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Abstract. We are dealing with solving difficult SAT instances in this paper. We propose a 
method for preprocessing SAT instances (CNF formulas) by using consistency techniques 
known from constraint programming methodology and by using our own consistency technique 
based on clique decomposition of a graph representing conflicts in the input formula. The clique 
decomposition allows us to make a strong reasoning over the SAT instance, which even in some 
cases decides the SAT instance itself without search. We implemented our preprocessing 
method in C++ and compared it with several state-of-the-art SAT solvers on the selected diffi-
cult SAT instances. The result of application of our method was speedup in orders of magni-
tudes compared to the tested SAT solvers. 
 
Keywords: SAT, search, consistency, clique, difficult instances 

1   Introduction 

Our recent work on artificial intelligence planning problems [3] inspired us to exploit our newly 
developed techniques [27] in solving Boolean formula satisfaction problems (SAT). We were study-
ing the problem of finding supporting actions for a goal in AI planning context. We call this a sup-
ports problem in short. This is some kind of an important sub-problem which must be solved many 
times when solving AI planning problems over planning graphs [6]. We showed that the supports 
problem is NP-complete in our work. In doing so we used conversion of an instance of the SAT 
problem to the instance of the supports problem [27]. This simple proof uncovered some interesting 
similarities between the SAT problem and the supports problem. Strictly speaking the similarities 
itself are neither interesting nor useful. They become more interesting after connecting them with 
our new method for solving supports problems based on a greedy clique decomposition which was 
also proposed in the mentioned work. The positive experiences made with the method on planning 
problems and the observed similarity lead us to the idea to adapt the technique of the greedy clique 
decomposition for solving SAT problems. 

Boolean formula satisfaction problems and SAT solving techniques play an extremely important 
role in theoretical computer science as well as in practice. The question of whether there exist a 
complete polynomial time SAT solver is a key question for theoretical computer science and is 
open for many years (the P vs. NP problem) [7]. On the other hand the practical use of SAT prob-
lems and SAT solvers in real life applications is also very intensive. Applications of SAT solving 
techniques range from microprocessor verification [29] and field-programmable gate array design 
[22] to solving AI planning problems by translating them into Boolean formulas [17]. 

An excellent performance breakthrough was done in solving SAT problems over past years. 
Thanks to new algorithms and implementation techniques focused on real life SAT problems many 
of the today’s benchmark problems [18, 24] are solved by state-of-the-art solvers [11, 12, 14, 15, 
20, 26] in time proportional to the size of the input. It seems that the difficulty of many SAT 
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benchmark problems consists in their size only. Lot of smaller benchmark problems are solved in 
real-time by today’s state-of-the-art SAT solvers. The observation that can be deduced upon these 
facts is that there is almost no chance to compete with best SAT solvers by own newly written SAT 
solver on these problems. That is why we are concentrating on difficult instances of SAT problems 
only, where the word difficult here means difficult for today’s state-of-the-art SAT solvers. 

A very valuable set of difficult (in the mentioned sense) problems was collected by Aloul [1]. Al-
though these problems are small in length of the input formula they are difficult to be answered. 
The detailed discussion about hardness of these problems is provided in [2]. However one of the 
aspects is that these problems are mostly unsatisfiable (and this fact is well hidden in the problem). 
The solver cannot guess a solution using its advanced techniques and heuristics in such case and 
must really perform some search in order to prove that there is no solution. In the case of positive 
answer the satisfying valuation of variables serves a witness (of small size) certifying existence of 
at least one solution. If the solver obtains a witness its task is complete.  In contrast to this, there is 
no such small witness in the case of negative answer so the search must be performed. 

Our contribution to solving SAT problems consists in preprocessing and reformulation of the in-
put Boolean formula in CNF form (conjunctive normal form - conjunction of disjunctions) which of 
the result is the answer whether the input formula is unsatisfiable or a new formula with the same 
set of satisfying valuations as that of the input one. If the input formula is not decided by the pre-
processing phase then the preprocessed formula is postponed to the SAT solver of the user’s choice. 
The idea behind this process is to make the task for the SAT solver easier by deciding the input 
formula even within the fast preprocessing phase or by providing equivalent but simpler formula to 
the SAT solver. Experiments showed that solving process over mentioned difficult SAT bench-
marks speeds up by order of magnitudes by using our approach. 

The reformulation within preprocessing phase itself is simple. We are viewing the input Boolean 
formula in CNF form as a graph with vertexes and edges. For each literal (variable or its negation) 
of the input formula we consider a vertex and for each conflict between literals we consider an 
edge. Conflicting literals are those that cannot be both satisfied in a single valuation of variables, for 
example positive and negative literals of the same variable are conflicting. To be able to use our 
reasoning based on clique decomposition we need a graph with appropriately large complete sub-
graphs (cliques). Unfortunately the graph arising from the above interpretation of the Boolean for-
mula in CNF form is rather sparse (the largest clique is of size 2). That is why we apply further in-
ference by which we deduce more conflicts between the literals and which allow us to introduce 
more edges into the graph. We are using singleton arc-consistency [5] as the inference technique for 
deducing edges. 

