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Abstract. We prove that in the List version, the problem of deciding
the existence of a locally injective homomorphism to a parameter graph
H performs a full dichotomy. Namely we show that it is polynomially
time solvable if every connected component of H has at most one cycle
and NP-complete otherwise.

1 Introduction

We consider finite undirected graphs without loops or multiple edges. A recently
intensively studied notion, for its algebraic motivation and connections as well
as being a natural generalization of graph coloring, is the notion of graph ho-

momorphisms. A homomorphism f : G → H from a graph G to a graph H

is an edge-preserving vertex mapping, i.e., a mapping f : V (G) → V (H) such
that f(x)f(y) ∈ E(H) whenever xy ∈ E(G). (For a recent monograph on graph
homomorphisms the reader is referred to [14].) It follows from the definition that
the neighborhood of every vertex is mapped into the neighborhood of its image,
formally f(NG(x)) ⊆ NH(f(x)) for all x ∈ V (G). Properties of these restricted
mappings, local constraints, lead to the definition of locally constrained homo-

morphisms. The homomorphism f is called locally injective (bijective, surjective,
resp.) if for every x ∈ V (G), the restricted mapping f : NG(x) → NH(f(x)) is
injective (bijective, surjective, resp.). All three of these notions have been stud-
ied on their own with different motivations. Locally surjective homomorphisms
correspond to so called role assignment graphs studied in sociological applica-
tions [11], locally bijective ones correspond to graph covers well known from
topological graph theory [2, 15] and theory of local computation [1, 3]. Locally
injective homomorphisms are closely related to generalized L(2, 1)-labelings of
graphs and the Frequency Assignment Problem [8, 9].

From the computational complexity point of view we are interested in the
decision problem if an input graph G allows a homomorphism of certain type into
a fixed target graph H . As these problems are parametrized by the graph H , we
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use the notation H-Hom (when asking for the existence of any homomorphism),
H-LIHom, H-LBHom and H-LSHom (when asking for locally injective, bijective
or surjective homomorphisms, respectively).

The complexity of H-Hom is fully understood and dichotomy was proved by
Hell and Nešetřil in [13]. The problem is polynomially solvable if H is bipartite
and NP-complete otherwise. The complexity of H-LSHom was studied in [17] and
completed by Fiala and Paulusma in [11]. This problem (for connected graph
H) is solvable in polynomial time if H has at most 2 vertices and NP-complete
otherwise. Several papers have been devoted to studying the complexity of locally
injective and bijective homomorphisms, but only partial results are known [8, 10,
16]. Though conjectured at least for the case of locally bijective homomorphisms,
the Polynomial/NP-completeness dichotomy has been proved in neither of the
last two cases. However, this question is natural especially in view of the fact that
locally constrained homomorphisms can be expressed as Constraint Satisfaction
Problem, for which the dichotomy was conjectured in the fully general case by
Feder and Vardy [6].

The CSP view also suggests considering the List versions of the problems,
since lists correspond to unary relations (cf. next section). The input to the List
version of a homomorphism problem is a graph G together with lists L(u) ⊆
V (H) of admissible targets for every vertex u ∈ V (G). The question is if G

allows a (locally injective, bijective etc.) homomorphism f : G → H such that
f(u) ∈ L(u) for every u ∈ V (G). We refer to these problems as List-H-Hom,
List-H-LIHom etc. A deep result of Hell et al. gives a full characterization of the
case of general homomorphisms [5, 12]. The problem List-H-Hom is polynomially
solvable for so called double circular arc graphs H and NP-complete otherwise.

Setting the lists to the entire vertex set of the target graph, one immediately
sees that H-Hom ∝ List-H-Hom, H-LIHom ∝ List-H-LIHom, H-LBHom ∝ List-
H-LBHom and H-LSHom ∝ List-H-LSHom. Thus in each case the borderline
between polynomial and NP-complete instances (dichotomy assumed) of the List
version will lie within the easy instances of the non-List one. This is well seen in
the above mentioned case of general homomorphisms and also in the case of the
locally surjective ones — List-H-LSHom remains polynomial for graphs H with
at most two vertices. The trouble with the locally injective and locally bijective
homomorphisms is that the full characterization of the non-List versions is not
known. Nevertheless, lists do help! The purpose of this paper is to show that in
the case of locally injective homomorphisms, lists guarantee a full dichotomy.

