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Abstract

In 1981, Bermond and Thomassen conjectured that every digraph
with minimum out-degree at least 2k − 1 contains k disjoint cycles.
This conjecture is trivial for k = 1, and was established for k = 2
by Thomassen in 1983. We verify it for the next case, by proving
that every digraph with minimum out-degree at least five contains
three disjoint cycles. To show this, we improve Thomassen’s result
by proving that every digraph whose vertices have out-degree at least
three, except at most two with out-degree two, indeed contains two
disjoint cycles.

1 Introduction

Our notations will mainly follow that of [2]. By cycle we mean oriented cycle,
that is an oriented path starting and ending at the same vertex. A cycle of
length d is called a d-cycle. A 1-cycle is a loop and a 3-cycle is also called
a triangle. All digraphs contained in this paper can have loops and 2-cycles
but no parallel arcs. A digraph without cycles of length at most two is called
an oriented graph.
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Fix a digraph D = (V, A). Its order is the size of the vertex-set V .
Given a subset X of V , the sub-digraph of D induced by X is the digraph
D[X] := (X, A′) where A′ is the set of all arcs in A that start and end in X.
Two sub-digraphs D1 and D2 of D are disjoint if their vertex-sets are. We
write v → u to denote an arc from the vertex v to the vertex u.

We denote by D∗ the digraph obtained from D by reversing the direction
of every arc. For every vertex v ∈ V let N+

D (v) := {x ∈ V : v → x ∈ A}
be the out-neighbourhood of v in D, and let d+

D(v) := |N+

D | be the out-degree

of v in D. The vertices of N+

D(v) are the out-neighbours of v. The in-

neighbourhood of v in D is N−

D(v) := N+

D∗(v), and its in-degree is d−

D(v) :=
|N−

D (v)|. The vertices of N−

D (v) are the in-neighbours of v. If the context is
clear, we may omit the subscript and just write N+(v) and N−(v).

Given two disjoint subsets X, X ′ ⊂ V we say that X dominates X ′ if X ′

is contained in the out-neighbourhood of each vertex of X. If the set X is
comprised of only one vertex v we simply say that v dominates X ′ . The set
X ′ is dominated if there exists a vertex dominating it. The set X dominates

a sub-digraph D′ of D if it dominates its vertex-set V (D′).
An arc is said to be d-dominated if it is dominated by a vertex of out-

degree d.
We are interested in the following conjecture stated by Bermond and

Thomassen in 1981.

Conjecture 1 ([3]). For every positive integer k, every digraph with mini-

mum out-degree at least 2k − 1 contains k disjoint cycles.

It is an obvious observation if k is one, and Thomassen gave a nice and
simple proof of it when k is two in 1983.

Theorem 1 ([6]). Every digraph with minimum out-degree at least three

contains two disjoint cycles.

Thomassen [6] also established the existence of a finite integer f(k) such
that every digraph of minimum out-degree at least f(k) contains k disjoint
cycles. As noted in [3], such an integer cannot be less than 2k − 1, so
Conjecture 1 is optimal. Alon [1] proved that for every integer k, the value
64k is suitable for f(k) in 1996. Recently, Conjecture 1 has been verified for
(almost) regular tournaments [5, 4].

Our main result is the following theorem, which proves Conjecture 1 when
k is three.

Theorem 2. Every digraph with minimum out-degree at least five contains

three disjoint cycles.
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We note that the method used in [1] allows to upper bound the order of
a minimum counter-example to Conjecture 1. For instance, when k is three
the order of a minimum counter example is at most 42. However, as pointed
out in [1], this bound is out of reach for a brute-force attack. Thus we need
to develop new tools to study this conjecture and prove Theorem 2. One of
them is to strengthen Theorem 1.

Theorem 3. Let D be a digraph whose vertices have out-degree at least three,

except at most two which have out-degree two. The digraph D contains two

disjoint cycles.

The paper is organised as follows. In the next section we slightly improve
Thomassen’s result by proving Theorem 3 which is a crucial ingredient in
our proof of Theorem 2. Section 3 is devoted to the proof of a property of a
certain class of digraphs, which may be of independent interest. In Section 4
we establish Theorem 2. The proof proceeds by contradiction: we consider
a minimum counter-example D—with respect to the number of vertices—to
the statement of the theorem, and exhibit some of its structural properties.
Then, the argument is split into two cases: in Sub-section 4.1 we suppose
that D does not contain a triangle while in Sub-section 4.2 we establish the
result if D contains a triangle.

2 Improving Theorem 1

As mentioned earlier, Thomassen proved that Conjecture 1 is true if k is
two, namely every digraph with minimum out-degree three contains two dis-
joint cycles. The goal of this section is to strengthen this result, by proving
Theorem 3.

Proof of Theorem 3. Contrary to the statement, let D = (V, A) be a mini-
mum counter-example with respect to the number of vertices. We also assume
that each vertex has out-degree at most three. First, observe that D cannot
contain a loop. If C is a loop, the digraph obtained from D by removing the
vertex of C has minimum out-degree at least one, thus it contains a cycle C ′.
The cycles C and C ′ of D are disjoint, a contradiction. So the order of D is at
least four. We now establish two properties of D. Recall that a sub-digraph
is 2-dominated if there exists a vertex of out-degree two dominating it.