Having the graph constructed from the input CNF formula, a clique decomposition of this graph 
is found by a greedy algorithm (we do not need optimal clique decomposition; we need just some of 
the reasonable quality). The important property of the constructed clique decomposition is that at 
most one literal from each clique can be assigned the value true . In this situation we perform some 
kind of literal contribution counting to rule out literals that can never be true . To do this, the maxi-
mum number of satisfied clauses by literals of each clique is calculated. Then a literal of a certain 
clique can be ruled out if literals from other cliques together with the selected literal do not satisfy 
enough clauses to satisfy the input formula. 

Although this problem reformulation is looking weak it provides a strong reasoning about de-
pendencies among clauses of the CNF Boolean formula and about the effect of the selection of a 
value for a variable on the overall satisfiability of the formula. Moreover if all the literals are ruled 



Solving Difficult SAT Instances Using Greedy Clique Decomposition      3 

out during the preprocessing phase the input formula is obviously unsatisfiable. Experimental 
evaluation showed that this happen on difficult SAT problems very often. Otherwise a new formula 
in CNF form equivalent to the input one is produced. The new formula is constructed from the 
original one by adding clauses which capture all the dependencies inferred by the initial singleton 
arc-consistency stage and by literal contribution counting based on the clique decomposition. 

The paper is organized as follows. A detailed formal description of the reformulation of a SAT 
instance using the greedy clique decomposition is provided in the section 2. The subsequent section 
3 is devoted to some experimental comparison of our approach with existing state-of-the-art SAT 
solvers. We are discussing the contribution of our method within this section too. Finally we put our 
work in relation to similar works in the field of Boolean satisfiability and propose some future re-
search directions of the studied topic. 

2   SAT Reformulation Using Greedy Clique Decomposition 

We will formally describe details of the process of SAT problem reformulation in this section. Let 

1 1
imn i

i j jB x= == ∧ ∨  be the input Boolean formula in CNF form, where i
jx  is a literal (variable or its 

negation) for all possible i  and j . A sub-formula 1
im i

j jx=∨  of the input formula B  for every possible 
i  is called a clause. The thi clause of the formula B  will be denoted as iC  in the following para-
graphs. As it was mentioned in the introduction, the basic idea of the SAT problem reformulation 
consists in viewing the input formula as an undirected graph with vertexes and edges in which the 
internal structure of the formula is captured in some way. To be concrete the graph will capture 
pairs of conflicting literals and will be constructed in several stages. 

2.1   Inference of Conflicting Literals 

We start by the construction of an undirected graph 1 1 1( , )B B BG V E=  which will represent trivially 
conflicting literals. The graph will be called a graph of trivial conflicts. The graph 1

BG  will then 
undergo further inference process by which additional conflicts will be inferred. We will denote the 
resulting undirected graph as 2 2 2( , )B B BG V E=  and call it an intermediate graph of conflicts. 

Construction of the undirected graph 1
BG  is simple. A vertex is introduced into the graph 1

BG  for 
each literal occurring in the formula B , that is 1

1 1
in m i

B ji jV x= == � �  (notice that 1
BV  is typically smaller 

than the length of the formula, since literals may occur many times in the formula while only once 
in the graph). The construction of the set of edges 1

BE  is also straightforward. An edge { , }i k
j lx x  is 

introduced into the graph 1
BG  if the literals i

jx  are k
lx  are trivially conflicting, that is if 

( & )i k
j lx v x v= = ¬ ∨ ( & )i k

j lx v x v= ¬ =  for some Boolean variable v . The graph 1
BG  is finished 

by performing this for all possible pairs of conflicting literals. The interpretation of the graph of 
conflicts is that if a literal corresponding to a vertex is selected to be assigned the value true  all 
literals corresponding to the neighboring vertexes must be assigned the value false . 

A real-life graph resulting from the described process over a selected benchmark problem is 
shown in the left part of figure 1. The resulting graph is evidently sparse, since there are edges only 
between literals of the same variable. As it is not a good starting point for our method further infer-
ence mechanism for discovering more conflicting pairs of literals (more edges for the graph) must 
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be applied. This further inference mechanism takes the already constructed graph 1
BG  and augments 

it by adding new edges, the result of this stage is the intermediate graph of conflicts 2
BG . 