Theorem 1. The List-H-LIHom problem is solvable in linear time if the graph H

contains at most one cycle in each connected component, and it is NP-complete

otherwise.

The paper is structured as follows. In the next section we quickly describe
the connection to the Constraint Satisfaction Problem. In Section 3 we give the
argument for the polynomial part of our theorem. The technical reductions for
the NP-hardness part are presented in Section 4 and the proof is summarized in
Section 5. The final section contains concluding remarks.



2 Locally constrained homomorphisms as CSP

The CSP is parametrized by a fixed template X = (X ; S1, . . . , Sk), where Si’s
are relations on a finite set X , the arity of Si being ni, i = 1, 2, . . . , k. The input
of the X -CSP is a structure U = (U ; R1, . . . , Rk), where U is a (large) set and
Ri is an ni-ary relation on U , for i = 1, 2, . . . , k. The question is whether there
exists a mapping (in fact, a structural homomorphism) f : U → X such that
for every i and every ni-tuple (u1, . . . , uni

) ∈ Uni , (u1, . . . , uni
) ∈ Ri implies

(f(u1), . . . , f(uni
)) ∈ Si. Feder and Vardy [6] conjecture that for every template

X , this problem is either polynomial time solvable or NP-complete. This is known
for binary structures [19], and for many special cases (cf. e.g., Bulatov et al. [4]).

Though in natural structures one tends to overlook unary relations, from
the point of view of the formal definition they form a fully coherent part of
the picture. And they correspond to lists. A unary relation is just a subset
of the ground set. If a vertex u ∈ U belongs to unary relations Ri1 , . . . , Rit

,
then the constraints given by the unary relations of X -CSP merely say that
f(u) ∈

⋂t

j=1 Sij
, which is equivalent to setting the list of admissible images of u

to L(u) =
⋂t

j=1 Sij
.

The general homomorphism problem H-Hom is obviously a CSP problem
— the template is H itself, and the input structure is G (edges of both graphs
are considered as symmetric binary relations). We will show that also locally
injective and bijective homomorphisms can be expressed as CSP. Given a graph
H with h vertices, set

D = {(x, y)| x 6= y ∈ V (H)},

Di = {(x)| degH(x) = i, x ∈ V (H)}, i = 0, 1, . . . , h − 1.

Here D is the symmetric binary relation containing all pairs of distinct vertices
and Di’s are unary relations controlling the degrees. We derive the following
templates from H :

LH = (V (H); S1 = E(H), S2 = D)

and
BH = (V (H); S1 = E(H), S2 = D, S3+i = Di, i = 0, . . . , h − 1).

Observation 1 For every graph H, H-LIHom ∝ LH -CSP and H-LBHom ∝

BH -CSP.

Proof. For an input graph G, define U = (V (G); R1 = E(G), R2 = {(x, y)|; x 6=
y ∧ ∃z : xz, yz ∈ E(G)}). Then U is a feasible instance for LH -CSP if and
only if G allows a locally injective homomorphism into H — the relations R1

and S1 control that a candidate vertex mapping is a graph homomorphism, and
R2 with S2 control the local injectivity. For the locally bijective case, just add
R3+i = {u ∈ V (G)| degG(u) = i} for each i = 0, 1, . . . , h− 1, to ensure that this
mapping is locally bijective on every neighborhood.
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Fig. 1. The polynomial instances for the List-H-LIHom problem. The 2l possibilities of
of mapping of the emphasized Ck and Pk are afterwards verified for the pending trees.

Observe, however, that this does not mean that the Feder-Vardy conjecture
would imply dichotomy for H-LIHom or H-LBHom. Our observation is useful only
when the corresponding CSP problem is polynomially solvable, which is unfortu-
nately only seldom (whenever H has at least three vertices, 3-COLORABILITY
∝ LH -CSP ∝ BH-CSP and both problems are NP-complete). The point is that
the inputs of LH -CSP (or BH-CSP) derived from G are not arbitrary. In view
of this becomes the fact that adding lists endorses dichotomy on List-H-LIHom

even more interesting.

3 The polynomial case

Lemma 1. For any connected graph H containing at most one cycle, the List-

H-LIHom problem is solvable in linear time.

Proof. Without loss of generality we may assume that the input graph G is
connected, since otherwise we can treat each component separately.

