
Solving Difficult SAT Instances Using Greedy Clique
Decomposition

Pavel Surynek

Charles University
Faculty of Mathematics and Physics

Malostranské nám�stí 2/25, 118 00 Praha 1, Czech Republic
surynek@ktiml.mff.cuni.cz

Abstract. We are dealing with solving difficult SAT instances in this paper. We propose a
method for preprocessing SAT instances (CNF formulas) by using consistency techniques
known from constraint programming methodology and by using our own consistency technique
based on clique decomposition of a graph representing conflicts in the input formula. The clique
decomposition allows us to make a strong reasoning over the SAT instance, which even in some
cases decides the SAT instance itself without search. We implemented our preprocessing
method in C++ and compared it with several state-of-the-art SAT solvers on the selected diffi-
cult SAT instances. The result of application of our method was speedup in orders of magni-
tudes compared to the tested SAT solvers.

Keywords: SAT, search, consistency, clique, difficult instances

1 Introduction

Our recent work on artificial intelligence planning problems [3] inspired us to exploit our newly
developed techniques [27] in solving Boolean formula satisfaction problems (SAT). We were study-
ing the problem of finding supporting actions for a goal in AI planning context. We call this a sup-
ports problem in short. This is some kind of an important sub-problem which must be solved many
times when solving AI planning problems over planning graphs [6]. We showed that the supports
problem is NP-complete in our work. In doing so we used conversion of an instance of the SAT
problem to the instance of the supports problem [27]. This simple proof uncovered some interesting
similarities between the SAT problem and the supports problem. Strictly speaking the similarities
itself are neither interesting nor useful. They become more interesting after connecting them with
our new method for solving supports problems based on a greedy clique decomposition which was
also proposed in the mentioned work. The positive experiences made with the method on planning
problems and the observed similarity lead us to the idea to adapt the technique of the greedy clique
decomposition for solving SAT problems.

Boolean formula satisfaction problems and SAT solving techniques play an extremely important
role in theoretical computer science as well as in practice. The question of whether there exist a
complete polynomial time SAT solver is a key question for theoretical computer science and is
open for many years (the P vs. NP problem) [7]. On the other hand the practical use of SAT prob-
lems and SAT solvers in real life applications is also very intensive. Applications of SAT solving
techniques range from microprocessor verification [29] and field-programmable gate array design
[22] to solving AI planning problems by translating them into Boolean formulas [17].

An excellent performance breakthrough was done in solving SAT problems over past years.
Thanks to new algorithms and implementation techniques focused on real life SAT problems many
of the today’s benchmark problems [18, 24] are solved by state-of-the-art solvers [11, 12, 14, 15,
20, 26] in time proportional to the size of the input. It seems that the difficulty of many SAT

2 Pavel Surynek

benchmark problems consists in their size only. Lot of smaller benchmark problems are solved in
real-time by today’s state-of-the-art SAT solvers. The observation that can be deduced upon these
facts is that there is almost no chance to compete with best SAT solvers by own newly written SAT
solver on these problems. That is why we are concentrating on difficult instances of SAT problems
only, where the word difficult here means difficult for today’s state-of-the-art SAT solvers.

A very valuable set of difficult (in the mentioned sense) problems was collected by Aloul [1]. Al-
though these problems are small in length of the input formula they are difficult to be answered.
The detailed discussion about hardness of these problems is provided in [2]. However one of the
aspects is that these problems are mostly unsatisfiable (and this fact is well hidden in the problem).
The solver cannot guess a solution using its advanced techniques and heuristics in such case and
must really perform some search in order to prove that there is no solution. In the case of positive
answer the satisfying valuation of variables serves a witness (of small size) certifying existence of
at least one solution. If the solver obtains a witness its task is complete. In contrast to this, there is
no such small witness in the case of negative answer so the search must be performed.

Our contribution to solving SAT problems consists in preprocessing and reformulation of the in-
put Boolean formula in CNF form (conjunctive normal form - conjunction of disjunctions) which of
the result is the answer whether the input formula is unsatisfiable or a new formula with the same
set of satisfying valuations as that of the input one. If the input formula is not decided by the pre-
processing phase then the preprocessed formula is postponed to the SAT solver of the user’s choice.
The idea behind this process is to make the task for the SAT solver easier by deciding the input
formula even within the fast preprocessing phase or by providing equivalent but simpler formula to
the SAT solver. Experiments showed that solving process over mentioned difficult SAT bench-
marks speeds up by order of magnitudes by using our approach.