The process of construction of the graph 2
BG  exploits techniques known from standard SAT reso-

lution approaches and from constraint programming [9] - unit propagation [10, 30], 
arc-consistency (AC) [19] and singleton arc-consistency (SAC) [5]. Before describing the construc-
tion of the graph 2

BG  let us recall these notions. While doing this we will adapt notations of these 
concepts slightly for the SAT domain to prepare them for our purposes. The following definitions 
assume the input formula B  in CNF form and a corresponding graph of conflicts BG  (for example 
the graph 1

BG  expressing trivial conflicts). 
 

Definition 1 (Arc-consistency in SAT instance with respect to the graph of conflicts). Consider 
two clauses iC  and kC  for , {1,2, , }i k n∈ �  of the formula B . A literal i

jx  ( {1,2, , }ij m∈ � ) from 
the clause iC  is supported by the clause kC  with respect to the given graph of conflicts BG  if there 
exists a literal k

lx  ( {1,2, , }kl m∈ � ) from the clause kC , such that the literals ijx  and k
lx  are not in a 

conflict with respect to the graph BG . An ordered pair of clauses ( , )i kC C  of the formula B  is 
called an arc in this context. An arc ( , )i kC C  for some , {1,2, , }i k n∈ �  is consistent (or arc-
consistent) with respect to the graph of conflicts  BG  if all the literals of the clause iC  are supported 
by the clause kC  with respect to the graph of conflicts BG . The formula B  is called arc-consistent 
with respect to the graph conflicts BG  if all the arcs ( , )i kC C  for all , 1,2, ,i k n= �  are 
arc-consistent with respect to the graph of conflicts BG . o  

 
The reason for having the definition of arc-consistency is that the literals which are not supported 

according to the definition cannot be assigned the value true  (this means that the corresponding 
variable cannot be assigned the value false  in the case of negative literal). So the solver can rule out 
such literals from further attempts to assign them the value true , which may reduce the size of the 
search space. Notice that the definition has the graph of conflicts BG  as a parameter. It is possible 
to put any correct graph of conflicts as a parameter of this definition, whereas correct means, that if 
{ , }y z  is the edge of the graph then B y z� ≠  must be a tautology. This is obviously true for the 
graph of trivial conflicts 1

BG . Notice also that if we use the graph of trivial conflicts 1
BG  the defini-

tion becomes identical to unit propagation [10, 30]. 
Having the Boolean formula B  the question is how to make it arc-consistent with respect to the 

given graph of conflicts. For this purpose we adopt techniques developed in constraint program-
ming and by SAT community, namely the arc-consistency enforcing algorithms [9, 19] and unit 
propagation [10, 30]. There is a great variety of such algorithms, however their common feature is 
the search for supports for every value (literal) which is suspected of not being supported. The main 
difference among these algorithms is the efficiency of the search for supports. If an unsupported 
literal is detected it is ruled out. Ruling out an unsupported literal may cause that some other literal 
lose its support. This chain like propagation of changes continues until a stable state is reached. For 
purposes of SAT domain this propagation process is usually augmented by an additional simplifica-
tion rule. If the consistency enforcing algorithm detects that within some clause there is only one 
literal that can be selected to be true , it is fixed to the value true and the corresponding clause is cut 
out from further reasoning (it is exactly the simplification rule from unit propagation). 

Unfortunately the defined arc-consistency over Boolean formulas in the CNF form is too weak to 
infer significantly more conflicts than they are already present in the graph of trivial conflicts. 
Therefore we need to make the consistency stronger. Perhaps the simplest way to do this is to make 
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the selected consistency technique singleton [5]. The following definition again assumes the Boo-
lean formula B  and the corresponding graph of conflicts BG  (again graph of trivial conflicts 1

BG  
can be used). 

 
Definition 2 (Singleton arc-consistency in SAT instance with respect to the graph of conflicts). 
A literal k

lx  ( {1,2, , }kl m∈ � ) from a clause kC  for {1,2, , }k n∈ �  of the formula B  is singleton 
arc-consistent with respect to the given graph of conflicts BG  if the formula obtained from B  by 
replacing the clause kC  by the literal k

lx  (the resulting formula is 1
1 1( )imk i k

i j j lx x−
= =∧ ∨ ∧ ∧  

1 1( )imn i
i k j jx= + =∧ ∧ ∨ ) is arc-consistent with respect to the graph of conflicts BG . o  

 
Unsupported literals in the formula modified by replacing the clause kC  by the literal k

lx  are in 
conflict with the literal k

lx . This is quite intuitive, the selection of the literal k
lx  to be assigned the 

value true  rules out some other literals. Hence these literals are in conflict with the selected literal 
k
lx . Having singleton arc-consistency we are ready to infer new edges for graph of conflicts. 
The intermediate graph of conflicts 2BG  is constructed from the graph of trivial conflicts 1BG  in 

the following way. Initially the graph 2
BG  is same as the graph 1BG , that is we start with the initiali-

zation 2 1
B BV V←  and 2 1

B BE E← . Then for every literal 2
By V∈  singleton arc-consistency with respect 

to the graph of conflicts 1
BG  is enforced. If the consistency discovers some unsupported literals, say 

literals 1 2, , , mz z z� , edges { , }iy z  for all 1,2, ,i m= �  are added into the set of edges 2
BE . 

