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Introduction

In 1956 Eugene Wigner wrote an influential article [148] The unreasonable ef-
fectiveness of mathematics in the natural science. The paper became not only
influential but also kind of paradigm for other papers about “unreasonable” or
“surprising” effects, [17, 82, 32, 108] (thus this beeing also an evidence how im-
portant is to select the right title). I also chosen to paraphrase this title. But by
doing so I should stress immediately that I am not analysing the phenomenon
in the title per se (as Wigner did) but merely describing the situation which
became (a little bit surprisingly) apparent when treating the main topic of this
paper - the joint work of P. Hell and myself from the contemporary perspective.
This may sound overdone. It is not. This paper is mostly about rigid graphs.

Figure 1: Hedrĺın Pultr graph [63]
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I.
This is neither a survey of Pavol’s work, nor a history of our collaboration. But it
begins with a little history. We entered the Faculty of Mathematics and Physics
of the Charles University (abbreviated in Czech as MFF UK) in Prague in 1964.
As was customary in those days the actual begin of classes was proceeded by
an agriculture brigade. In September that year we were harvesting hops and for
two weeks we had a great time and some of lasting friendships started there.
Immediately after classes began we realized that one of our teachers was very
different in his style and approach to us. It was the first year when Zdeněk
Hedrĺın was teaching Matematická analýza (i.e. Calculus) for freshman and he
did it with an enthusiasm and a great ambition. So when he together with Aleš
Pultr started a (no credit) seminar where we would “do problems” we all went
along - some 30 students in the freshman class, winter term! Well, in the first
year you mostly do what you are told to do.

Hedrĺın and Pultr were then in their prime as scientists [62, 63, 64, 59, 140]
and they had a vision to do graph theory with us. They presented us with the
following problem:

Problem 1 (Rigid graph)
Find a graph G such that the identity is the only homomorphism G → G.

This was right simple: What is an undirected graph G = (V, E) we under-
stood quickly (although we never heard about anything like it before) and what
is a homomorphism G → G was also easy as this was very much same as in
algebra (just to be on the safe side: a homomorphism G → G′ is a mapping
f : V (G) → V (G′) which preserves the adjacency of vertices: xy ∈ E(G) ⇒
f(x)f(y) ∈ E(G′)). So this seemed to be all too simple task (particularly, if we
would accept the trivial solution). But later, as we got deeper into various inter-
esting aspects of the problem, we were thrilled that here is something so simple
and yet it could be perhaps new and the beginning of our doing mathematics.

It is my life’s conviction that if you want to teach well you have to give the
best without reserves. Original problems, fresh ideas, confidence and dreams.
All what you know, what you would like to know or you dream it could be true.

And of course in retrospect, it appears that our teachers did not tell us
(intentionally) the whole story. They knew the solution [62], see Fig. 1. But
they believed that we have to discover things ourselves and that there is enough
substance in the problem (being also encouraged by a conversation with P. Erdős
who informed them about his probabilistic solution [60]).

We were working on the problem and as the work became more involved (and
as of course we had more and more school duties) the group became smaller
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(but always included V. Chvátal, P. Hell, L. Kučera and the author). There
were various examples of rigid graphs found. One of the nicer ones was Pavol’s
example of a rigid graph, see Fig. 2.
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Figure 2: Pavol’s rigid graph

This example involved the notion of chromatic number and critical graph.
It clearly separated asymmetry from rigidity. And it was not just a singular
example, it was a method. This example (and its variants) continues to be
useful [128, 53, 39, 21, 111].

Later we were suggested other problems which led to our first publications
of Chvátal [18] and myself [99] and the seminar was transformed to a more
traditional structure. Pavol was the most active in the original direction of
rigid graphs and he wrote his first paper [35] (where he showed that the minimal
number of edges of a non-trivial rigid graph is 14, see Fig. 3).

(a) (b)

Figure 3: Mystical examples
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The figure from [35] reproduced above contains a series of mystical examples.
The first of these is an example of a rigid graph with 8 vertices and 14 edges the
smallest rigid graph. This graph is by now known to be unique - the smallest
rigid graph. The fact that it is unique is first stated in our conference article [47],
see Fig. 4. This example is dear to us and we humbly call it Our Graph.

Figure 4: Our Graph

Our Graph has been reproduced many times, see Fig. 5.

(a) (b) (c)

Figure 5: Reproducing Our Graph

The last nice drawing is due to Jǐŕı Fiala and Jan Kratochv́ıl for the 2006
Prague meeting.
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II.
We did not complete our studies at Charles University. This is not the place
for a more detailed description of mathematical environment of the Charles
University. Let me just say that as undergraduates we had access to excellent
teachers of international prominence (as we of course learned only later). Let me
just say that lectures by Jaroslav Kurzweil, Jan Mař́ık, Jindřich Nečas, Ladislav
Procházka, Alois Švec, Věra Trnková and Petr Vopěnka, lectures and seminars
by Miroslav Katětov, they all proved to be most inspiring intellectually.