(A) Every 2-cycle of D is 2-dominated. In particular D contains at most two

2-cycles.
Suppose that C := uv is a 2-cycle. Let D′ be the digraph obtained from

D by removing u and v. Then D′ cannot have minimum out-degree at
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least one, otherwise it would contain a cycle which would be disjoint from
C, a contradiction. Therefore there exists a vertex of D of out-degree two
dominating C, as asserted. From this fact it directly follows that D does
not contain more than two 2-cycles, since each vertex of out-degree two can
dominate at most one 2-cycle and D contains at most two vertices of out-
degree two.

The next property, proved in [6], is still valid under our weaker assump-
tions.

(B) Every arc of D is dominated.

Suppose that u → v ∈ A is not dominated. By Property (A), we can assume
that v → u is not an arc of D. Denote by D′ the digraph obtained from D by
first removing all arcs out-going from u except u → v, and then contracting
the arc u → v into a new vertex w. The out-degree of w in D′ is equal to
the out-degree of v in D. Moreover, the out-degree of each other vertex of
D′ is the same as its out-degree in D. Hence, by the minimality of D, the
digraph D′ contains two disjoint cycles, which yield two disjoint cycles in D,
a contradiction.

Fix a vertex v and let x be an in-neighbour of v. Note that d−

D(v) ≥ 1
by the minimality of D. As the arc x → v is dominated, there exists a
vertex y ∈ V with {x, v} ⊆ N+(y). Consequently the digraph D[N−(v)]
has out-degree at least one and thus contains a cycle. In particular the size
of the in-neighbourhood of each vertex is at least two. Observe now that if
d−

D(v) ≥ 3 for every v ∈ V , then D indeed contains two disjoint cycles: just
apply Theorem 1 to D∗.

Therefore, there exists a vertex of in-degree two in D, and hence a 2-cycle
C1 := uv. By Property (A), let z be a vertex of out-degree two dominating
u and v. The sub-digraph D[N−(z)] contains a cycle, which must intersect
C1. So we can assume that u → z ∈ A, and we denote by C2 the cycle
zu. Again by Property (A), there exists a vertex z′ of out-degree two that
dominates C2. Note that z′ 6= v, otherwise D would contain three 2-cycles,
thereby contradicting Property (A). Observe also that neither z nor u can
dominate z′, otherwise D would contain three 2-cycles. Therefore the cycle
contained in D[N−(z′)] is disjoint from the 2-cycle uz, a contradiction. This
contradiction concludes the proof.

We note that this result is optimal, since a symmetrically oriented tri-
angle—i.e. three vertices x1, x2, x3 with an arc from xi to xj whenever i 6=
j—does not have two disjoint cycles. It is also optimal if we restrict ourselves
to oriented graphs, since there exist oriented graphs on seven vertices with
three vertices of out-degree two, four vertices of out-degree three and no two
disjoint cycles. See Figure 1(a) for an example. Moreover, the oriented graph
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(a) (b)

Figure 1: (a) An oriented graph with three vertices of out-degree two, four
vertices of out-degree three and no two disjoint cycles, and (b) an oriented
graph whose vertices all have out-degree three, except one which has out-
degree one, and yet without two disjoint cycles. An arc from/to a box goes
from/to every vertex of the box.

of Figure 1(b) has no two disjoint cycles, yet every vertex has out-degree three
except one which has out-degree one.

3 Arc-dominated oriented graphs

We say that a digraph D = (V, A) is arc-dominated if every arc of A is
dominated. As we will see, a minimum counter-example to Theorem 2—and
more generally, to Conjecture 1—must be arc-dominated, and it must be an
oriented graph—i.e. it contains neither a loop nor a 2-cycle. We put the
following proposition in a dedicated section because we believe that it might
be of independent interest.

Proposition 4. Let D = (V, A) be an arc-dominated oriented graph, and let

X ⊂ V such that D[X] is either acyclic or an induced cycle of D. There

exists a cycle C disjoint from D[X] such that every vertex of C has at least

one out-neighbour in X.

Proof. We set X ′ := V \ X. Let S be the set of vertices of X ′ having at
least one out-neighbour in X. Observe that it is enough to prove that D[S]
contains a cycle. To this end, it suffices to establish that every vertex of S has
at least one in-neighbour in S. Suppose on the contrary that there exists a
vertex v ∈ S with no in-neighbour in S. We set Y :=

(

N−

D(v) ∪ N+

D(v)
)

∩X.
By the definition of S, v has an out-neighbour x in X, so in particular Y 6= ∅.
Since for every y ∈ Y there is an arc between v and y, and since D is arc-
dominated, there exists a vertex z which dominates {v, y}. It follows that z ∈
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X∩N−

D (v) ⊂ Y . In particular this proves that D[Y ] and hence D[X] contains
a cycle. This is not possible if D[X] is acyclic and concludes the proof in
this case. If D[X] is an induced cycle C ′ of D, then D[X] = D[Y ] = C ′.
Consider the out-neighbour y of x in C ′. By what precedes, it is dominated
by a vertex of N−

D (v) ∩ X, which must be x since C ′ is induced. This is a
contradiction since {v, x} would induce a 2-cycle in D.

Corollary 5. Let D = (V, A) be an arc-dominated oriented graph. Suppose

that C is a cycle of D, and C ′ an induced cycle disjoint from C. If there is

no arc from a vertex of C to a vertex of C ′ then D contains three disjoint

cycles.

Proof. We apply Proposition 4 with X being V (C ′). We deduce that there
exists a cycle C1 disjoint from C ′ such that every vertex of C1 has an out-
neighbour in C ′. As there is no arc from C to C ′, the cycle C1 is certainly
disjoint from C. Thus, C, C ′ and C1 are three disjoint cycles of D.

