the supports problem. Let us 
have a goal 1 2 3{ , , }g t t t=  where it  for 1,2,3i =  are atoms and actions 1

1 1 2 3(_,{ },{ , })a t t t= , 
1
2 2 1 3(_,{ },{ , })a t t t= , 1

3 3 1 2(_,{ },{ , })a t t t= , 2
1 1 2 3(_,{ },{ , })a t t t= , 2

2 2 1 3(_,{ },{ , })a t t t=  and 
2
3 3 1 2(_,{ },{ , })a t t t=  ( _  denotes anonymous variable, that is we do not care about that). It is obvious 

that the supports problem consisting of actions 1 1 1 2 2 2
1 2 3 1 2 3{ , , , , , }a a a a a a  and the goal g  cannot be 

solved. Actions 1
1a , 1

2a  and 1
3a  are pair-wise mutex as well as actions 2

1a , 2
2a  and 2

3a . The domain 

of a support variable for the atom 1t  is 1 2
1 1{ , }a a , for the atom 2t  it is 1 2

2 2{ , }a a  and for the atom 3t  it is 
1 2
3 3{ , }a a . The arc-consistency does not remove any action from the domains of supports variables. 

On the other hand, projection consistency is more successful. The preprocessing step finds cliques 
1 1 1
1 2 3{ , , }a a a  and 2 2 2

1 2 3{ , , }a a a . The positive contributions of both cliques is 1 . Hence any of the ac-

tions is supported with respect to projection consistency. So the projection consistency removes all 
the actions and detects insolvability of the problem.  

 
Our preliminary experimentations showed that propagation of a good quality can be obtained us-

ing projection goals which have the constant number of supports for its literals. That is the projec-
tion consistency is enforced for a projection goals p g⊆  which contains all the literals for which 
the number of satisfying actions (see definition 10) is the same. More formally let 

{ | & }i tp t t g s i= ∈ = , then projection consistency is enforced for every {1,2, }i = …  for which 

ip ≠ ∅ . This approach prefers cases from observations 5 and 6. Nevertheless we do not know 

whether there is a set of projection goals which provides better results. 
It takes 

1,2, &
( ) ( )

i
ii p

O p A O g A
= ≠∅

=∑ …
 steps to enforce projection consistency with respect to 

all projection goals as defined above. If the projection consistency is enforced with respect to one 
projection goal it may happen that it becomes inconsistent with respect to another projection goal. 
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Therefore the consistency should be enforced repeatedly in AC-1 style until cliques of actions are 

changing. This takes 
2( )O g A  which is still better than 

3( )O g A  steps of AC-3. However empiri-

cal tests showed that such repeating does not provide any significant extra filtration. Hence we use 
the only iteration of projection consistency with respect to projection goals ip  for {1,2, }i = …  

where ip ≠ ∅ . 

6   Experimental Results 

We have implemented the proposed projection consistency propagation algorithm within our ex-
perimental planning system written in C++. The projection consistency is used to improve solving 
of the supports problems within backtracking based plan extraction of the GraphPlan algorithm. We 
exactly follow the algorithm 1 except the part for solving the supports problem. The difference is 
that projection consistency (with respect to projection goals discussed in section 5.4) is maintained 
along the search for a solution of a supports problem. Whenever the backtracking algorithm makes 
a decision (supporting action for an atom is selected) the projection consistency is enforced in order 
to prune the remaining search space. Our approach is similar to that of Surynek used in [22, 23], but 
instead of using arc-consistency or singleton arc-consistency we use projection consistency. 

We have made several experiments with our algorithm on simple planning domains. We were 
comparing the standard GraphPlan algorithm, which exactly corresponds to the algorithm 1, and the 
version of GraphPlan which maintains arc-consistency for solving supports problems with our new 
version which is maintaining projection consistency for solving supports problems. 

 

Table 1. Time statistics of solving process over several planning problems (part 1). The line Length shows 
planning graph length / solution plan length. The line PlanGraph shows time spent by building planning 
graphs, the line Extraction shows time spent by extracting plans from planning graphs, the line Cliques 
shows time spent by building clique covers and the line Total shows the total time necessary to find a solu-
tion.  

Problem han02 pln04 dwr02 dwr01 han04 pln01 han03 pln10 han07
Length 14/14 5/9 6/10 6/12 10/12 5/9 30/30 10/15 14/20

Standard GraphPlan 
PlanGraph 0.90 4.35 5.13 5.23 4.30 15.07 5.47 6.37 14.03
Extraction 0.43 0.28 2.69 8.53 6.75 0.51 12.03 165.82 142.15

Total 1.33 4.63 7.82 13.76 11.05 15.58 17.50 172.19 156.18
GraphPlan with maintaining arc-consistency for supports problems 

PlanGraph 0.91 4.11 4.99 4.97 4.25 15.27 5.34 6.37 13.55
Extraction 0.54 0.15 1.59 1.77 3.41 0.36 12.09 36.86 54.57