Both Pavol and I treasure a memory when, in December 1967, we tool an
early exam from Analytic Functions and were allowed by our teacher Vojtěch
Jarńık to study for the last two lectures from his handwritten notes, as his illness
prevented him from delivering the lectures; indeed we were invited to write the
exam at his home. These were the last regular classes of Jarńık. Our speciality
was Mathematical analysis and it consisted from just 11 students †. This was
regarded at the time as mathematically most theoretically oriented study group.

I have always highly valued the mathematical and educational excellence of
MFF UK and I am very proud to be the part of this organization for many
years now.

Figure 6: Prater

†K. Neubauerová-Bendová, J. Blaťák, V. Chvátal, M. Frǐs, P. Hell, V. Kubát, L. Kučera,
M. Kučera, J. Nešeťril S. Verner, J. Zemánek
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In the winter term 1968 we were both in Vienna where we were accepted as
students by the faculty responsible for foreign students which was represented
by Edmund Hlavka and F. Schweiger. As a curiosity (certainly from the today
point of view) we were admitted and received reasonable scholarship solely on
the basis of our two publications [99], [35]. In Vienna we stayed together and
we had a lot of free time and it is there where we started to write papers.
Shortly before Christmas 1968 we went to Canada as graduate students of Gert
Sabidussi who was then at McMaster University. (This was made possible by
two facts: Sabidussi’s Vienna roots (and H. Izbicki’s recommendation), and also
by the fact that Aleš Pultr was a visiting professor at McMaster in 1968). We
had much less time now, mastering the language and taking classes. Vašek and
Jarmila Chvátal were at University of Waterloo and we have much enjoyed our
student life in Canada (which was very different from the situation back home).

In the summer 1969 we all took part in the legendary conference in Calgary
(which became a template for large combinatorial conferences for many years to
come). We gave two lectures and presented two papers to proceedings [47, 111]
(one of them with Our Graph mention above). We travelled across Canada by
train and continued until Victoria. Vancouver was very different back then (and
so we were).

Figure 7: Vancouver

We were still working on rigid graphs [46] and completed the paper [21] with
Vašek Chvátal and Luděk Kučera (which is the only souvenir of the entire group
from our student days). This paper contains the following.

Theorem 1 ([21])
For every finite graph G there exists a graph H with the following properties:

1. H contains G as an induced subgraph;

2. H is rigid.

The proof given in [21] is constructive and uses rigid graphs from [111], which
are themselves relatives of Pavol’s graph from figure 2. (Today an alternative
proof follows easily from properties of random graphs: Take large graph H at
random with the probability 1−ε this graph is rigid and also it contains G as an
induced subgraph. But this has been shown only later [70].) The construction
proved to be useful in the other context [52, 39, 53].

7



In retrospect out work in 1969 led to the important notion of the core of a
graph which we state generally for finite structures:

Definition 1
A structure S is a core if every homomorphism S → S is an automorphism. A
substructure S′ of S is called core of S if S′ is a core and there is a homomor-
phism S → S′.

The nice thing is that core of S (for a general finite structure) is uniquely
determined (up to isomorphism) and thus we can speak about the core of S.
The core of a structure is useful invariant which captures (and reduces) the
complexity of coloring problems see e.g. [51, 38] and recently [81]. It also allows
to study finite structures by means of a partial order. Write S ≤ S′ if there is
a homomorphism S → S′. ≤ is a quasiorder (as it many happen S ≤ S′ ≤ S

without S and S′ beeing isomorphic). But when we restrict ≤ to non-isomorphic
core structures we get a partial order called the homomorphism order [53].

The term core seems to be now generally accepted yet it started as a naive
student joke: Our supervisor in Canada was Sabidussi, to whom we endearingly
reffered as “dussi”, or rather “duši”, which is close to the Czech word “duše”,
meaning the soul, or core. Although we isolated and made use of this concept
in 1969 we wrote the paper [52] that became the standard reference much later
(for Sabidussi’s 60th birthday meeting; there were proved the NP -completeness
of the core-decision problem).

Some results which were treated in (the Calgary conference) papers [47,
111] are continuing to be interesting. Let us list two of them: The paper [47]
determines (thus extending [35]) the minimal (and maximal) number of edges
of a rigid (undirected) graph with n vertices (these numbers appears to be n+2
and

(

n
2

)

− n + 1 for n ≥ 20). The situation is very different for relations (=
oriented graphs):

Problem 2 (Minimal rigid relation)
Given a set V of n vertices determine the minimal number RGD(n) of arcs of
a rigid relation on V .

Clearly RGD(n) < n and the true value is of the order n(1− 1
log n

). However
the exact value seems to be a hard problem - homomorphisms are hard to
enumerate.

The existence of a rigid relation leads to an important result:

Theorem 2 ([145])
On every set there exists a rigid relation.

This has been proved in a landmark note [145]. Other constructions (which
are however related to the original proof) are given in [61] and perhaps the
simplest recently in [107].

This paper is about (algebraic aspects) of finite combinatorics but at this
point we make a little excursion to infinite graphs. While on every set there
exists a rigid relation, it is not clear whether these relations can be made mu-
tually rigid (i.e. with no homomorphism between them). In fact Petr Vopěnka
conjectured that this cannot be done without help of further set theoretical
axioms:
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Vopěnka’s Axiom (VA) There is no proper class Gα, α ordinal number, of
rigid graphs such that there is no homomorphism between any Gα and Gβ for
α 6= β.