4 Proof of Theorem 2

Our goal in this section is to establish Theorem 2. We proceed by contra-
diction: we suppose that the statement of the theorem is false, and consider
a counter-example with the minimum number of vertices. We first establish
some fundamental properties of such a digraph, that will be extensively used
in the sequel. Until the end, we let D = (V, A) be a counter-example to the
statement of Theorem 2 with the smallest number of vertices, and subject
to this with the smallest number of arcs. In particular, every vertex has
out-degree exactly five. We denote by n the order of D. Note that n ≥ 5.

Lemma 6. The following hold.

(i) The digraph D is an oriented graph, i.e. it has no loop and no 2-cycle.

(ii) Every arc of D is dominated. In particular, the in-neighbourhood of

every vertex contains a cycle.

(iii) Every triangle of D is dominated by three different vertices.

(iv) If a vertex v dominates a cycle C, there exists a triangle vuw with

u ∈ V (C) and w /∈ V (C).

Proof. (i) Suppose that C is a cycle of D of length at most two. Note that
the induced sub-digraph D′ of D obtained by removing the vertices
of C has minimum degree at least three. Thus, by Theorem 1, D′
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contains two disjoint cycles, which are certainly disjoint from the cycle
C. Hence, D contains three disjoint cycles, a contradiction.

(ii) It is proved exactly as Property (B) in the proof of Theorem 3, so we
do not repeat it here.

(iii) Let C be a triangle of D, and consider the digraph D′ obtained from D
by removing the vertices of C. The digraph D′ has minimum out-degree
at least two. Moreover every vertex of D′ that does not dominate C
in D has out-degree at least three in D′. As D′ cannot contain two
disjoint cycles—otherwise D would contain three disjoint cycles—the
contrapositive of Theorem 3 implies that at least three vertices of D′

have out-degree two, and hence these vertices dominate C in D.

(iv) Denote by C ′ a cycle contained in N−(v). As v dominates a cycle C,
by (i) the cycles C and C ′ are disjoint. According to Corollary 5, there
exists an arc from C to C ′, which yields the sought triangle.

According to Item (i) of the preceding lemma, D is actually an oriented
graph. So, as every vertex has out-degree five, we deduce that the order n of
D is at least 11. The proof is now split into two parts, regarding whether D
contains a triangle.

4.1 The digraph D does not contain a triangle

In this sub-section, we assume that D does not contain a triangle. In partic-
ular, every 4-cycle of D is induced. We first establish some useful properties
of D.

Lemma 7. For every vertex v of D the sub-digraph induced by the out-

neighbours of v is acyclic.

Proof. Since D has no triangle this follows directly by Lemma 6(iv).

We define a spanning sub-digraph D′ of D as follows. Recall that, by
Lemma 6(ii), the in-neighbourhood of every vertex u of D contains an in-
duced cycle Cu. We let D′ = (V, A′) be the spanning sub-digraph of D where
A′ is comprised of all arcs v → u of D with v ∈ V (Cu). The obtained digraph
D′ has some useful properties, stated in the next lemma.

Lemma 8. The following hold.

(i) If v → u belongs to A′ then N+

D (v) ∩ N−

D′(u) 6= ∅.

7



(ii) The digraph D′ is 4-regular, i.e. d+

D′(v) = 4 = d−

D′(v) for every vertex

v. In particular, D contains a 4-cycle.

(iii) If the arc v → u belongs to A \ A′ then N+

D (v) ∩ N−

D (u) = ∅.

Proof. (i) Let v ∈ V (Cu). By the definition of Cu, the out-neighbour of v
in Cu dominates u in D′ and belongs to N+

D (v).

(ii) By Lemma 6(ii), for every vertex v we have d−

D′(v) ≥ 4 since D contains
no triangle. Therefore, to prove the statement we only need to show
that d+

D′(v) ≤ 4 for every vertex v. Suppose on the contrary that v
is a vertex of D with out-degree five in D′. Hence, N+

D(v) = N+

D′(v).
Let u ∈ N+

D′(v). By (i), N+

D′(v) ∩ N−

D′(u) 6= ∅. So the sub-digraph of
D′ induced by the out-neighbours of v has minimum in-degree at least
one, and hence it contains a cycle. This contradicts Lemma 7.

(iii) Suppose that v → u is an arc of D contradicting the statement. Again,
we shall prove that the out-neighbourhood of v in D contains a cycle,
thereby contradicting Lemma 7. Let z ∈ N+

D (v), it suffices to prove
that z is dominated by a vertex of N+

D (v). If z = u this is clear by
the definition of v and u, so suppose that z 6= u. By (ii), the vertex
v has out-degree four in D′, thus v → z ∈ A′ and hence (i) yields the
conclusion.

We prove a last preliminary lemma before turning to the proof of Theo-
rem 2.

Lemma 9. Let C be a 4-cycle of D. The following hold.

(i) There exist at least three vertices with each exactly three out-neighbours

in C;

(ii) at least one of the arcs of C is not in D′.