If H is a tree, then any connected graph G that allows a locally injective
homomorphism G → H is a subtree of H . Since H is fixed, the graph G itself
must have a bounded number of vertices and the problem H-LIHom is solvable
in constant time even with lists being incorporated.

Let H have exactly one cycle. We first note that the number of connected
graphs G of diameter at most 2 diam(H) that allow a locally injective homomor-
phism to H is bounded (each such graph has at most 1 + ∆2 diam(H) vertices,
where ∆ is the maximum vertex degree of H). Hence, for such instances, the
List-H-LIHom problem can be decided in constant time.

For the rest of the proof suppose that diam(G) > 2 diam(H). Denote by Cl

the unique cycle of H (consult Fig 3). We distinguish two cases:

– G contains a cycle, say Ck: Then this cycle must be mapped onto Cl. This
might happen in at most 2l ways. Some of these 2l ways may be further



excluded by the list constraints. If we fix a mapping Ck → Cl, it remains to
decide whether this mapping can be extended to the remaining vertices of G.
For every vertex u of Ck, we can solve this question in constant time, since
this is equivalent to the tree List-H-LIHom problem. (Now the instance is
the component of G\ECk

containing u and the parameter is the component
of H \ ECl

containing the image of u. Both are trees.)
– G is a tree: A necessary condition for G to allow a locally injective homomor-

phism to H is that G contains a path Pk of length k = diam(G)−2 diam(H)
such that the components of G \ EPk

stemming from the inner vertices of
Pk map locally injectively to the components of H \ ECl

and the two trees
of diameter diam(H) hanging on the termini of Pk map locally injectively
to H . We first find Pk by diam(H) many iterations of peeling off vertices
of degree one. Then, as in the above case, we try all 2l possibilities of a
locally injective mapping Pk → Cl and exclude those which do not satisfy
the list constraints. Finally for each such partial mapping, we check if it can
be extended to the entire G by solving at most k +1 List-H-LIHom problems
of constant size.

4 Auxiliary NP-hardness reductions

In this section we show NP-hardness of the List-H-LIHom problem for three
basic types of graphs depicted in Fig. 1 (they are informally called the Theta
graph, the Flower graph and the Weight graph). The problem we use for our
NP-hardness reductions is Edge-precoloring extension. It has been shown
NP-complete even when restricted to cubic bipartite graphs [7]. The input of
this variant consists of a cubic bipartite graph together with a partial coloring
of its edges by three colors — say red, blue and white1. The question is whether
this partial coloring can be extended to the entire edge set such that each vertex
is incident with edges of all three colors.

For positive integers a, b, c, where b, c ≥ 2, let Θ(a, b, c) be the graph on
a + b + c − 1 vertices consisting of two vertices of degree three connected by
paths of lengths a, b, and c (cf. Fig. 1 top left).

Lemma 2. For arbitrary positive integers a, b, c, where b, c ≥ 2, the List-

Θ(a, b, c)-LIHom problem is NP-hard.

Proof. If a = b = c ≥ 2, we can reduce the Edge-precoloring extension

problem directly. Let G be the instance of the Edge-precoloring extension

problem. We replace each edge e ∈ E(G) by a path P e of length a. We further
associate colors red, blue and white with the inner vertices of the three paths of
Θ(a, a, a) in such a way that vertices of the first path represent color red, of the
second path color blue, and those of the third one the white color. If the edge
e was precolored by a color α, we assign the vertices of P e lists consisting of
vertices of the path in Θ(a, a, a) representing the color α. For the other vertices
we let the lists be the whole vertex set of Θ(a, a, a).

1 The favorite tricolor for Czechs — as well as for several other nations.
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Fig. 2. The basic three types of graphs.

Straightforwardly, proper 3-edge colorings of G are in one-to-one correspon-
dence with valid locally injective homomorphisms to Θ(a, a, a). (Such homomor-
phisms must in fact be locally bijective.) The local conditions on vertices of
degree three represent the condition that the three colors on the edges of the
original graph must be distinct.

For the case of a ≤ b ≤ c, a < c, the construction is slightly more sophisti-
cated. The edge colors will be represented by sequences of images of the vertices
along the paths representing the edges. We use vertex lists to enforce that only
three feasible patterns may exist.