VA is known to be consistent with ZFC [72] and it has been studied in
various context, see e.g. [2]. From the combinatorial point of view it can be
equivalently formulated as follows:

Proper class WQO axiom (PCWQO) Any proper class collection of alge-
braic or relational objects Sα, α ordinal, contains two objects Sα, Sβ , α < β

such that Sα is an induced substructure of Sβ .

(Algebraic or relational object means that we bound the arities of relations
and operations; without this PCWQO does not hold: consider object of form
(α, {α}), α is ordinal number viewed as set {0, 1, . . .}.)

PCWQO can be seen to be equivalent to VA (via Theorem 2 which hold
in ZFC) and it presents a deep and general property of infinite graphs (in the
spirit of WQO theory for finite objects).

Our of work on VA (unsuccessful work; we wanted to prove it) resulted in
the paper [48]. (Note that the essence of VA and PCWQO is the proper class
condition. If we instead want to find arbitrary many mutually rigid graphs then
this can be done more easily. See [39] for many classes with special properties
where this can be done.) This result was later strengthened by Babai and
Pultr [7] who showed that k-regular graphs do not represent every finite monoid.
This is with contrast with the recent results of Hubička and myself [67] where
it is shown that planar graphs with all its degree bounded by 3 (i.e. subcubic
graphs) represent every countable poset. The question of representability (and
embedding of categories) were at the centre of attention of our teachers at that
time (“the Prague school”). We are only touching the subject here and instead
refer to a book of Pultr and Trnková [140] or, more recently, our book [53].

Another direction which resulted from [111] was the extension of graph
concepts to hypergraphs (which we called then “societies” - a term coined by
Hedrĺın). The extension was possible by reducing the problem to graphs in today
terms using sections or shadows or Gaifman graphs. Even more generally one
can consider finite structures S which contain relational and function symbols
of prescribed arities from a certain signature set σ. Somewhat more explicitly
a relational structure S of type ∆ = (δi; i ∈ I) is a pair (X, (Ri; i ∈ I)) where
Ri ⊆ Xδi , i ∈ I. Homomorphisms are again defined as mappings preserving all
relations of all arities. It was a legacy of our study at MFF UK that conceptually
the study of homomorphisms is insensitive to structures and that one can aim
for the “grand picture” (in today jargon). The structural (or model theoretic)
context of homomorphisms gained recently a prominence in the context of Con-
strained Satisfaction Problem (CSP). The approach goes back to [12, 137] and
also to Ivo Rosenberg who initiated in 1972 [141] study of strongly rigid graphs
(and relational structures). These are rigid graphs (structures) G in which is
satisfied that the only homomorphism Gk = G × . . . × G → G is a projection.
Objects with the later property are now called projective objects. Resenberg
asked whether almost all relational systems are strongly rigid. This has been
verified only recently [86]. This is a very active contemporary context and we
shall return to it later.

In the winter 1969 we both wrote our MSc thesis at McMaster University.
Neither was about rigid graphs (where we have at the time felt we were the
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experts). It is interesting (with respect to the later development) to note that
Pavol wrote his thesis about Ramsey numbers [36] and parts were published
in [37], while my thesis was about asymmetric graphs [100] (i.e. the graphs with
the only identical homomorphism). I proved various properties mostly in the
relation to Ulam’s reconstruction conjecture (which was a very popular subject
then); this part appeared in [102]. The second part of my thesis was devoted
to the extremal question of asymmetry. To my horror I discovered shortly
before the thesis submission that most of the material in this second part was
considered by Erdős and Renyi in their classical paper on the subject [26] - the
paper which I did not know (in those pre-Google times). Sabidussi’s reaction was
very nice: this is very good, take it as an encouragement and a proof that you did
good things. Nevertheless, I omitted some parts from the thesis and published
them separately, see [101]. I was then surprised to receive one (handwritten)
reaction to my thesis which was dealing with similar problems. Much later I
realized that this was one of the first papers by Saharoni Shelah [144]. After 35
years we collaborated [127] and again in a homomorphism context.

The hastily organized MSc defense marked forever the end of our joint studies
(in Prague, Canada and elsewhere).
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III.
In 1970, Pavol began his doctoral studies at the Université de Montréal (again
with Sabidussi), and I became an Assistant Professor at MFF UK in Prague.
Our lives (and worlds) separated, but we never lost contact, and never stopped
collaborating. Even through the darkest years we continued writing joint pa-
pers [48, 49, 50].