Total 1.45 4.26 6.58 6.74 7.66 15.63 17.43 43.23 68.12
GraphPlan with maintaining projection consistency for supports problems 

PlanGraph 0.92 4.35 5.09 5.14 4.35 15.29 5.30 6.42 13.70
Cliques 0.06 0.33 0.16 0.15 0.24 1.18 0.24 0.45 0.86

Extraction 0.33 0.1 0.29 0.51 1.68 0.22 5.32 9.3 21.62
Total 1.31 4.78 5.54 5.80 6.27 16.69 10.86 16.17 36.18
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All the planning problems which were used for our experiments are available at the web site: 
http://ktiml.mff.cuni.cz/~surynek/research/cpaior2007/. The planning domains are the same as that 
used for empirical tests in [22]. They are Dock Worker Robots planning domain, Refueling Planes 
planning domain and Towers of Hanoi planning domain. The used planning domains are described 
in details in [22]. Several problems of varying difficulty of each planning domain were used for our 
experiments. The planning problems were selected to cover the range from easy problems to rela-
tively hard problems. The lengths of solutions varied from 9 to 38 actions. Performance results on 
some of these problems are shown in tables 1 and 2 and in figures 2, 3 and 4.  

 
Table 2. Time statistics of solving process over several planning problems (part 2). 

Problem pln05 dwr05 pln06 pln11 dwr07 han08 dwr16 pln13 dwr17
Length 6/14 14/28 9/14 10/14 16/36 20/26 18/34 10/16 20/38

Standard GraphPlan 
PlanGraph 38.6 57.9 44.0 54.8 N/A 39.9 N/A N/A N/A 
Extraction 460.3 554.3 2660.2 3441.3 N/A 2056.2 N/A N/A N/A 

Total 499.0 612.2 2704.2 3496.1 N/A 2096.1 N/A N/A N/A 
GraphPlan with maintaining arc-consistency for supports problems 

PlanGraph 38.1 57.2 42.2 53.7 100.50 41.5 207.8 82.3 378.0
Extraction 31.8 60.4 221.2 311.5 279.12 549.8 714.3 1052.5 6148.6

Total 69.9 117.7 263.4 365.2 379.62 591.4 922.2 1134.8 6526.6
GraphPlan with maintaining projection consistency for supports problems 

PlanGraph 40.0 57.5 44.1 56.1 99.08 40.9 204.9 86.3 369.8
Cliques 2.87 2.10 3.05 4.94 3.43 2.68 6.78 6.1 13.21

Extraction 18.92 6.13 29.45 37.16 107.74 184.02 288.61 103.81 2182.23
Total 61.88 65.76 76.67 98.20 210.25 227.63 500.32 196.24 2565.24
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Fig. 2. Problem solving time in total (planning graphs building time + clique cover time + plan extraction 
time) of several planning problems. Time range uses logarithmic scale. Several results of standard GraphPlan 
for hard problems are missing due to timeout (2 hours). 
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The tests were performed on a machine with two AMD Opteron 242 processors (2×1600MHz) 
and 1 GB of memory running Mandriva Linux 10.2. The implementation was compiled with gcc 
compiler version 3.4.3 with maximum optimization for the target machine (-O9 -mtune=opteron). 
No parallel execution was used. The two processors were used only for running two tests simulta-
neously. 
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Fig. 3. Plan extraction time of several planning problems. Time range uses logarithmic scale. Again, several 
results of standard GraphPlan for hard problems are missing due to timeout (2 hours). 

6.1   Analysis of Experimental Results 

The proposed method for solving supports problems based on maintaining of projection consistency 
brings significant improvement in terms of time as well as in terms of number of constraint checks 
on hard problems compared to the version which uses maintaining of arc-consistency. Notice that 
the version of the algorithm with projection consistency must perform clique decompositions before 
the supports problem is solved. Although the clique decompositions represent an overhead on easy 
problems the improvement in plan extraction with projection consistency overrides this disadvan-
tage on hard problems. The improvement of the plan extraction phase is up to about 1000% . More-
over we can say that the larger the portion of time is spent by search the better the improvement by 
use of projection consistency is. 

If we compare the plan extraction which uses projection consistency with the standard version the 
improvement is up to about 1000%  in overall problem solving and up to about 10000%  in plan 
extraction phase. 

It is also possible to observe that the projection consistency is especially successful on problems 
with many interacting objects in the planning world and high parallelism of actions (for example 
planes problems 11 and 13 and dock worker robots problem 07). On the other hand if the interaction 
between objects in the planning world is low and if there is a low parallelism, the advanced reason-
ing over supports problems does not represent any significant improvement (for example Hanoi 
tower problem 07 and 08). 
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Fig. 4. Number of constraint checks of several planning problems. Time range uses logarithmic scale. Again, 
several results of standard GraphPlan for hard problems are missing due to timeout (2 hours). 