Proof. (i) By Lemma 7 every vertex of D has at most three out-neighbours
in C. Suppose that at most two vertices of D have three out-neighbours
in C. Then, every vertex of the sub-digraph of D obtained by remov-
ing C has out-degree at least three, except at most two vertices that
have out-degree two. By Theorem 3, it contains two disjoint cycles.
These two cycles together with C yield three disjoint cycles in D, a
contradiction.
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(ii) Suppose on the contrary that C := xyzt is a 4-cycle of D′. By the
preceding item, there exist three vertices a, b and c with each three out-
neighbours in C. Note that no vertex of C can dominate a vertex of
{a, b, c}, otherwise D would contain a triangle or a 2-cycle. As there are
9 arcs from {a, b, c} to C, at least one vertex of C, say y, is dominated
by {a, b, c}. Furthermore, one of the arcs a → y, b → y, c → y is not
in D′. Otherwise, as x → y ∈ A′ and d−

D′(y) = 4 by Lemma 8(ii),
the cycle Cy would be comprised of the vertices a, b, c and x. This
is not possible since there is no arc from x to {a, b, c}. Without loss
of generality we can assume that a → y /∈ A′. By Lemma 8(iii), we
deduce that the vertex x is not an out-neighbour of a in D. It follows
that a → z and a → t are in A, and hence in A′ by Lemma 8(iii) since
a dominates {y, z}.

We assert that {b, c} dominates {x, t} in D. By symetry it is enough
to prove that b dominates {x, t}. If it is not the case then b dominates
z in D. As y ∈ N+

D(b)∩N−

D (z), Lemma 8(iii) implies that b → z ∈ A′.
Hence the induced cycle Cz contains the vertices a, y and z, which is a
contradiction since {a, y} dominates z. This proves the assertion.

Now, note that the arcs b → x and c → x must belong to A′ by
Lemma 8(iii). Consequently, the induced cycle Cx contains the vertices
b, c and t, which is a contradiction since {b, c} dominates t in D. This
concludes the proof.

We now switch to the proof of Theorem 2. We shall obtain a contradiction
by proving that D′ contains a 4-cycle. To this end, we first prove Property (C)
below, which states that D contains a 4-cycle with two consecutive arcs in
D′. As we shall see, this implies that D′ contains a 4-cycle.

(C) There exists a 4-cycle of D with two consecutive arcs belonging to A′.

By Lemmas 8(ii) and 9(ii), let C := xyzt be a 4-cycle of D with x /∈ V (Cy).
Consequently, C and Cy are disjoint. Let us write Cy = abcd with a /∈ V (Cb).
So, the cycles Cy and Cb are disjoint. As D does not have three disjoint
cycles, we deduce that Cb must contain a vertex of C. This vertex cannot
be x, since by Lemma 8(iii) x has no out-neighbour in N−

D(y). Moreover, it
can be neither y nor z—otherwise D would contain a 2-cycle or a triangle.
Hence t ∈ V (Cb). The situation is depicted in Figure 2(a). Note that tbyz
is a 4-cycle with two consecutive arcs in D′, namely t → b and b → y. This
establishes Property (C).

We are now in position to conclude the proof, by showing that there exists
a 4-cycle of D included in D′ and thereby contradicting Lemma 8(ii). By
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Figure 2: The arcs belonging to A′ are drawn in bold, and the arcs not in A′

are dashed. The remaining ones are only known to be in A.

Property (C) let C := xyzt be a 4-cycle of D with two consecutive arcs in
D′. By Lemma 9(ii) at least one of the arcs of C is not in D′. Therefore,
up to renaming the vertices, we can assume that t → x ∈ A, x → y ∈ A and
z → t /∈ A′. Thus C and Ct := abcd are disjoint. By Lemma 9(ii), assume
that a /∈ Cb. The cycles Ct and Cb being disjoint, Cb must intersect the cycle
C. As none of x, z and t has an out-neighbour in Cb, we infer that y ∈ V (Cb).
Therefore txyb is a 4-cycle of D which is included in D′, see Figure 2(b). This
contradiction concludes the proof when D does not contain a triangle.

4.2 The digraph D contains a triangle

For every vertex u ∈ V , we let ϕ(u) be the greatest integer r for which there
exist triangles T1, T2, . . . , Tr such that

• the intersection of every two triangles is the vertex u; and

• the in-neighbour of u in Ti dominates Ti−1 for every i ∈ {2, 3, . . . , r}.

Thus, ϕ(u) = 0 if and only if u is not contained in a triangle, and 1 ≤ ϕ(u) ≤
5 otherwise.

Lemma 10. Either D contains two disjoint triangles, or all the triangles of

D share a common vertex x. In the latter case ϕ(x) ≥ 3.

Proof. Let Φ := maxu∈V ϕ(u). As D contains a triangle, we deduce from
Lemma 6(iii) and (iv) that Φ ≥ 2.

We suppose first that Φ = 2. We shall establish that D contains two
disjoint triangles. Suppose on the contrary that it is not the case. Then, the
following holds.

(D) Every vertex x ∈ V such that ϕ(x) = 2 is dominated by a triangle.
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x y1

z1z2

y2

z3 z4

Figure 3: Configuration obtained when ϕ(x) = 2.

By the definition of ϕ, there exist four vertices y1, y2, z1, z2 such that T1 :=
xy1z1 and T2 := xy2z2 are two triangles and z2 dominates T1. According
to Lemma 6(iii), there exists a vertex z3 /∈ {y1, z1} dominating T2. Thus,
Lemma 6(iv) implies that there exists a triangle T3 := z3a1b1, with a1 ∈
V (T2) and b1 /∈ V (T2). There are three distinct vertices that dominate T3.
Among the vertices so far defined, only y1 and z1 may dominate T3. Thus,
there exists z4 /∈ {y1, z1} that dominates T3. Moreover, there exists a triangle
T4 := z4a2b2 with a2 ∈ V (T3) and b2 /∈ V (T3). The situation is depicted in
Figure 3. We set X := {x, y1, z1, y2, z2, z3, z4}.