Interestingly enough, we have never had a priority dispute - which is rare, as
everybody knows. We wrote doctoral theses on different topics again. Pavol’s
thesis was on graph homomorphisms and it is rightly seen as the foundation of
the theory of graph retracts. The techniques proved useful later on, and the
resulting theory is described in Chapter 2 of [53]. In particular, the notion of
dismantlability lead to some very nice work of Pavol and various of his coauthors
(Hans-Jurgen Bandelt, Ivan Rival, Martin Farber and others [8, 56], and very
recently to work of Benoit Larose, Claude Tardif, and Pavol’s student Cynthia
Loten [81]). But as our lives separated, so did to a large degree our research.
While Pavol made (and continues to make) numerous contributions to general-
izations of matchings (for instance [43, 44]), various interconnection networks
(including [9, 10]), and algorithms for nicely structured graphs (such as interval
graphs [42], chordal graphs [45], circular arc graphs [11]), to name a few areas,
my interests were, and remain, more on the combinatorial and algebraic side.
To keep on the theme of this paper, allow me to focus on the subject as seen
from the Prague perspective.

Back home my life changed profoundly in many respects but mathematically
the main difference was that I started to work intensively with students (which
at the beginning were just a few years my juniors). I founded Kombinatorický
seminář (Combinatorial seminar) which I chaired then for many years and which
brought me much joy. The Combinatorial seminar was (and I believe is) one
of the most active Prague group, which was broadly mathematically based and
attracted some of the best talents from the whole country (Czechoslovakia and
then Czech Republic). I am not going to report this activity but let me just
say that at the beginning I was fortunate to have Vladimı́r Müller, Jan Pelant
and Vojtěch Rödl. This quickly resulted in solutions of open problems [138, 91,
92, 97, 98, 95] and our group started to be well known both abroad and then at
home. Paul Erdős was our great teacher and supporter.

In Prague, the principal figure for us at this time was Zdeněk Froĺık. Inter-
estingly, I did not know Froĺık as a teacher in sixties (he was mostly abroad).
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But in seventies he was our great supporter and sheltered us from many things.
His Winter Schools in Abstract Analysis were for us absolute highlights of each
year. Unfortunately Froĺık died at an early age, see the volume which we ded-
icated to him [110]. I believe Froĺık would be happy from the development of
our “combinatorial group” which is now involved in most of mathematics.

Mathematically (and otherwise) the most important thing I did in seventies
and eighties was Ramsey Theory and my collaboration with Vojtěch Rödl. Vojta
will be of course forever my most frequent coauthor and the work we did together
profoundly influenced my whole career as mathematician and teacher [124].
But this paper is on a different topic. (I will be only happy to return to our
collaboration at another occasion, i.e. soon, for example when Vojta will be
60!).

The research activity related to rigid objects and homomorphisms contin-
ued. With Vladimir Müller and Jan Pelant we published several papers [95, 96]
on tournament algebras (and simple tournaments investigated independently at
the same time by Paul Erdős and Eric Milner [27]). With Lászlo Babai [5, 6] we
extended Theorem 1 to infinite graphs and with Mike Adams and Jǐŕı Sichler [1]
we investigated images of rigid graphs (where the situation is not completely
clarified yet). I also investigated influence of orientations on automorphisms
and homomorphisms [103, 49] (earlier Chvátal and Sichler [22] investigated a
similar problem for colored graphs). But perhaps in this context most impor-
tantly I decided around 1975 to write a Czech book on graph theory which was
otherwise badly needed and which will be “homomorphism based” or better say
“influenced”. In doing so I rethought many things we did earlier and some new
pattern emerged. I want to single out three particular notions which appear
in [105] and which the book certainly helped to crystalize.

Definition 2
A graph is said to be productive if the following holds: G × G′

9 H providing
G 9 H and G′

9 H where G × G′ is a direct product of graphs G and G′.

The famous product conjecture (Hedetniemi conjecture [53]) asserts in this
language that every complete graph is productive. In [62] we justified this def-
inition by this connection and established some basic properties, including the
productivity of directed cycles of prime length; we conjectured that all directed
cycles of prime power length were also productive. Interestingly, Pavol came
independently to ask similar questions about 10 years later, unaware at first
of our paper [61]. By the time their paper [34] was published, Pavol and his
authors (Roland Häggkvist, Donald Miller, and Victor Neumann Lara) knew
about our paper and realized that they have proved our conjecture on directed
cycles of prime power length. (Their proof uses a topological lemma; a beauti-
ful direct combinatorial proof due to Xuding Zhu [150] is reproduced in [53].)
They have used the term multiplicative graphs, which has now become stan-
dard [53]. Claude Tardif [146] recently proved that there are multiplicative
graphs with circular chromatic number arbitrary close to 4. K4 is the smallest
graph which is not known to be multiplicative. Tardif’s proof uses categorical
machinery (adjoints) the study of which (for relational structures) was origi-
nated by Pultr [139].

Another concept which was in fact the leitmotiv of the whole book [105] was
the concept of homomorphism duality. Here the genesis is more complicated.
Some of the seminal papers of modern computational complexity theory are
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the work of Jack Edmonds [24, 25]. He anticipated the complexity classes P

and NP and coined the term good characterization of a decision problem. The
class of problems with a good characterization (on the abstract level) coincides
with later introduced class NP ∩ coNP . The good characterizations became
very popular in the beginning of 70ies by work of Chvátal, Lovász and others
as a paradigm for solving combinatorial problems. I very much liked Vašek
Chvátal’s paper [20] where he popularized good characterizations by a nice
story. I reproduced a similar story in [105] and was thinking hard about the right
approach to good characterization for coloring problems (in today’s terminology
CSP). This led to the notion of homomorphism duality which in its simplest form
can be stated as follows:

Definition 3
Let F , D be structures. Denote by F 9 the class of all structures S for which
there is no homomorphism F → S. Similarly denote by → D the class of all
structures S for which there is a homomorphism S → D. A (singleton) duality
is the equation of classes

F 9=→ D

In this case (F, D) is called dual pair, D is dual of F .