An example of the resulting graph of conflicts is shown in the right part of the figure 1. It is con-
structed from the original graph of trivial conflicts from the left part of the figure 1. The required 
complete sub-graphs of the graph are clearly visible. 

 
 

                     
 

Fig. 1. Left part of the figure shows a graph of trivial conflicts for the SAT benchmark problem pigeon-hole 
principle number 6 (hole06.cnf). Vertexes represents literals, edges are between pairs of positive and nega-
tive literals of the same variable. Right part of the figure shows an intermediate graph of conflicts inferred 
from the original graph from the left by singleton arc-consistency. The graph contains edges from the origi-
nal graph plus the inferred edges. Six complete sub-graphs each containing seven vertexes are clearly visible 
and can be found by a simple greedy algorithm. 

 
The described process of inference of conflicting literals is relatively generic. Both alternative 

initial graphs of trivial conflicts as well as alternative consistency techniques to arc-consistency and 
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singleton arc-consistency for inference of new edges can be used. Both entities may be considered 
as parameters of the method. 

2.2   Greedy Clique Decomposition and Literal Contribution Counting 

To deduce yet more information from the graph of conflicts 2 2 2( , )B B BG V E=  a clique decomposition 
of the graph is constructed. Formally said a partition of vertexes 2

1 2B sV K K K= ∪ ∪ ∪�  such that 
each set of vertexes iK  for 1,2, ,i s= �  induces a clique over the set of edges 2

BE  and i jK K∩ = ∅  
for all , 1,2, , &i j s i j= ≠� . Let 

iKE  denotes the set of edges induced by the clique iK , let RE  
denotes the set of edges outside the clique decomposition, that is 2 1 i

s
R B KiE E E== −� . Our inference 

method based on literal contribution counting requires cliques of the decomposition to be largest as 
possible (that is s  must be smallest as possible) and the size of RE  to be smallest as possible. The 
better the quality of the decomposition is the stronger results are produced by our inference method. 
Since the problem of finding optimal clique decomposition with respect to the above criterion is 
obviously NP-complete on a general graph [16], we cannot afford to construct optimal decomposi-
tion and must abandon this requirement. Nevertheless experiments showed that the simple greedy 
algorithm can find a clique decomposition of acceptable quality (with respect to clique sizes and the 
number of edges outside the decomposition). 

Our greedy algorithm for finding clique decomposition is based on the standard greedy algorithm 
for finding the largest clique. A vertex of the highest degree is found in the graph and is included 
into the constructed clique. Then the graph is restricted on the neighborhood of the selected vertex 
and a vertex of the highest degree in this neighborhood is selected as second. Then the graph is 
again restricted on the neighborhood of these two vertexes (that is considered vertexes are neighbor 
of both the first and the second selected vertex) and algorithm continues until the neighborhood of 
selected vertexes is non-empty. The constructed clique and its neighborhood is removed from the 
graph and the next clique is constructed. This main loop continues until the graph is non-empty. 

The described greedy algorithm performed over the graph from the right part of the figure 1 finds 
the clique decomposition consisting of six cliques of size seven. The fact that at most one literal 
from a clique can be selected to be assigned the value true  is used in our inference method. 

For the following definitions us have a Boolean formula 1 1
imn i

i j jB x= == ∧ ∨  and the corresponding 
clique decomposition 2

1 2B sV K K K= ∪ ∪ ∪�  of the intermediate graph of conflicts 2 2 2( , )B B BG V E= . 
Next let {1,2, , }I n⊆ �  be a set of indexes of clauses of the formula B . The set I  defines a 
sub-formula IB  of the formula B , where I i I iB C∈= ∧ .  

 
Definition 3 (Literal contribution). A contribution of a literal y  to the sub-formula  IB  is defined 
as { | }ii I y C∈ ∈  and is denoted as ( , )c y I . o  
 
Definition 4 (Clique contribution). A contribution of a clique 1 2{ , , , }sK K K K∈ �  to the sub-
formula IB  is defined as max ( ( , ))y K c y I∈  and is denoted ( , )c K I . o  

 
The concept of clique contribution is helpful when we are trying to decide whether it is possible 

to satisfy the sub-formula IB  using the literals from the clique decomposition. If for instance 
( , )i I ic K I I∈ <�  holds then the sub-formula IB  cannot be satisfied and hence also B  cannot be 
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satisfied. Moreover we can handle a more general case as it is described in the following defini-
tions. 