If z1 → z3 ∈ A, then z3z2z1 is a triangle which dominates x, which would
establish Property (D). We thus assume in the remaining that z1 does not
dominate z3. The vertex b1 dominates z3, thus either b1 = y1 or b1 /∈ X. We
consider these two cases separately.

b1 /∈ X. Then a1 must be x, otherwise z3a1b1 and one of T1, T2 are disjoint.
Now, T1, T2 and z3xb1 show that ϕ(x) ≥ 3, a contradiction.

b1 = y1. Consider T4 = z4a2b2. Note that z4 dominates b1 = y1. Notice
also that the vertex b2 does not lie in {y2, z2}, otherwise z4z3b2 and T1

would be two disjoint triangles. If b2 = x then T1, T2 and z4z3x show
that ϕ(x) ≥ 3, a contradiction. If b2 = z1, then z4y1z1 and T2 are two
disjoint triangles. Thus, as b2 6= b1 = y1 (since b2 /∈ V (T3)), we deduce
that b2 /∈ X. As T4 must intersect T1, T2 and T3, we infer that a2 = x.
Consequently, z3z2y1 and T4 are two disjoint triangles, a contradiction.

This establishes Property (D). Note that we also have showed that z1 must
indeed dominate z3. Hence, ϕ(z2) ≥ 2, by considering the triangles T2 and
z3z2z1.

Now consider a vertex x such that ϕ(x) = 2, and let T1 and T2 be two
triangles as before. In particular, we can assume that the vertex z2 satisfies
ϕ(z2) = 2, thus is dominated by a triangle T . Observe that T1 and T are two
disjoint triangles, a contradiction.
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z4

Figure 4: Configuration obtained when ϕ(x) ≥ 3 and b = y1.

In conclusion, we have proved that D contains two disjoint triangles if Φ
is two.

We assume now that Φ ≥ 3, and we let x be a vertex such that ϕ(x) = Φ.
By contradiction, suppose that D does not contain two disjoint triangles,
and yet contains a triangle T not containing x. There exist three triangles
Ti := xyizi, i ∈ {1, 2, 3}, such that V (Ti) ∩ V (Tj) = {x} if i 6= j, and zi

dominates Ti−1 if i > 1. As D does not contain two disjoint triangles, we
deduce that T contains a vertex from each set {yi, zi}, for i ∈ {1, 2, 3}.

According to Lemma 6(iii), there exists a vertex z4, distinct from all the
vertices defined so far, that dominates the triangle T3. Thus, there exists
a triangle T4 := z4ab, with a ∈ V (T3) and b /∈ V (T3). Notice that b 6= x.
Hence, if a 6= x, we obtain two disjoint triangles; indeed, the triangle T4

intersects at most two triangles among T1, T2 and T3, because x /∈ V (T4) and
z4 /∈ V (T1)∪V (T2)∪V (T3). Thus, among the triangles Ti, i ∈ {1, 2, 3, 4}, at
least two are disjoint, a contradiction.

Therefore, a = x. Let X := {x, y1, z1, y2, z2, y3, z3, z4}. Note that b
either belongs to {y2, y1} or does not belong to X. The latter case is not
possible, since T4 and T would then be two disjoint triangles—because, as
noted earlier, V (T ) ⊂ {y1, z1, y2, z2, y3, z3}. If b = y2, then T1 and z4z3y2 are
two disjoint triangles. Therefore, we infer that b is y1, so T4 = z4xy1. The
situation is depicted in Figure 4.

As D does not contain two disjoint triangles, V (T ) must intersect the
set {y1, z4}. So, y1 is a vertex of T . Now, observe that the triangles T2, T3

and T4 fulfil the same conditions as do T1, T2 and T3. Consequently, we
deduce as previously that y2 ∈ V (T ). So, the triangle T either is z3y2y1

or is comprised of the vertices y1, y2 and y3. If the former case, let u /∈ X
be a vertex dominating T4. This is possible since at least three vertices
dominate T4. There exists a triangle T5 comprised of u, a vertex u1 ∈ V (T4)
and a vertex u2 /∈ V (T4). If u1 ∈ {y1, z4}, then T5 and either T2 or T3 are
two disjoint triangles, since x /∈ V (T5). So, u1 = x and u2 is either y2, y3
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or a new vertex. In all cases, T5 and z3z2y1 are two disjoint triangles, a
contradiction. Consequently, V (T ) = {y1, y2, y3}. Thus, none of the vertices
zi, i ∈ {1, 2, 3, 4}, dominates T . As T is dominated by at least three vertices,
we can choose a vertex u that dominates T and is different from x. Now,
there exists a triangle T ′ := uu1u2 with u1 ∈ {y1, y2, y3}, and u2 /∈ V (T ).
Note that u2 6= x. Consequently, T ′ and one triangle among T1, T2 and T3

are disjoint, a contradiction. This concludes the proof.

We define now two subsets of V . Let Y be the set of vertices contained in a
triangle, and Z the set of vertices dominating a triangle. We set DY := D[Y ],
and DZ := D[Z]. From Lemma 6(iv) we deduce that DZ is an induced sub-
digraph of DY . The following lemma will prove to be useful.

Lemma 11. The following hold.

(i) Every vertex of Y has at least five in-neighbours in D, with at least

four lying in DY ;

(ii) the minimum in-degree of the digraph DZ is at least three.