In today notation one would write Forb(F ) for the class F 9 and CSP (D)
for the class → D. It is also clear how to extend this to finite families F and
D. We then speak about finite dualities [29, 109, 130].

I strongly believed that by choosing appropriate morphisms and structures
one can capture all good characterizations. (This belief materialized: Linear
programming duality (Farkas lemma) may be rephrased as duality of oriented
matroids, see my papers with Winfried Hochstätter [65, 66] and all CSP prob-
lems fit to dualities in the context of recent papers with Gábor Kun [78, 79].).
In the book [105] I rephrased most of the main min-max theorems in terms of
dualities. With Aleš Pultr we wrote shortly after the paper [118] with a self
explanatory title On classes of relations and graphs determined by subobjects
and factorobjects. There we derived some general properties and showed that
there are no nontrivial dualities for undirected graphs:

Theorem 3
Up to the homomorphism equivalence there is only one trivial dual pair (K2, K1).

However already for directed graphs (not to speak about other structures)
we have not found a characterization. For the case of directed graphs this was
completed later by my student Pavel Komárek [74, 75]. The full generality of re-
lational structures was considered and solved together with Claude Tardif [130]:

Theorem 4 ([130])
For a finite relational structure F the following two statements are equivalent:

1. F is a tree structure;

2. F has a dual D.

There is a much recent activity surrounding this theorem, see e.g. [3, 81, 29].
But here we are jumping too much in time. Some of the last development is
reviewed at the end of this article.

13



Let us just mention, that another homomorphism concept which originated
around the same time in [105] (in the Ramsey theory context (!) [122]) was the
notion of the dimension of an undirected graph [119, 85, 123].

Out of my work with Babai [5, 6] originated two interesting problems:

Problem 3 (Linear representation of monoids)
Does there exists c > 0 such that every monoid M with n points can be repre-
sented by the monoid of endomorphism of a graph with at most cn vertices?

Recall that Babai earlier proved that every group with n points can be
represented by a graph with 2n vertices (with few exceptional cases).

Problem 4 (Chromatically optimal rigid graphs)
Let G be a graph. Does there exists a rigid graph H containing G as an induced
subgraph if and only if χ(G) > ω(G)?

(The condition is clearly necessary; that goes back to 1964.) With a little
experience one sees easily that both problems are related to rigid graphs led to
the following two results by Václav Koubek, Vojtěch Rödl and author:

Theorem 5 ((Mutually rigid graphs) [76])

1. Asymptotically almost all graphs are rigid. Thus the number of non iso-
morphic rigid graphs with n vertices is

2(n

2
)

n!
(1 − o(1))

2. The number of mutually rigid non-isomorphic graphs with n vertices is
asymptomatically equal to

1

n!

(

(

n
2

)

b
(n

2
)

2
c

)

(1 − o(1))

This allowed the authors of [76] to give a negative answer to the Problem 3:
there are monoids M for which every graph G with End(G) ∼= M needs at least
|M | log |M | vertices (End(G) is the endomorphism monoid of the graph G).

The stability of rigid structures (reflected in Theorems 5 and 10) may provide
an answer to the permanence of rigid graph motivation. Rigid structures are
everywhere. Like stones they are all around us. But to find a nice stone (which
would fit to your own garden) is another, often non-trivial, thing.

The Problem 4 on chromatically optimal rigid graphs has positive solution.
The key ingredient in this is the following result which was first isolated by Rödl
and myself in [122]. The result holds for general finite structures. We formulate
it just for graphs.

Theorem 6 (Sparse incomprarability lemma SIL [122])
Let k,` be positive integers. Then for every graph G there exists a graph G′

with the following properties:

1. G′ contains no cycles of length ≤ `

(i.e. the girth of G′ is > `)
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2. G′ → G

3. For every graph H with at most k vertices G′ → H iff G → H .

Putting intuitively, despite of the fact that G′ is much sparse than G, it
cannot be distinguished from G by the existence of homomorphism into small
graphs. (Note that we do not consider counting analogs of this result. This leads
to different theory [13] which goes back to Lovász pioneering paper [83]. This
in turn inspired both Lovász [84] and Müller [91] work on Ulam’s conjecture.).

Sparse incomparability lemma holds (with the analogous proof) for relational
structures and has many applications (see recent [23]). For example it yields an
easy proof of

Theorem 7 (Graph density)
Let G1,G2 be graphs satisfying G1 → G2 and G2 9 G1 (i.e. G1 < G2 in
the homomorphism order). Let G2 be non-bipartite. (Thus we are, up to the
homomorphism equivalence, excluding the single case: G1 = K1, G2 = K2.)
Then there exists a graph G such that

G1 → G → G2,

G2 9 G 9 G1

This means that in the homomorphism order of undirected graphs there are
no gaps G1 < G2 (except of K1 < K2). Density theorem was proved in [147]
by Emo Welzl. Later a much shorter proof was found independently by Micha
Perles and the author (see [106, 53] and also [31]). Here is another short proof
using Sparse incomparability lemma.