The reformulation within preprocessing phase itself is simple. We are viewing the input Boolean
formula in CNF form as a graph with vertexes and edges. For each literal (variable or its negation)
of the input formula we consider a vertex and for each conflict between literals we consider an
edge. Conflicting literals are those that cannot be both satisfied in a single valuation of variables, for
example positive and negative literals of the same variable are conflicting. To be able to use our
reasoning based on clique decomposition we need a graph with appropriately large complete sub-
graphs (cliques). Unfortunately the graph arising from the above interpretation of the Boolean for-
mula in CNF form is rather sparse (the largest clique is of size 2). That is why we apply further in-
ference by which we deduce more conflicts between the literals and which allow us to introduce
more edges into the graph. We are using singleton arc-consistency [5] as the inference technique for
deducing edges.

Having the graph constructed from the input CNF formula, a clique decomposition of this graph
is found by a greedy algorithm (we do not need optimal clique decomposition; we need just some of
the reasonable quality). The important property of the constructed clique decomposition is that at
most one literal from each clique can be assigned the value true . In this situation we perform some
kind of literal contribution counting to rule out literals that can never be true . To do this, the maxi-
mum number of satisfied clauses by literals of each clique is calculated. Then a literal of a certain
clique can be ruled out if literals from other cliques together with the selected literal do not satisfy
enough clauses to satisfy the input formula.

Although this problem reformulation is looking weak it provides a strong reasoning about de-
pendencies among clauses of the CNF Boolean formula and about the effect of the selection of a
value for a variable on the overall satisfiability of the formula. Moreover if all the literals are ruled

Solving Difficult SAT Instances Using Greedy Clique Decomposition 3

out during the preprocessing phase the input formula is obviously unsatisfiable. Experimental
evaluation showed that this happen on difficult SAT problems very often. Otherwise a new formula
in CNF form equivalent to the input one is produced. The new formula is constructed from the
original one by adding clauses which capture all the dependencies inferred by the initial singleton
arc-consistency stage and by literal contribution counting based on the clique decomposition.

The paper is organized as follows. A detailed formal description of the reformulation of a SAT
instance using the greedy clique decomposition is provided in the section 2. The subsequent section
3 is devoted to some experimental comparison of our approach with existing state-of-the-art SAT
solvers. We are discussing the contribution of our method within this section too. Finally we put our
work in relation to similar works in the field of Boolean satisfiability and propose some future re-
search directions of the studied topic.

2 SAT Reformulation Using Greedy Clique Decomposition

We will formally describe details of the process of SAT problem reformulation in this section. Let

1 1
imn i

i j jB x= == ∧ ∨ be the input Boolean formula in CNF form, where i
jx is a literal (variable or its

negation) for all possible i and j . A sub-formula 1
im i

j jx=∨ of the input formula B for every possible
i is called a clause. The thi clause of the formula B will be denoted as iC in the following para-
graphs. As it was mentioned in the introduction, the basic idea of the SAT problem reformulation
consists in viewing the input formula as an undirected graph with vertexes and edges in which the
internal structure of the formula is captured in some way. To be concrete the graph will capture
pairs of conflicting literals and will be constructed in several stages.

2.1 Inference of Conflicting Literals

We start by the construction of an undirected graph 1 1 1(,)B B BG V E= which will represent trivially
conflicting literals. The graph will be called a graph of trivial conflicts. The graph 1

BG will then
undergo further inference process by which additional conflicts will be inferred. We will denote the
resulting undirected graph as 2 2 2(,)B B BG V E= and call it an intermediate graph of conflicts.

Construction of the undirected graph 1
BG is simple. A vertex is introduced into the graph 1

BG for
each literal occurring in the formula B , that is 1

1 1
in m i

B ji jV x= == � � (notice that 1
BV is typically smaller

than the length of the formula, since literals may occur many times in the formula while only once
in the graph). The construction of the set of edges 1

BE is also straightforward. An edge { , }i k
j lx x is

introduced into the graph 1
BG if the literals i

jx are k
lx are trivially conflicting, that is if

(&)i k
j lx v x v= = ¬ ∨ (&)i k

j lx v x v= ¬ = for some Boolean variable v . The graph 1
BG is finished

by performing this for all possible pairs of conflicting literals. The interpretation of the graph of
conflicts is that if a literal corresponding to a vertex is selected to be assigned the value true all
literals corresponding to the neighboring vertexes must be assigned the value false .