Denote first by v, w the two vertices of degree three in Θ(a, b, c). The
inner vertices along the path of length a from v to w will be denoted by
m1, m2, . . . , ma−1 (this set may be empty), along the path of length b in the
same direction by n1, . . . , nb−1, and along the remaining path by o1, . . . , oc−1.

We define three sequences of length a + b + c + 1 by

R = (v, m1, . . . , ma−1, w, nb−1, . . . , n1, v, o1, . . . , oc−1, w)

B = (v, n1, . . . , nb−1, w, oc−1, . . . , o1, v, m1, . . . , ma−1, w)

W = (v, o1, . . . , oc−1, w, ma−1, . . . , m1, v, n1, . . . , nb−1, w)

Let G be an instance of the Edge-precoloring extension problem and
let V 1, V 2 be its two classes of the bipartition. We replace each edge e ∈ EG by
a path P e of length a + b + c and call the resulting graph G′.

The vertices of each P e are denoted by ue
1, . . . , u

e
a+b+c+1 in such a way that

the first vertex ue
1 belongs to V 1 and the last vertex ue

a+b+c+1 ∈ V 2. We define
the lists of the vertices in G′ so that for each e ∈ E(G) and each i = 1, 2, . . . , a+



b + c + 1, we set

L(ue
i ) =



















{Ri, Bi, Wi} if e is not precolored

{Ri} if e is precolored red

{Bi} if e is precolored blue

{Wi} if e is precolored white.

We claim that G′ allows a locally injective homomorphism to Θ(a, b, c) that
respects all list constraints if and only if the edge precoloring of the original
graph G can be extended to a proper 3-edge coloring of G.

Suppose first that f : G′ → Θ(a, b, c) is a locally injective homomorphism. We
prove that only the sequences given by R, B and W may appear along any path
P e. The local injectivity constraints then imply that the derived edge-coloring
is proper.

Assume first the case a < b < c. Let P e be a path in G′. By list constraints
we have f(ue

1) = v for any such P e. Assume that f(ue
2) = m1 (or f(ue

2) = w if
a = 1). Then the mapping f is uniquely determined for the next a−1 vertices of
P e due to the local constraints. As the subsequence v, oc−1, . . . , o1, w starts at a
different position in the sequence B it cannot be used as the further extension
of f on P e. In other words the mapping f has to follow the sequence R for the
next b− 1 vertices as well as for the final segment of c− 1 vertices. For the other
two possibilities, i.e., when f(ue

2) = n1 or o1, resp., we involve similar arguments
to conclude that the only feasible pattern of the mapping f along P e is given by
the sequences B or W , respectively.

It remains to consider the case when b = a or b = c and a < c. Without loss
of generality assume a = b, i.e., the target graph is Θ(a, a, c). By the arguments
presented so far, it might be possible that a mapping of some P e may follow
on the first a vertices the sequence R, while after ue

a+1 it continues along B.
The crucial observation here is that if f(ue

2) = o1 then the whole path must
be mapped according to the sequence W . Viewed from the other side also if
f(ue

a+b+c) = oc−1, then the mapping of P e follows the pattern R. Then the
pattern W is used for |V 1| edges, hence giving every vertex of the side V 2 a
neighbor mapped onto nb−1. Similarly the pattern R is used for |V 2| = |V 1|
edges, giving each vertex on the V 1 side a neighbor mapped onto m1. For the
paths P e corresponding to the remaining matching in G, the local injectivity
constraints imply that f(ue

2) = n1 and f(ue
a+b+c) = ma−1, and hence only the

pattern B may be used along these paths.
For the reverse implication, assume E(G) is properly colored. We define the

mapping f : G′ → Θ(a, b, c) such that for every e ∈ E(G) and all i = 1, 2, . . . , a+
b + c + 1, ue

i = Ri if e is red, and analogously with Bi representing blue and
with Wi representing white colors. On every vertex of G′ the mapping preserves
the list constraints and is locally injective: on the inner vertices of any P e since
the patterns R, B, W respect local injectivity constraints, and on the vertices of
degree three since the coloring is proper.

For integers a, b ≥ 3, let F (a, b) be the graph on a + b− 1 vertices consisting
of two cycles Ca and Cb sharing exactly one vertex (cf. Fig. 1 top right).
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Fig. 3. The reduction for List-F (a, b)-LIHom.
The lower part shows the new lists along a path P e (for e precolored red).