Proof. Let G1,G2 be as above applying SIL find G′
2 such that G′

2 → G2, G′
2 has

girth > |V (G2)| (we do not optimize here) and G′
2 → H iff G2 → H whenever

|H | ≤ |V (G1)|. Particularly G′
2 9 G1 and thus we can put G = G1 + G′

2. (It is
G2 9 G as G2 contains an odd cycle.).

Sparse incomparability lemma was studied intensively and it was also gen-
eralized and strengthened [90, 135, 77]. P. Erdős asked often for a construction
of combinatorial objects whose existence is guaranteed by probabilistic method.
One such question was whether one can construct uniquely k-colorable graphs
without short cycles. The problem was solved by Vláďa Müller [92, 93] (see
also [71]), in a more general form where he proved a remarkable theorem about
graphs extending a given set of colorings (on a fixed subset of vertices). We call
this result Müller’s extension theorem (MET).

In the course of generalizations of SIL we recently found with Xuding Zhu
a characterization when MET holds:

Theorem 8 ([135])
For a core graph H , the following statements are equivalent:

I. For any choice of a finite set A and distinct mappings f1, f2, · · · , ft : A →
V (H) there exists a graph G = (V, E) such that the following holds:

i. A is a subset of V ;
ii. For every i = 1, 2, · · · , t there exists unique homomorphism gi : G → H

such that gi restricted to the set A coincides with the mapping fi;
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iii. For every homomorphism f : G → H there exists i, 1 ≤ i ≤ t and a
homomorphism h : H → H such that h ◦ fi = f ;

iv. G has girth > l.
II. The graph H is projective;

G′

g

f

c

H ′H

Figure 8:

But there we are jumping again. Going back to 80ies I believe these were
some of the most intense years for myself. Mathematics was very nice, I had
wonderful group of students and collaborators with whom we shared life in gen-
eral. We even had a time for our mathematical theatre as we recently reported
with V. Müller in [94]. The Combinatorics seminar was wonderful, perhaps
reaching its peak in 80ies also with S. Poljak, J. Kratochv́ıl, J. Matoušek, R.
Thomas, I. Kř́ıž, P. Komárek, M. Loebl, J. Witzany, O. Zýka. It is hard to say,
this statement is perhaps not even true as the seminar was all the time high
quality and a pure joy (and my pride in otherwise tense situation), I considered
it the most important thing I did. And we tried to do all mathematics. But this
is another story and far from the “surprising rigid permanence” I am covering
here.
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IV.
In 1986 I visited Pavol at SFU for the first time. Although we maintained
contacts and we of course knew about our work and activities, it was a very
new and inspiring moment to meet again. We started to work instantly, as if we
had never been separeted, only with more maturity and experience. Soon after
we met we were fortunate to complete together what we started to contemplate
independently: Recall that H-coloring of a graph G is just a homomorphism
G → H (H is called template). H-coloring problem is the following decision
problem:

Input: graph G

Question: does there exist G → H?

In 1986 − 1987 we proved the following:

Theorem 9 ((H-coloring) [51])
H-coloring problem is NP -complete iff H is a non-bipartite graph.

This result is one of the inspirations for the celebrated Dichotomy Conjecture
of [28].

Dichotomy Conjecture [28] The H-coloring problem (even when generalized
to relational structures) is always either polynomially solvable or NP -complete.

H-coloring covers a broad class of problems. Every constraint satisfaction
problem (CSP ) may be interpreted as an H-coloring problem ([28]) for rela-
tional structures. The other general cases when the dichotomy conjecture is
know to hold are the cases when the template has 2 [143] or 3 vertices [14] (in
the case of relational structures). Theorem 9 is even more striking as the general
Dichotomy Conjecture can be reduced to the H coloring problem for oriented
graphs. The proof of Theorem 9 is interesting (and presently non-trivial). (This
is true also about the second proof published recently by Bulatov [15].) The
proof does not follow by a subgraph argument (and this cannot be expected
as the NP -completeness fails to be a monotone property in general). But it
is possible to say that the proof uses again experience gained in rigid graph
constructions (particularly the replacement, or indicator construction, see [53].
The paper [51] proved to be much more important then we originally thought
and it became our most quoted paper.
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Pavol introduced me to his then postdoc and most active collaborator Xud-
ing Zhu (fresh PhD from Calgary, Norbert Sauer supervisor), with whom he
investigated various homomorphism problems [58, 57] including the “path dual-
ities”. We quickly started to work together and produced [54] where we defined
Bounded Tree Width Dualities (BTWD) which can be defined as follows:

Definition 4 (BTWD)
We say that H-coloring problem of graphs has bounded tree width duality if
there exists a positive integer k such that the following statements are equivalent
for any graph G in K:

1. G → H

2. For any graph T with treewidth(T )≤ k holds: If T → G then T is H-
colorable.

(Note that the duality (F, D) can be also expressed in these terms: F 9 D

and G → D iff F → G implies F → D.)
We proved that BTWD implies that the problem is polynomially tractable [54].