Proof. (i) Let T := xyz be a triangle containing x. By Lemma 6(iii), there
exist three vertices u, v and w that dominate T . By the definition of Y ,
the vertices u, v, w and z, which are all in-neighbours of x, belong to Y .
Thus, it only remains to show that there exists a fifth in-neighbour of
x in D. To this end, suppose on the contrary that d−

D(x) = 4. Consider
the cycle Cx. Since z is dominated by {u, v, w}, it cannot belong to
Cx. Thus, Cx is a triangle whose vertices are u, v and w. In particular
T and Cx are two disjoint cycles, and there is no arc from the triangle
T to the cycle Cx, which contradicts Corollary 5.

(ii) Let x be a vertex of DZ . By Lemma 6(iv) there exists a triangle T :=
xyz, along with three vertices u, v, w dominating T . Thus, {u, v, w} ⊆
N−

DZ
(x), which proves the desired statement.

We finish the proof of Theorem 2 right after having established the fol-
lowing bound.

Lemma 12. Suppose that T and T ′ are two disjoint triangles of D. If `
denotes the number of arcs between T and T ′ then n ≤ 22 − `.

Proof. Let X := V (T )∪V (T ′) and X ′ := V \X. We shall obtain the desired
inequality by counting the number L of arcs from a vertex of X to a vertex
of X ′. Since every vertex has out-degree five, L is 4 × 6 − ` = 24 − `. We
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now prove that L ≥ n + 2, which will imply that n + 2 ≤ 24 − `, and
hence n ≤ 22 − `. Note that every vertex of X ′ has an in-neighbour in X,
otherwise D would contain three disjoint cycles by Lemma 6(ii). As the
digraph D[X ′] is acyclic (and of order at least n − 6 ≥ 5), there exists a
vertex v ∈ X ′ having no in-neighbour in X ′, and another vertex w with
at most one in-neighbour in X ′. All together, these two vertices have at
least 3 + 2 = 5 in-neighbours in X. Now, note that T and T ′ are two
disjoint triangles in DY . By Lemma 11(i), DY has minimum in-degree at
least four—and so its order is at least nine. Consequently, there exists three
vertices a, b and c of Y \X having at least four, three and two in-neighbours
in X, respectively—otherwise DY , and hence D, would contain three disjoint
cycles, a contradiction. According to Lemma 11(i), every vertex of Y has
in-degree at least five in D. If {v, w} ⊂ Y , we infer from what precedes that
L ≥ 5 + 4 + 2 + n − 6 − 3 = n + 2. If only one of v, w lies in Y , we deduce
that L ≥ 5 + 3 + 2 + 2 + n− 6− 4 = n + 2, while if none of them is in Y , we
have L ≥ 3 + 2 + 4 + 3 + 2 + n − 6 − 5 = n + 3.

We now obtain a contradiction by proving that D indeed contains three
disjoint cycles. Recall that the order of D is at least 11. According to
Lemma 10, either all the triangles of D share a common vertex, or D contains
two disjoint triangles. We consider the two cases separately.

Case 1: D does not contain two disjoint triangles. In this case, all triangles
of D share a common vertex, say x, and we have ϕ(x) ≥ 3. All the vertices
of DZ are in-neighbours of x, since x is contained in every triangle. By
Lemma 11(ii), the digraph DZ has minimum in-degree at least three. We
assert that DZ has also minimum out-degree at least three. To see this,
suppose the contrary, and let z be a vertex with out-degree at most two in
DZ . Note that x /∈ Z, so z 6= x. We set D1 := DZ − z. Observe that the
digraph D∗

1 fulfils the hypothesis of Theorem 3, since all its vertices have out-
degree at least three (by Lemma 11(ii)) except at most two vertices which
have out-degree two. Thus, the digraph D∗

1 contains two disjoint cycles.
They yield two disjoint cycles of D1, say C1 and C2. As z ∈ DZ , there exists
a triangle T := zuv in D. By the definition of x, we have u = x. As noticed
earlier, Z ⊆ N−

D(x), hence the triangle T is disjoint from both C1 and C2,
a contradiction. Therefore DZ has minimum out-degree at least three. Let
us set m := |Z|. We shall lower bound m as a function of n. As DZ has
minimum out-degree three, every vertex of Z has at least four out-neighbours
in Z ∪ {x}, and thus at most one in Z ′ := V \ (Z ∪ {x}). So the following
holds.

(E) The number of arcs from a vertex of Z to a vertex of Z ′ is at most m.

14



Furthermore, by Theorem 1, D contains two disjoint cycles C1 and C2 com-
prised of vertices of Z. Observe that every vertex of Z ′ has at least one
in-neighbour in Z: otherwise, by Lemma 6(ii), D would contain a cycle com-
prised of vertices of Z ′ ∪ {x}, which together with C1 and C2 would yield
three disjoint cycles, a contradiction. As ϕ(x) ≥ 3, there exist three out-
neighbours y1, y2 and y3 of x in Z ′, each having at least three in-neighbours
in Z, by Lemma 6(iii). Consequently, the following is true.

(F ) The number of arcs from a vertex of Z to a vertex of Z ′ is at least

9 + (n − 1 − m − 3) = n − m + 5.