Lemma 3. For arbitrary integers a, b ≥ 3, the List-Fa,b-LIHom problem is NP-

hard.

Proof. Assume x is the vertex of F (a, b) of degree four and that the inner vertices
of the two cycles are p1, . . . , pa−1 and q1, . . . , qb−1.

We extend the proof of the previous lemma for the NP-hardness of the List-
Θ(a, a, b)-LIHom problem. Let G′ be the graph constructed from an instance G

of the Edge-precoloring extension problem. Define lists L′ such that for
every u ∈ VG′ (see Fig. 3):

x ∈ L′(u) ⇐⇒ v ∈ L(u) ∨ w ∈ L(u)

pi ∈ L′(u) ⇐⇒ mi ∈ L(u) ∨ na−i ∈ L(u)

qi ∈ L′(u) ⇐⇒ oi ∈ L(u).

We claim that G′ allows a locally injective homomorphism f : G′ → Θ(a, a, b)
respecting the list constraints L if and only if there exists a locally injective
g : G′ → F (a, b) respecting the list constraints L′.

As Θ(a, a, b) can be mapped locally injectively onto F (a, b), the “only if”
implication is straightforward (taking into account also the way how the new
lists L′ are constructed from L). For the opposite direction, note that the lists
L′ defined above together with local constraints assure that along each P e the
vertex x will be involved exactly four times (twice on the end). (This follows by a
simple case analysis when b 6= 2a, and a little more subtle argument analogous to
the case a = b < c of the proof of Lemma 2 works for b = 2a. The latter is omitted
because of space limitations.) We modify a feasible g : G′ → F (a, b) by a series of
substitutions. All odd occurrences of x along every P e will be replaced by v and
even occurrences by w. We further replace each pattern v, p1, . . . , pa−1, w by the
pattern v, m1, . . . , ma−1, w. Similarly, we replace patterns v, pa−1, . . . , p1, w by
v, n1, . . . , na−1, w and also all patterns v, q1, . . . , qb−1, w by v, o1, . . . , ob−1, w. In
this way we obtain a feasible locally injective homomorphism f : G′ → Θ(a, a, b).
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Fig. 4. The reduction for List-B(a, b, c)-LIHom.
The lower part shows the new lists along a path P e (for e precolored red).

For positive integers a, b, c, where b, c ≥ 3, let B(a, b, c) be the only graph on
a + b + c− 1 vertices consisting of two disjoint cycles Cb and Cc connected by a
path of length a.

Lemma 4. For arbitrary positive integers a, b, c, where b, c ≥ 3, the List-

B(a, b, c)-LIHom problem is NP-hard.

Proof. Let y, z be the two vertices of B(a, b, c) of degree three. Denote the in-
ner vertices of the path Pa by r1, . . . , ra−1 (this set may be empty), and let
s1, . . . , sb−1 be the inner vertices of Cb and t1, . . . , tc−1 the inner vertices of Cc.

We extend the proof of the previous lemma for the NP-hardness of the List-
F (b, 2a + c)-LIHom. Let G′ be the graph constructed from an instance G of the
Edge-precoloring extension problem. Define lists L′′ such that for every
u ∈ VG′ (see Fig. 4):

y ∈ L′′(u) ⇐⇒ x ∈ L′(u)

si ∈ L′′(u) ⇐⇒ pi ∈ L′(u)

ri ∈ L′′(u) ⇐⇒ qi ∈ L′(u) ∨ q2a+c−i ∈ L′(u)

z ∈ L′′(u) ⇐⇒ qa ∈ L′(u) ∨ qa+c ∈ L′(u)

ti ∈ L′′(u) ⇐⇒ qa+i ∈ L′(u)

We claim that G′ allows a locally injective homomorphism g : G′ → F (b, 2a+ c)
respecting the list constraints L′ if and only if there exist a locally injective
homomorphism h : G′ → B(a, b, c) with list constraints L′′.

The core argument is that for any homomorphism g feasible for the instance
(G′, L′), every vertex mapped onto x has at most one neighbor mapped onto
one of q1, q2a+c−1, and so the feasible homomorphisms g : C ′ → F (b, 2a + c) are
in a one-to-one correspondence with locally injective homomorphisms h : G′ →
B(a, b, c) obeying the list constraints L′′.