6.2   Implementation Notes 

Our experimental planning system which we used to produce the empirical tests is not a state-of-
the-art planner. At the current stage it cannot compete with planners from International Planning 
Competition (IPC) [7]. It is caused partially by a not well optimized implementation and partially 
by the fact that we do not use any domain specific heuristics. Nevertheless it is not our goal to com-
pete with planners participating in IPC at the current stage. We are rather focusing on understanding 
the structure of planning problems and on utilizing this knowledge to improve the solving process. 

For our empirical tests we used standard variable and value selection heuristics. Specifically an 
atom with the smallest number of supporting actions is always selected as first to be satisfied. Then 
supporting action are tried starting with the action that is least constrained. 

There is also another important implementation issue concerning nogood recording. We use unre-
stricted nogood recording within our experimental planning system. A special multiple-valued deci-
sion tree [19] is used to store nogoods. The tree is optimized for space by preferring low branching 
towards root and high branching towards leaves. Our minor experiments showed that the decision 
tree requires space of about 30% 10%−  of sum of sizes of all stored nogoods on the testing prob-
lems. 

The last implementation issue we would like to mention is that we use state variable representa-
tion for planning problems [8]. Compared to classical representation the state variable representa-
tion provides easier expressing of actions and also some performance advantages directly connected 
with this fact. 
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7   Related Works 

The main difference of our approach from other approaches exploiting another formalism (CSP, 
SAT) for solving planning problems [10, 11, 15, 17, 12, 13, 14] is that we do not formulate the 
planning problem in another formalism as a whole. We use constraint programming approach only 
to solve a sub-problem arising during search. Moreover we not only model the supports problems in 
constraint programming formalism, we extend the formalism by introducing new type of consis-
tency to model the sub-problem in a better way. 

Kambhampati’s successful idea to formulate plan extraction from planning graph as CSP is pre-
sented in [10]. He evaluates the use of various constraint programming techniques and its impact on 
the effectivity of plan extraction. Several extensions of expressivity of planning graphs are de-
scribed in [11]. From our point of view the most interesting idea is to generalize mutex relations and 
its propagation in planning graph. Another approach is presented in [17] by Lopez and Bacchus. 
Again they model the planning problem in planning graph representation as CSP. The originality of 
their technique consists in making transformations of the obtained CSP which uncovers additional 
structural information about the problem. 

One of the most successful in term of speed of solving the planning problems are planning algo-
rithms based on Boolean formula satisfiability encoding [15, 12, 13, 14]. Here the speed of solving 
algorithm also depends on the quality of encoding. The encoding of planning problems based on 
planning graph representation was by Kautz and Selman studied in [15]. 

The also successful algorithm CPlan of Van Beek and Chen [24] uses hand tailored CSP encod-
ing of a planning problem. The success of their approach is accounted to well designed numeric 
constraints that bind spatiotemporally distant object of the planning world. 

Finally let us mention that a greedy search for mutex cliques was also used by Blum and Furst in 
their original GraphPlan [4]. But they were trying to detect mutex cliques from different reasons. 
They used the discovered mutex cliques to identify state variables (which we have intrinsically in 
problem formulation from the beginning) and to reduce memory requirements. 

8   Conclusion and Future Work 

We proposed a novel consistency technique which we called projection consistency. The technique 
is designed to prune the search space during extraction of plans by the GraphPlan-style algorithm. 
We theoretically showed that the projection consistency has faster propagation algorithm than arc-
consistency propagation algorithm AC-3 which application on the same problem was recently stud-
ied by Surynek in [22]. Empirical test showed improvements in order of magnitudes compared to 
the standard GraphPlan and also compared to the version using arc-consistency. The improvements 
are both in overall time as well as in number of constraint checks. 
 There is a lot of future work. The first interesting issue is how to make projection consistency 
stronger. This may be done by other types of projections. But it is also possible to do it by slight 
modification of the definition of the supported action. Instead of the expression 

1, ( , ) ( )n
j j i jc C p p e a+
= ≠∑ ≥ −  in the definition 10 one can use 1, ( , ( )) ( )n

j j i jc C p e a p e a+ +
= ≠∑ − < − . 

Unfortunately this change causes that monotonicity (proposition 2) no longer holds. And hence the 
complexity of propagation algorithm increases. The solution may be better propagation algorithm. 
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The next important issue about the projection consistency which we are currently intensively 
studying is a tractable case. That is the case when it is possible to solve the supports problem in 
polynomial time. We identified that such case arise when intersection graph [9] of scopes (sets of 
atoms) of cliques of the decomposition is acyclic. Currently we are working on heuristics for prefer-
ring such cases. 

The similarity between Boolean formula satisfaction problem and supports problem as it is shown 
in theorem 1 leads us to the question whether it is possible to exploit projection consistency for 
solving SAT problems. The expectable question is also how to extend the presented ideas for plan-
ning graphs with time and resources [16, 21]. Since the planning graphs for complex problems are 
really large the related question is also how to make planning graphs unground and how to get rid of 
huge numbers of no-operation actions. 
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