We were not aware of an independent work done by Tomás Feder and Moshe
Vardi [28]. But this was a very inspiring connection which led to a great en-
richment of our research and to the important collaboration of Feder and Hell.
Many of the methods and problems which we were considering found a proper
setting of the complexity of CSP in terms of universal algebra and structures
of a more general type. Pavol understood correctly that here is a very rich
field and analyzed the complexity of H-coloring problem thoroughly with many
coauthors: oriented cycles, semicomplete graphs, list homomorphisms and lately
M -partitions. This activity is reflected well by [16, 38, 41] and outlined in [53].

Soon after we met we started to contemplate “writing a book”. Well most
people do contemplate such a thing but it took us nearly decade [53].

Despite having written many papers I do not write books easily. Subcon-
ciuosly, I am perhaps too ambitions. To write a book is a duty (for after the
initial optimism it becomes a selfimposed duty). I try to use to organize, to
rethink the whole material again, better and basically from the scratch. This is
not a very efficient method: Czech Graph Theory [105] is perhaps too original
and I had never enough courage and time to transform it in the English. Our
book with Jirka Matoušek: Invitation to Discrete Mathematics had 4(!) Czech
published iterations before it was finally done in English [89] (and since then to
other languages [89]). And with the book Graphs and Homomorphism [53] this
was similar. We were not satisfied with the purely algebraic (category theory)
motivation and wanted to understand better the combinatorial core of whatever
we wanted to include. On the other hand we wanted to keep and stress the flex-
ibility of the homomorphism language and not to write a purely “graph theory”
book. I believe we (modestly) succeeded but it took a long time. We selected
(a little unusual) collection of algebraic theorems (including the often neglected
Freyd-Vinárek characterization of concrete categories) and blended it with com-
binatorial analysis of various graph operations, complexity and applications (to
various types of graph colorings in the context of the Channel assignment prob-
lem). What came out of blue and is perhaps the chief novelty of the book was
the various aspects and properties of the homomorphism order. Here we get a
helping hand from Claude Tardif (another former Sabidussi student) with whom
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we worked on dualities. We not only proved Theorem 4 but we also showed that
dualities may be characterized equivalently in order theoretic terms by means
of gaps (i.e. intervals S < S′ in the homomorphism order not containing any
other structure) and minimal cuts, i.e. maximal antichains, (of size 2). The
correspondence is very general and holds in Heyting posets [120].

Dual structures of trees are truly amazing. This is indicated also by the
fact that several constructions of duals were discovered in different context.
Currently we have the following constructions:

• using gaps (i.e. predecessors) and power graph construction [130];

• “bear construction” via neighbourly mappings [131];

• deletion method (a generalization of Komárek’s construction [75]);

• model theoretic construction via monadic lifts, implicit in [28] and [87];

• specialization the universal construction [69].

It is known that duals have exponential size cores, even almost all oriented
paths are exponential core duals [80], and that they have a small diameter [129].
They can be recognized and even belong to NP [29, 129, 131, 132, 81].

I believe that our book [53] is not only the first book on graphs and homo-
morphisms but it is also perhaps the first book which combines algebraic graph
theory with complexity and structural methods.
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V.
It seems that [53] was well received. It also came in the right time as presently
we are witnessing an explosion of research related to homomorphisms. Even to
outline the main questions which are considered would be to extensive. So in the
spirit of this paper let us finish this paper by restricting ourselves to our main
topic - rigid graphs. Indeed they seems to be a persistent flower (or weed?).

With Tomasz  Luczak [86] we recently verified Dichotomy conjecture for al-
most all templates (over general signature). This is based on the following
(which is yet another manifestation of Erdős-Rényi stability of rigidity):

Theorem 10
Asymptotically almost all structures with a given signature are strongly rigid.
More precisely this means two thing:

1. Asymptotically almost all structures on large sets are strongly rigid.

2. Asymptotically almost all structures on a fixed universum (of size > 1)
with large enough arities are strongly rigid.

(The complexity result is based on the algebraic approach to complexity
reduction theorems - see e.g. [86], [16]. It follows that H-coloring problem is
NP -complete whenever H is strongly rigid.). Core structures also played a key
role in the following recent result in mathematical logic:

Benny Rossman [142] solved an old problem proving that a homomorphism
closed class K of structures is First Order (FO) definable if and only if it is also
positively FO definable. The later means that there are finitely many structures
S = {S1, . . . , St} such that K consists from all structures S satisfying Si → S for
some i. Where do we get this finitness? The homomorphism order is (countably)
universal even for simplest structures (a striking result in this direction is [68]:
the homomorphism order restricted to orientations of finite paths is universal;
solving a problem and extending [136].).