 
Definition 5 (Clique-consistent literal). A literal iy K∈  for {1,2, , }i n∈ �  is said to be clique-
consistent with respect to the sub-formula IB  if & ( , )j I j i jc K I∈ ≠ ≥� ( , )I c y I− . o  

 
Definition 6 (Clique-consistent formula). A formula B  is clique-consistent with respect to the 
sub-formula IB  if all the literals of the formula B  are clique-consistent with respect to IB . o  

 
It is easy to see that a clique-inconsistent literal with respect to some sub-formula of B  cannot be 

selected to be assigned the value true . Thus such literals can be ruled out from further reasoning. 
The proof of this claim is provided in technical report [27]. In addition this type of consistency is 
strictly stronger than the discussed unit propagation, arc-consistency and singleton arc-consistency. 
The proof of this claim is again provided in [27]. 

The remaining question is now how to select the described sub-formulas IB  of B  which are used 
for computation of clique-inconsistent literals. This selection is crucial for the strength of the pro-
posed clique-consistency. It is expectable that we need to rule out as many as possible inconsistent 
literals. As it is impossible to compute the defined consistency with respect to all such sub-formulas 
of B , because they are too many, we need to select them with care. The experimentation carried out 
in [27] shows that a good strength of the clique-consistency can be obtained by selecting clauses 
into the sub-formula IB  which have the same number of literals. More precisely, we use 
sub-formulas 

r rI i I iB C∈= ∧  of B , where { {1,2, , } | }r iI i n m r= ∈ =�  for all possible r ∈�  for which 

rIB  is not empty (we suppose that a clause of B  does not contain an individual literal more than 
once). Let us note that we do not know whether this selection is the best possible. 
 
Theorem 1 (Complexity of clique-consistency enforcing algorithm). There exists a polynomial 
time algorithm for enforcing clique-consistency with respect to a sub-formula of a given input for-
mula. n  

 
The proof of this theorem can be found in [27]. Having such algorithm it is possible to extend it 

for multiple sub-formulas 
rIB  simply by running the algorithm for each r ∈�  for which 

rIB  is non-
empty. Since r  is proportional to the size of the input the resulting algorithm is also polynomial. 

2.3   Output of the Reformulation Process 

At this point everything is ready to introduce the final step of our reformulation method. We will be 
constructing a modified formula β  which is initially set to be same as B . We will further preproc-
ess B  by the singleton version of the defined clique-consistency. Conflicts inferred by this further 
preprocessing will be stored into a new graph of conflicts 3 3 3( , )B B BG V E=  which is initially set to be 
same as the graph 2BG . The graph 3

BG  will be called a final graph of conflicts in this context. 
Singleton clique-consistency is computed in the following way. For each literal y  of the input 

formula B  we enforce clique-consistency for the formula obtained from B  by selecting the literal 
y  to be assigned the value true . More precisely, clauses containing y  are removed and negation of 
the literal y  is removed from remaining clauses of B  (removal of a literal i

kx  from the clause 
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1
im i

i j jC x== ∨  of the formula B  is defined as replacement of the clause iC  by the clause 
1
1 1( ) ( )imk i i

j j j k jx x−
= = +∨ ∨ ∨ ). The clique-consistency is then enforced for the resulting formula. During 

enforcing consistency some literals may be found inconsistent. These literals are in conflict with the 
literal y . If for some clause all its literals are found inconsistent with y  then the literal y  cannot 
be selected to be true  and a new clause y¬  is added to β  ( yβ β← ∧ ¬ ). Otherwise conflicting 
literals are stored into the graph of conflicts 3

BG  as new edges (that is if the literal y  is in conflicts 
with the literal z , the edge { , }y z  is included into 3

BG ). 
If for some clause it is discovered by the clique-consistency that no of its literals can be assigned 

the value true  the process terminates with the answer that the formula B  cannot be satisfied. This 
outcome is ensured by the correctness of the method. Our experiments showed that this situation is 
the most successful case, because an answer to the satisfiability is obtained in polynomial time 
without any expensive search for solution. 

If the process does not terminate with the negative answer all the edges of the graph of conflicts 
3
BG  are translated into new clauses of the formula β . That is for every edge 3{ , } By z E∈  we add a 

clause y z∨ ¬  into the formula β  ( ( )y zβ β← ∧ ∨ ¬ ). The resulting formula β  is equivalent with 
the original input formula B . Notice that conflicts inferred by the preceding reformulation stages 
are also reflected in the formula β , since the graph 3

BG  subsumes the preceding graphs of conflicts 
1
BG  and 2

BG . The formula β  is finally postponed to the SAT solver of the user’s choice. Justifica-
tion of this step is provided by the following corollary of the correctness of the clique-consistency. 