It follows from Properties (E) and (F ) that

2m ≥ n + 5. (1)

We now aim at bounding |A|, the number of arcs of D, in terms of m.
Recall that |A| = 5n, since every vertex of D has out-degree five. We par-
tition V into the sets Z, Z ′ and {x}. Recall that every vertex has in-degree
at least three, by Lemma 6(ii). As Z ⊆ Y , each vertex of Z has at least five
in-neighbours in D by Lemma 11(ii). So

∑

v∈Z

d−

D(v) ≥ 5m. (2)

Recall also that Z ⊆ N−

D (x), thus

|N−

D(x)| ≥ m. (3)

Moreover, according to Lemma 11(i), every vertex of Y has in-degree at least
five in D, and |Y ∩ Z ′| ≥ 3 since ϕ(x) ≥ 3. In particular, x has at most two
out-neighbours not in Z. As x belongs to every triangle of D, every vertex
not in N+

D(x) has in-degree at least four in D, by Lemma 6(ii). Therefore
we obtain

∑

v∈Z′

d−

D(v) ≥ 3 × 5 + 2 × 3 + (n − 1 − m − 5) × 4 = 4n − 4m − 3. (4)

By Equations (2), (3) and (4), we infer that the number of arcs of D is at
least 5m + m + 4n − 4m − 3 = 4n + 2m − 3. As |A| = 5n, we obtain

2m ≤ n + 3. (5)

Equations (1) and (5) are contradictory, which concludes the first case of our
proof.
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Figure 5: The sub-digraph F of D.

Case 2: D has two disjoint triangles. Let T := xyz and T ′ := x′y′z′

be two disjoint triangles. Consider the sub-digraph D1 of D obtained by
removing T and T ′. As D does not contain three disjoint cycles, D1 is
acyclic, thus has a vertex u of out-degree zero. Hence, the vertex u has five
out-neighbours among x, y, z, x′, y′ and z′. Without loss of generality, let
N+

D (u) = V (T ) ∪ {x′, z′}. Necessarily, y′ ∈ N−

D(u), otherwise T, T ′ and Cu

would be three disjoint cycles of D, a contradiction. So T and T1 := ux′y′

are two disjoint triangles of D. By Lemma 6(iii), there exists an arc from a
vertex of T to a vertex of T1. Moreover, there are at least three arcs from a
vertex of T1 to a vertex of T , since the vertex u dominates T . So Lemma 12
implies that n ≤ 22 − 4 = 18. By Lemma 6(iii), there exist three vertices
a1, a2 and a3 that dominate T1. Clearly, none of these vertices belongs to
V (T )∪V (T1). Moreover at least one of them, say a1, has no in-neighbour in
{a1, a2, a3}, since otherwise T, T1 and D[{a1, a2, a3}] would be three disjoint
cycles of D. By Lemma 6(ii), the vertex a1 must have an in-neighbour
in T , otherwise T, T1 and Ca1

would be disjoint, a contradiction. Without
loss of generality, we assume that z ∈ N−

D (a1). The triangle T2 := uza1

is dominated by three vertices a4, a5 and a6. Clearly, none of these vertices
belongs to V (T )∪V (T1)∪{a1, a2, a3}. More precisely, among the vertices not
in T2, only y′, a2 and a3 dominate u, and none of them dominates a1. Thus,
we obtain the sub-digraph F of D, depicted in Figure 5. For convenience,
every vertex of D not in F is called extern.

Note that all the vertices of F belong to Y , and hence have in-degree
at least five in D by Lemma 11(i). As D does not contain three disjoint
cycles, there exists i ∈ {2, 3, . . . , 6} such that the vertex ai does not have an
in-neighbour in {a1, a2, . . . , a6}. Observe that a vertex dominating the arc
ai → u is either y′ or extern, the former begin possible only if i ≥ 4. We now
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consider two cases, regarding the value of i.

i ∈ {2, 3}. Without loss of generality, let i = 2. The vertex a2 has at least
one in-neighbour in T , otherwise T, T1 and Ca2

would be three disjoint
cycles of D. We consider two cases regarding whether z dominates a2.

z dominates a2. In this case, the triangle za2u is dominated by three
vertices, which must be extern. These three vertices belong to Y ,
as do the vertices of F . Thus, by Lemma 11(i), all have in-degree
at least five in D. Furthermore, among them the vertex u has
in-degree at least 10, and z at least 8. We deduce that

|A| = 5n =
∑

v∈V

d−

D(v) ≥ 10 + 8 + 13 × 5 + (n − 15) × 3,

which implies that n is at least 19, a contradiction.

z does not dominate a2. So at least one vertex among x, y dominates
a2. By symmetry of the roles played by x and y in what fol-
lows, we assume that x dominates a2. The triangle T3 := xa2u is
dominated by three vertices, which must be extern. These three
vertices belong to Z, and hence to Y . The vertices of F also be-
long to Y , and every vertex of Y has in-degree at least five in D
by Lemma 11(i). Furthermore the in-degree of u is at least 10.
Thus we obtain

|A| = 5n ≥ 10 + 14 × 5 + (n − 15) × 3,

which yields n ≥ 35

2
. As n ≤ 18, we have n = 18. Notice that

T is dominated by two vertices distinct from u. So, we infer that
d−

D(x) + d−

D(z) ≥ 5 + 5 + 2 = 12. Hence, we obtain

|A| = 5n ≥ 10 + 12 + 12 × 5 + (n − 15) × 3,

from which it follows that n ≥ 37

2
, a contradiction.

i ∈ {4, 5, 6}. Without loss of generality, let i = 4. As D does not have three
disjoint cycles, N−

D(a4)∩ {x, y, x′, y′} 6= ∅. We split this case according
to the corresponding sub-cases.

x dominates a4. We set T3 := a4ux. Among the vertices of F , only y′

may dominate T3. Supposing first that it is not the case, we obtain
a contradiction by counting the number of arcs in D. The triangle
T3 is dominated by three extern vertices. These vertices belong
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to Z, and thus to Y . Moreover, recall that all the vertices of F
also belong to Y , and that every vertex of Y has in-degree five, by
Lemma 11(i). Thus, there are at least 15 vertices of in-degree five
and, among them, u has in-degree at least 10. Also, the vertex z
has in-degree at least 8, because the triangle xa4z is dominated by
three vertices, none of them lying in {y, u, a4, a5, a6}. Therefore
we obtain

|A| = 5n ≥ 10 + 8 + 13 × 5 + (n − 15) × 3,

which yields n ≥ 19, a contradiction.