5 Proof of Theorem 1

Observation 2 If a graph H is an induced subgraph of a graph H ′, then List-

H-LIHom ∝ List-H ′-LIHom.

Proof. Given an input (G, L) of List-H-LIHom, it suffices to use it as an instance
of List-H ′-LIHom. Since the lists L(u), u ∈ V (G) do not contain vertices of H ′\H ,
any feasible homomorphism G → H ′ uses only vertices of H , and since H is an
induced subgraph of H ′, such a mapping is a homomorphism into H . In the
opposite direction, any feasible (locally injective) homomorphism G → H is
clearly a (locally injective) homomorphism to H ′.

Proof of Theorem 1:

The polynomial-time algorithm Assume each component Hj of H contains
at most one cycle. Then for each component Gi of G and every Hj we test
whether Gi allows a locally injective homomorphism (we may restrict lists of the
vertices in Gi to subsets of Hj). Each such a subproblem can be decided inde-
pendently. The overall problem has an affirmative answer if and only if for every
Gi, there exists at least one Hj allowing a locally constrained homomorphism.
The overall computational complexity remains linear.

The NP-complete part The membership of the List-H-LIHom problem in NP

is obvious. Assume H contains a component with at least two cycles. Let H ′ be
a smallest induced subgraph of H containing at least two cycles.

If H ′ contains exactly two cycles, these two cycles must be edge-disjoint (the
symmetric difference of the two cycles would yield a new cycle otherwise). If the
two cycles are further vertex-disjoint, then H ′ is isomorphic to some Ba,b,c. If
the cycles share one vertex, then H ′ is isomorphic to some Fa,b.

Otherwise H ′ has two intersecting cycles. If the graph is not isomorphic to
some Θ(a, b, c), then between some of the three paths of Θ(a, b, c) there exists
an induced edge. Then either H ′ contains a smaller Θ(a′, b′, c′) (contradicting
the minimality of H ′) or H ′ is isomorphic to K4.

We have proved in Section 4 that for each of the graphs B(a, b, c), F (a, b),
and Θ(a, b, c), the List-H-LIHom problem is NP-hard. For the case of H ′ = K4,
the NP-hardness follows from the trivial reduction H-LIHom ∝ List-H-LIHom

and the fact that K4-LIHom is NP-complete [8]. The conclusion then follows by
Observation 2.

6 Concluding remarks

6.1 It is interesting that the case of locally surjective homomorphisms does not
seem expressible as a CSP problem. Yet a full dichotomy holds both for List and
non-List versions.

6.2 An irritating open problem is an analog of Observation 2 for locally bijective
homomorphisms. A direct proof would hinge on an involved garbage collection.
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Fig. 5. Edge replacement gadget for the reduction of the planar Edge-precoloring

extension problem to the planar List-H-LIHom problem.

6.3 For many instances of the H-LIHom problem for H = B(a, b, c), F (a, b), and
Θ(a, b, c), we can prove NP-hardness also for the non-List version. However, a
full characterization even for these simple graphs is not known.

6.4 Recently Daniel Marx [18] showed that the Edge-precoloring extension

problem remains NP-complete for planar bipartite 3-regular graphs. Our reduc-
tions in the proofs of Lemmas 2-4 preserve planarity. D. Marx suggested [personal
communication] a simple planarity preserving reduction for List-K4-LIHom. The
gadget is depicted in Fig. 6.

Here, each edge of a graph G, the instance of Edge-precoloring exten-

sion is replaced by the graph on 12 vertices, consisting of a cycle on six vertices
with attached leaves. All leaves are assigned lists with a single element (e.g. {4}),
hence their mapping onto K4 is fixed. Two opposite leaves are identified with
the two original vertices of the original edge. A simple case study yields, that
the opposite vertices of the C6 must be mapped onto the same vertex in K4.
As there are only three vertices available, the images of the neighbors of the
original vertices may represent colors of the original edges. The local constrains
assure that any locally injective homomorphism from the modified graph G′ to
K4 corresponds to a valid edge-3-coloring. The precoloring of some edges can be
embedded in a straightforward way.

From the above, we can conclude that whenever a connected graph H con-
tains at least two cycles, the List-H-LIHom problem is NP-complete even for pla-
nar inputs. However, the complexity of planar K4-LIHom and planar K4-LBHom

(without lists) is still an interesting open problem.
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