 
 

 
 

Fig. 2. A final graph of conflicts for the SAT benchmark problem pigeon-hole principle number 6 
(hole06.cnf). The graph contains edges from the intermediate graph of conflicts from figure 1 plus the edges 
inferred by singleton clique-consistency. 

 
Corollary 1 (Correctness of reformulation). The formula β  resulting from the described pre-
processing has the same set of satisfying valuations as the original formula B . n  
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The graph of conflicts 3
BG  resulting from processing the intermediate graph of conflicts 2

BG  for 
the SAT benchmark problem from figure 1 is shown in figure 2. 

 

3   Experimental Results 

We chose three state-of-the-art SAT solvers for comparison with our reformulation method. The 
SAT solvers of our choice were zChaff [14, 20], HaifaSAT [15, 26] and MiniSAT [11, 12] (we used 
the latest available versions to the time of writing this paper). Our choice was guided by the results 
of several last SAT competitions [18, 24] in which these solvers numbered among winners. The 
secondary guidance was that complete source code (in C/C++) for all these solvers is available on 
web pages of their authors. As we implemented our method in C++ too, this fact allowed us to 
compile all source codes by the same compiler with the same optimization options which guaran-
tees more equitable conditions for comparison (complete source code implementing our method in 
C++ can be found at the web page: http://ktiml.mff.cuni.cz/~surynek/software/ssat/ssat.html). All 
the tests were run on a machine with two AMD Opteron 242 processors (1600 MHz) with 1GB of 
memory under Mandriva Linux 10.2. Our method as well as the listed SAT solvers were compiled 
by the gcc compiler version 3.4.3 with options provided maximum optimization for the target test-
ing machine (-O3 -mtune=opteron). Although the testing machine has two processors no parallel 
processing was used. 

3.1   Difficult SAT Instances Selected for Experiments 

The testing set consisted of several difficult unsatisfiable SAT instances. This set of benchmark 
problems was collected by Aloul [1] and is provided at his research web page. The details about 
hardness and construction of these instances are discussed in [2]. Though let us briefly introduce the 
problems. 

 

Pigeon Hole Instances. [hole] This is the standard SAT benchmark encoding the pigeon hole 
principle problem. The problem asks whether it is possible to place 1n +  pigeons in n  holes 
without two pigeons being in the same hole. The problem is obviously unsatisfiable. We used six 
instances of this problem ranging from 6 to 12  holes. 
 

Randomized Urquhart Instances. [urq] This set of benchmark problems contains several 
artificially constructed hard unsatisfiable instances. More details about these problems are provided 
in [28]. In addition the problems were randomized for our testing purposes. We used four instances 
of the problems of this type. 
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Field Programmable Gate Array Routing Instances. [fpga, chnl] This benchmark problem 
resembles the pigeon hole problem. The question is whether it is possible to route n  connection 
through m  tracks provided by the field programmable gate array component. If n m>  the problem 
cannot be satisfied. We used sixteen unsatisfiable instances of this problem for various number of 
required routes and connections. Two different encodings of the problem are used - denoted fpga 
and chnl. More details about encoding of this problem is provided in [22]. 

 
 

Table 1. Experimental comparison of three SAT solvers over selected difficult benchmark SAT instances. 
We used the timeout of 10.0 minutes (600.00 seconds) for all the tests. 

 

Instance Satisfiable 

Number of 
variables / 
number of 

clauses 

MiniSAT 
(seconds) 

zChaff 
(seconds) 

HaifaSAT 
(second) 

chnl10_11 unsat 220/1122 34.30 7.54 > 600.00 
chnl10_12 unsat 240/1344 101.81 9.11 > 600.00 
chnl10_13 unsat 260/1586 200.30 11.47 > 600.00 
chnl11_12 unsat 264/1476 > 600.00 33.49 > 600.00 
chnl11_13 unsat 286/1472 > 600.00 187.08 > 600.00 
chnl11_20 unsat 440/4220 > 600.00 329.57 > 600.00 
urq3_5 unsat 46/470 95.04 > 600.00 > 600.00 
urq4_5 unsat 74/694 > 600.00 > 600.00 > 600.00 
urq5_5 unsat 121/1210 > 600.00 > 600.00 > 600.00 
urq6_5 unsat 180/1756 > 600.00 > 600.00 > 600.00 
hole6 unsat 42/133 0.01 0.01 0.01 
hole7 unsat 56/204 0.09 0.04 0.02 
hole8 unsat 72/297 0.49 0.23 0.94 
hole9 unsat 90/415 3.64 1.46 478.16 
hole10 unsat 110/561 39.24 7.53 > 600.00 
hole11 unsat 132/738 > 600.00 32.36 > 600.00 
hole12 unsat 156/949 > 600.00 372.18 > 600.00 
fpga10_11 unsat 220/1122 44.77 12.58 > 600.00 
fpga10_12 unsat 240/1344 119.26 33.82 > 600.00 
fpga10_13 unsat 260/1586 362.24 76.15 > 600.00 
fpga10_15 unsat 300/2130 > 600.00 274.84 > 600.00 
fpga10_20 unsat 400/3840 > 600.00 546.00 > 600.00 
fpga11_12 unsat 264/1476 > 600.00 55.70 > 600.00 
fpga11_13 unsat 286/1742 > 600.00 237.54 > 600.00 
fpga11_14 unsat 308/2030 > 600.00 > 600.00 > 600.00 
fpga11_15 unsat 330/2340 > 600.00 > 600.00 > 600.00 
fpga11_20 unsat 440/4220 > 600.00 > 600.00 > 600.00 