This of course implies that the homomorphism order is on the opposite side
of the spectrum than say WQO posets (which are typically used in a finite basis
arguments). The finitness is a consequence of the following definition [112] which
goes back to [127] (and perhaps earlier):

A tree complex is any subcomplex of the chain complex corresponding to a
finite rooted tree (i.e. a branching viewed as poset). Given relational structure
S = (X, (Ri; i ∈ I)) the tree depth td(S) of S is the minimal height of a rooted
tree T such that all tuples in relations of S are contained (as sets) in the tree
complex of T . td(S) is well defined (as any S is contained in the tree complex
of any chain on X). [112] (and more recent [113]) contains the following:
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Theorem 11 (Finitness)
For all fixed positive integer k the class of all structures S with td(S) ≤ k (with
a given signature) has only finitely many cores.

(While the number of cores of graphs with tree depth ≤ k is finite this
number grows very rapidly even in the simplest case: For undirected graphs the
number is bounded by the power function only.). This finitness result is the
basis of the Rossman proof [142] as well as the recent work I have been doing
with Patrice Ossona de Mendez [113, 114, 116] on Bounded Expansion (BE)
classes. We are not going to define the classes here and instead refer to the
original articles [113, 114, 116]. But it suffice to say that BE classes contain
all proper minor classes (i.e. classes defined by forbidding Kk as a minor) and
also classes of graphs with all its degrees bounded by k. The classes of BE are
related to dualities as follows:

Let K be a class of graphs (or structures). A restricted duality is the equation
of classes

Forb(F) ∩ K = CSP (D) ∩ K

Explicitly for every G ∈ K we have the following disjoint alternatives: either
F → G for some F ∈ F or G → D for some D ∈ D.

(F and D are finite sets of structures - not necessarily subsets of K). We say
that the class K has all restricted dualities if for any finite set F there is a finite
set D such that (F ,D) form restricted duality. This notion was first considered
in [112, 113]. The following has been proved in [115, 117].

Theorem 12 (all restricted dualities for finite structures)
Every class K of structures with bounded expansion has all restricted dualities.

As a corollary every class Forb(F) ∩ K is equal to the restriction of a class
CSP (D) restricted to K. Viewing the characterization of dualities for finite
structures (Theorem 4 [130]) Theorem 12 gives a surprising richness of restricted
dualities and this also nicely complements the descriptive complexity result [4].
This theorem is a culmination of the earlier results, particularly of the result [33]
by Roland Häggkvist and Pavol Hell about graphs with bounded degrees. Note
that we may restrict the set F to a set of core structures, but we cannot use
incomparable cores (only if the structures are connected).

Despite of the generality of Theorem 12 it may seem that the classes Forb(F)
are very special. Indeed, what non-trivial can you express by finitely many
forbidden substructures? While CSP (H) is a very complicated class even for
a simple graph H (think of a triangle), the class Forb(F) seems to be very
simple (for a finite set F). But the situation drastically changes if we allow
extensions of our signature (which defines the structures under consideration)
and projections. This was done recently together with Gábor Kun [78, 79] by
means of lifts and shadows.

What is proved, is that, any NP language L is polynomially equivalent to a
language of the following form:

Φ(Forb(F ′))

where F ′ is a finite set of structures with signature σ ∪ σ′ and Φ is the
forgetful functor which assigns to any structure S′ ∈ Forb(F ′) with signature
σ∪σ′ the corresponding structure S with signature σ (by forgetting the relations
from σ′).
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VI.
Rigid and core structures came a long way. Still some beautiful and simple
formulated problems remain. Let us finish by listing three of them:

Problem 1 (Minimum asymmetric graphs)

Is it true that every asymmetric orientation
−→
G of a graph G contains a vertex

x ∈ V (G) such that
−→
G − x is again asymmetric?

This is true for acyclic orientations [149]. A similar problem for undirected
graphs was considered by Gert Sabidussi, Jerome Gagnon and myself [125] [30],
see [73].

Problem 5 (Maximal antichain)
Let G1, G2 be countable graphs, G1 9 G2 9 G1. Assume that any other
countable graph is comparable by a homomorphism with either G1 or G2. Is
then one of the graphs finite?

This is formulated in [127] where it is proved that K1,K2 and Kω are the
only maximal antichains of size 1 for the homomorphism order of countable
graphs.

Problem 6 (Infinite rigid)
Does there exists positive integer k such that on every set X there exists a rigid
relation whose symmetrization does not contain a subdivision of the graph Kk

(i.e. Kk as a topological subgraph)?

This is an interesting problem. Babai asked whether there exists a locally
planar rigid graph on every set. But we could ask even less formal question:
try to find a new construction of a rigid graph on every set which would not be
based on the (ordinal number) technique of [145] (and [61, 107]).

The homomorphisms of graphs and more generally of finite structures gained
a momentum recently. The various factors which influenced it are too involved
to be covered here, so let us just list several texts and books [73, 126, 134], and
of course [53], which reflect the various aspect of this development.

This is only a text which reflects our life long collaboration with Pavol Hell.
We both believe that our collaboration will continue, e.g. [55]. But what is
perhaps evident is a surprising persistence of old motivations. With all modesty,
I believe that this permanence is a sign of a true quality and of a beauty of
mathematics. Like an everlasting gem ...
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Figure 9: Paris by Helena
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[33] R. Häggkvist, P. Hell: Universality of A-mote graphs. European J. Comb.
(1993), 23-27.
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