Hence, the vertex y′ dominates the triangle T3. We seek a contra-
diction by counting the number of arcs in D. Note that there are
at least five arcs between T and T1, since u dominates T1, y′ dom-
inates x and there is at least one arc from T to T1 by Corollary 5.
So, by Lemma 12, n is at most 17.

We now bound the number of arcs in D. As a4 has no in-neighbours
among the other vertices ai, there exist two extern vertices domi-
nating the triangle T3. Recalling that all the vertices of F belong
to Y , we obtain |Y | ≥ 14. By Lemma 11(i), each of these vertices
has in-degree at least five in D. Moreover, u has in-degree at least
9, since it has already in-degree at least 7 in F . Also, the in-degree
of z is at least 8, because z is dominated by {u, a4, a5, a6, y}, and
by the three vertices dominating the triangle a4zx, which cannot
be any of the preceding ones. Therefore we infer that

|A| = 5n ≥ 9 + 8 + 12 × 5 + (n − 14) × 3,

and hence n ≥ 35

2
, contradicting the conclusion of the preceding

paragraph.

y dominates a4. Let T3 := a4uy. This triangle is dominated by three
vertices. Among the vertices of F , only y′ may dominate it. Sup-
pose first that it is not the case, i.e. T3 is dominated by three
extern vertices, which hence belong to Y . Furthermore, the tri-
angle T is dominated by two vertices different from u. Thus we
deduce that d−

D(y) + d−

D(z) ≥ 5 + 5 + 2 = 12. Note also that u
has in-degree at least 10. So, recalling that all the vertices of F
belong to Y , it follows that

|A| = 5n ≥ 10 + 12 + 12 × 5 + (n − 15) × 3,

i.e. n ≥ 37

2
, a contradiction. Consequently, we infer that y′ domi-

nates T3. As in the previous case, we note that there are at least
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five arcs between T and T1, and thus the Lemma 12 implies that
n is at most 17. As T3 is dominated by two extern vertices, notice
that u has in-degree at least 9 (since its in-degree in F is at least
7). Moreover the triangle a4a1y

′ is dominated by three vertices,
and none of them belongs to {x′, a2, a3, a5, a6, z}. Hence, we de-
duce that both a1 and y′ have in-degree at least 7 in D. Therefore,
we obtain

|A| = 5n ≥ 9 + 7 + 7 + 11 × 5 + (n − 14) × 3,

so n ≥ 18, a contradiction.

x′ dominates a4. Then the triangle T3 := a4ux′ is dominated by three
extern vertices. So there are at least 15 vertices of in-degree at
least five, and among them u has in-degree at least 10 (since its
in-degree in F is at least 7), and x′ has in-degree at least 7 (since
its in-degree in F is at least 4). Therefore, we deduce that

|A| = 5n ≥ 10 + 7 + 13 × 5 + (n − 15) × 3,

which yields n ≥ 37

2
, a contradiction.

None of x, y and x′ dominates a4 in D. In this case the vertex y′ must
dominate a4. We consider three vertices dominating the triangle
T3 := a4a1y

′. Among the vertices of F , only x and y can dominate
T3, but none of them does since none of them is an in-neighbour of
a4. Thus, T3 is dominated by three extern vertices. Consequently,
Y contains at least 15 vertices, and u, a1 and y′ all have in-degree
at least 7. It follows that

|A| = 5n ≥ 3 × 7 + 12 × 5 + (n − 15) × 3,

and hence, n ≥ 18. As we know that n ≤ 18, we have n = 18. In
particular, there are exactly 6 extern vertices. We denote them
by r, s, t, r′, s′ and t′, with {r, s, t} dominating the triangle T3.

Now observe that, for every i ∈ {1, 2, 3, 4}, ai /∈ N+

D (x′). More-
over, V (T )∩N+

D(x′) = ∅ otherwise there would be at least five arcs
between T and T ′, which would imply that n ≤ 17 by Lemma 12,
a contradiction. We assert that the in-degree of x′ in D is at least
7. Recalling that u, a1 and y′ also have in-degree at least 7, we
would deduce that

|A| = 5n = 90 ≥ 4 × 7 + 11 × 5 + 3 × 3 = 92,
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a contradiction. So it only remains to prove the assertion. If
{a5, a6} ∩ N+

D(x′) 6= ∅, we assume without loss of generality that
x′ dominates a5. Then, the triangle a5a1x

′ is dominated by three
vertices, which cannot be any of u, a1, a2, a3. So x′ has at least 7
in-neighbours in D. If {a5, a6} ∩N+

D(x′) = ∅, the vertex x′ has at
least four out-neighbours lying in {r, s, t, r′, s′, t′}. So it dominates
at least one of r, s and t, say r. The triangle ra1x

′ is dominated
by three vertices, none of them lying in {u, a1, a2, a3}. Thus, we
again conclude that the vertex x′ has in-degree at least 7, which
proves the assertion.

The proof of Theorem 2 is complete. �
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