 
 
For each benchmark SAT instance we measured the overall time necessary to decide its satisfi-

ability. The results are shown in table 1 and table 2. The speedup obtained by using our method 
compared to a selected SAT solver is also shown. 
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Table 2. Experimental comparison of three SAT solvers with the method using clique-consistency over se-
lected difficult benchmark SAT instances. Again timeout of 10.0 minutes (600.00 seconds) for all the tests 
was used. 

 

Instance 
Decided by 
preprocess-

ing 

Cliques 
(count x 

size) 

Decision 
(seconds) 

Speedup 
ratio w.r.t. 
MiniSAT 

Speedup 
ratio w.r.t 

zChaff 

Speedup 
ratio w.r.t 
HaifaSAT 

chnl10_11 yes 20 x 11 0.43 79.76 17.53 > 1395.34 
chnl10_12 yes 20 x 12 0.60 169.68 8.51 > 1000.00 
chnl10_13 yes 20 x 13 0.78 256.79 14.70 > 769.23 
chnl11_12 yes 22 x 12 0.70 > 857.14 47.84 > 857.14 
chnl11_13 yes 22 x 13 0.92 > 652.17 203.34 > 652.17 
chnl11_20 yes 22 x 20 5.74 > 104.42 57.41 > 104.42 
urq3_5 no 47 x 2 130.15 0.73 N/A N/A 
urq4_5 no 73 x 2 > 600.00 N/A N/A N/A 
urq5_5 no 120 x 2 > 600.00 N/A N/A N/A 
urq6_5 no 179 x 2 > 600.00 N/A N/A N/A 
hole6 yes 6 x 7 0.01 1.0 1.0 1.0 
hole7 yes 7 x 8 0.02 4.5 2.0 1.0 
hole8 yes 8 x 9 0.04 12.25 5.75 23.5 
hole9 yes 9 x 10 0.08 45.5 18.25 5977.00 
hole10 yes 10 x 11 0.13 301.84 57.92 > 4615.38 
hole11 yes 11 x 12 0.20 > 3000.00 161.8 > 3000.00 
hole12 yes 12 x 13 0.30 > 2000.00 1240.6 > 2000.00 
fpga10_11 yes 20 x 11 0.46 97.32 27.34 > 1304.34 
fpga10_12 yes 20 x 12 0.64 186.34 52.84 > 937.50 
fpga10_13 yes 20 x 13 0.84 431.23 90.65 > 714.28 
fpga10_15 yes 20 x 15 1.39 > 431.65 197.72 > 431.65 
fpga10_20 yes 20 x 20 4.72 > 127.11 115.67 > 127.11 
fpga11_12 yes 22 x 12 0.76 > 789.47 73.28 > 789.47 
fpga11_13 yes 22 x 13 1.01 > 594.05 235.18 > 594.05 
fpga11_14 yes 22 x 14 1.30 > 461.53 > 461.53 > 461.53 
fpga11_15 yes 22 x 15 1.67 > 359.28 > 359.28 > 359.28 
fpga11_20 yes 22 x 20 5.96 > 100.67 > 100.67 > 100.67 

 
 

3.2   Effect of Problem Reformulation 

As it is evident from our experimentation the proposed method brings significant improvement in 
term of time necessary for decision of the selected difficult benchmark problems (Pigeon hole, 
FPGA routing instances). The improvements are in orders of magnitudes with respect to all tested 
state-of-the-art SAT solvers. It seems that the improvement on selected benchmarks is exponential 
with respect to the best tested SAT solver. The conclusion is that there is still room to improve SAT 
solvers. However the domain of the improvement is more likely over difficult instances of SAT 
problems which are typically unsatisfiable. It also evident that the clique-consistency is not an uni-
versal method for difficult SAT instances. There is no improvement on instances where no cliques 
of reasonable size are found (randomized Urquhart instances). The interesting feature of the tested 
SAT instances is that they contain cliques of the same size. This may be accounted to the symmetri-
cal formulation of the problems. 
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In our minor experiments we also performed the presented experiments with RSAT  solver [23]. 
The results were very similar in the sense that the solver does not cope well with these problems. 
Unfortunately the solver is provided without the source code as an executable only so we do not 
consider this test as relevant one. Another SAT solver which worth consideration for our tests 
(achieved good results in the SAT Race competition [24]) - Eureka [21] - is not provided at all (no 
source code nor executables are provided). 