A real-life graph resulting from the described process over a selected benchmark problem is
shown in the left part of figure 1. The resulting graph is evidently sparse, since there are edges only
between literals of the same variable. As it is not a good starting point for our method further infer-
ence mechanism for discovering more conflicting pairs of literals (more edges for the graph) must

4 Pavel Surynek

be applied. This further inference mechanism takes the already constructed graph 1
BG and augments

it by adding new edges, the result of this stage is the intermediate graph of conflicts 2
BG .

The process of construction of the graph 2
BG exploits techniques known from standard SAT reso-

lution approaches and from constraint programming [9] - unit propagation [10, 30],
arc-consistency (AC) [19] and singleton arc-consistency (SAC) [5]. Before describing the construc-
tion of the graph 2

BG let us recall these notions. While doing this we will adapt notations of these
concepts slightly for the SAT domain to prepare them for our purposes. The following definitions
assume the input formula B in CNF form and a corresponding graph of conflicts BG (for example
the graph 1

BG expressing trivial conflicts).

Definition 1 (Arc-consistency in SAT instance with respect to the graph of conflicts). Consider
two clauses iC and kC for , {1,2, , }i k n∈ � of the formula B . A literal i

jx ({1,2, , }ij m∈ �) from
the clause iC is supported by the clause kC with respect to the given graph of conflicts BG if there
exists a literal k

lx ({1,2, , }kl m∈ �) from the clause kC , such that the literals ijx and k
lx are not in a

conflict with respect to the graph BG . An ordered pair of clauses (,)i kC C of the formula B is
called an arc in this context. An arc (,)i kC C for some , {1,2, , }i k n∈ � is consistent (or arc-
consistent) with respect to the graph of conflicts BG if all the literals of the clause iC are supported
by the clause kC with respect to the graph of conflicts BG . The formula B is called arc-consistent
with respect to the graph conflicts BG if all the arcs (,)i kC C for all , 1,2, ,i k n= � are
arc-consistent with respect to the graph of conflicts BG . o

The reason for having the definition of arc-consistency is that the literals which are not supported

according to the definition cannot be assigned the value true (this means that the corresponding
variable cannot be assigned the value false in the case of negative literal). So the solver can rule out
such literals from further attempts to assign them the value true , which may reduce the size of the
search space. Notice that the definition has the graph of conflicts BG as a parameter. It is possible
to put any correct graph of conflicts as a parameter of this definition, whereas correct means, that if
{ , }y z is the edge of the graph then B y z� ≠ must be a tautology. This is obviously true for the
graph of trivial conflicts 1

BG . Notice also that if we use the graph of trivial conflicts 1
BG the defini-

tion becomes identical to unit propagation [10, 30].
Having the Boolean formula B the question is how to make it arc-consistent with respect to the

given graph of conflicts. For this purpose we adopt techniques developed in constraint program-
ming and by SAT community, namely the arc-consistency enforcing algorithms [9, 19] and unit
propagation [10, 30]. There is a great variety of such algorithms, however their common feature is
the search for supports for every value (literal) which is suspected of not being supported. The main
difference among these algorithms is the efficiency of the search for supports. If an unsupported
literal is detected it is ruled out. Ruling out an unsupported literal may cause that some other literal
lose its support. This chain like propagation of changes continues until a stable state is reached. For
purposes of SAT domain this propagation process is usually augmented by an additional simplifica-
tion rule. If the consistency enforcing algorithm detects that within some clause there is only one
literal that can be selected to be true , it is fixed to the value true and the corresponding clause is cut
out from further reasoning (it is exactly the simplification rule from unit propagation).

Unfortunately the defined arc-consistency over Boolean formulas in the CNF form is too weak to
infer significantly more conflicts than they are already present in the graph of trivial conflicts.
Therefore we need to make the consistency stronger. Perhaps the simplest way to do this is to make

Solving Difficult SAT Instances Using Greedy Clique Decomposition 5

the selected consistency technique singleton [5]. The following definition again assumes the Boo-
lean formula B and the corresponding graph of conflicts BG (again graph of trivial conflicts 1

BG
can be used).