We also tested our approach on SAT instances where the preprocessing stage does not terminate 
by the answer that the given SAT instance cannot be satisfied. This is the situation when the prob-
lem is not decided by the preprocessing stage and new equivalent SAT instance is produced and 
postponed to the solver. In such situations our method does not provide competitive results. The 
resulting formula is typically solved slightly faster but the preprocessing stage takes too much time. 
The unaffordable time consummation in the preprocessing stage is caused by extensive propagation 
performed by the method by which huge numbers of conflicts are inferred. It seems that on these 
problems the proposed approach is too strong and represents an overhead only. The numbers of 
inferred conflicts is not proportional to the time saved in the search for solution stage. But this is 
expectable. Moreover, as it was mentioned in the introduction, there is almost no room for improv-
ing SAT solvers on such easy (satisfiable) SAT instances. 

The question may be now what to do when we have a new problem of unknown difficulty. That 
is shall we use our preprocessing method or the SAT solver of our choice directly ? The answer is 
easy. We can run both the preprocessing method and the SAT solver in parallel. On a machine with 
more than one processor we obtain an exponential speedup (the method succeeds) or no improve-
ment. On a machine with only one processor we may obtain an exponential speedup at the expense 
of constant slowdown (where the constant is approximately 2 ). 

3.3   Implementation Issues 

Although we obtained significant speedup compared to the tested SAT solvers on selected SAT 
instances we presume that the speedup can be yet improved by a better implementation of our pre-
processing method. Our current implementation is an experimental prototype and the quality of our 
code is uncompetitive with the quality of code of the tested SAT solvers. 

4   Related Works 

Our method for SAT problem reformulation was originally proposed for solving planning problems 
over planning graphs. It was named projection consistency and it was described in the technical 
report [27] by Surynek. The clique-consistency proposed in this paper is an adaptation of projection 
consistency for the SAT domain. 

The idea of exploiting structural information for solving problems is not new. There is lot of 
works concerning this topic. Many of these works are dealing with methods for breaking symme-
tries [2, 4, 8]. We share the goal with these methods, which is to reduce the search space. However 
we differ in the way how we are doing this. We are rather trying to infer what would happen if the 
search over the problem proceeds in some way. And if that direction seems to be unpromising the 
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corresponding part of the search space is skipped. Symmetry breaking methods are rather trying no 
to do the same work twice (or more times) by clever a transformation of the original problem. 

Our work was much influenced by the paper of Aloul, Markov and Sakallah [2]. We are studying 
the same set of difficult SAT problems. However it seems that our method is simpler to implement 
and more effective on the set of selected testing problems. 

Finally let us note that the detection of cliques in the structure of the problem is not new. A work 
dealing with a consistency based on cliques of inequalities was published by Sqalli and Freuder 
[25]. They use information about cliques to reach more global reasoning about the problem. An-
other work dealing with the similar ideas is [13] in which the authors use graph structure of the 
problem to transform it into another formulation based on global constraints, which provide 
stronger propagation that the original formulation. 

5   Conclusions and Future Work 

We proposed a method for preprocessing difficult (unsatisfiable) SAT instances based on the 
greedy clique decomposition of the transformed input CNF formula. Although the method is not 
universal it provides improvements in orders of magnitudes compared to the state-of-the-art SAT 
solvers on tested SAT instances. Moreover our method can be easily integrated into a SAT solver 
(new or existing) which may significantly improve its performance on difficult SAT instances. 

For future we plan to further tune the method to be able to cope better with the problems having 
few edges in the graphs of conflicts (for example Urquhart instances). This may be done by some 
alternative consistency technique instead of singleton arc-consistency. We also plan to investigate 
the possibility to make the preprocessing iterative. That is to further preprocess the formula result-
ing from the previous preprocessing. 

We also plan to write an experimental SAT solver which would utilize the clique-consistency 
during search. This may be useful for early determining that a certain part of the search space does 
not contain a solution. 

Finally the interesting research direction is some kind of a combination of existing symmetry 
breaking methods and the proposed clique-consistency. 
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