Definition 2 (Singleton arc-consistency in SAT instance with respect to the graph of conflicts).
A literal k

lx ({1,2, , }kl m∈ �) from a clause kC for {1,2, , }k n∈ � of the formula B is singleton
arc-consistent with respect to the given graph of conflicts BG if the formula obtained from B by
replacing the clause kC by the literal k

lx (the resulting formula is 1
1 1()imk i k

i j j lx x−
= =∧ ∨ ∧ ∧

1 1()imn i
i k j jx= + =∧ ∧ ∨) is arc-consistent with respect to the graph of conflicts BG . o

Unsupported literals in the formula modified by replacing the clause kC by the literal k

lx are in
conflict with the literal k

lx . This is quite intuitive, the selection of the literal k
lx to be assigned the

value true rules out some other literals. Hence these literals are in conflict with the selected literal
k
lx . Having singleton arc-consistency we are ready to infer new edges for graph of conflicts.
The intermediate graph of conflicts 2BG is constructed from the graph of trivial conflicts 1BG in

the following way. Initially the graph 2
BG is same as the graph 1BG , that is we start with the initiali-

zation 2 1
B BV V← and 2 1

B BE E← . Then for every literal 2
By V∈ singleton arc-consistency with respect

to the graph of conflicts 1
BG is enforced. If the consistency discovers some unsupported literals, say

literals 1 2, , , mz z z� , edges { , }iy z for all 1,2, ,i m= � are added into the set of edges 2
BE .

An example of the resulting graph of conflicts is shown in the right part of the figure 1. It is con-
structed from the original graph of trivial conflicts from the left part of the figure 1. The required
complete sub-graphs of the graph are clearly visible.

Fig. 1. Left part of the figure shows a graph of trivial conflicts for the SAT benchmark problem pigeon-hole
principle number 6 (hole06.cnf). Vertexes represents literals, edges are between pairs of positive and nega-
tive literals of the same variable. Right part of the figure shows an intermediate graph of conflicts inferred
from the original graph from the left by singleton arc-consistency. The graph contains edges from the origi-
nal graph plus the inferred edges. Six complete sub-graphs each containing seven vertexes are clearly visible
and can be found by a simple greedy algorithm.

The described process of inference of conflicting literals is relatively generic. Both alternative

initial graphs of trivial conflicts as well as alternative consistency techniques to arc-consistency and

6 Pavel Surynek

singleton arc-consistency for inference of new edges can be used. Both entities may be considered
as parameters of the method.

2.2 Greedy Clique Decomposition and Literal Contribution Counting

To deduce yet more information from the graph of conflicts 2 2 2(,)B B BG V E= a clique decomposition
of the graph is constructed. Formally said a partition of vertexes 2

1 2B sV K K K= ∪ ∪ ∪� such that
each set of vertexes iK for 1,2, ,i s= � induces a clique over the set of edges 2

BE and i jK K∩ = ∅
for all , 1,2, , &i j s i j= ≠� . Let

iKE denotes the set of edges induced by the clique iK , let RE
denotes the set of edges outside the clique decomposition, that is 2 1 i

s
R B KiE E E== −� . Our inference

method based on literal contribution counting requires cliques of the decomposition to be largest as
possible (that is s must be smallest as possible) and the size of RE to be smallest as possible. The
better the quality of the decomposition is the stronger results are produced by our inference method.
Since the problem of finding optimal clique decomposition with respect to the above criterion is
obviously NP-complete on a general graph [16], we cannot afford to construct optimal decomposi-
tion and must abandon this requirement. Nevertheless experiments showed that the simple greedy
algorithm can find a clique decomposition of acceptable quality (with respect to clique sizes and the
number of edges outside the decomposition).

Our greedy algorithm for finding clique decomposition is based on the standard greedy algorithm
for finding the largest clique. A vertex of the highest degree is found in the graph and is included
into the constructed clique. Then the graph is restricted on the neighborhood of the selected vertex
and a vertex of the highest degree in this neighborhood is selected as second. Then the graph is
again restricted on the neighborhood of these two vertexes (that is considered vertexes are neighbor
of both the first and the second selected vertex) and algorithm continues until the neighborhood of
selected vertexes is non-empty. The constructed clique and its neighborhood is removed from the
graph and the next clique is constructed. This main loop continues until the graph is non-empty.

The described greedy algorithm performed over the graph from the right part of the figure 1 finds
the clique decomposition consisting of six cliques of size seven. The fact that at most one literal
from a clique can be selected to be assigned the value true is used in our inference method.

For the following definitions us have a Boolean formula 1 1
imn i

i j jB x= == ∧ ∨ and the corresponding
clique decomposition 2

1 2B sV K K K= ∪ ∪ ∪� of the intermediate graph of conflicts 2 2 2(,)B B BG V E= .
Next let {1,2, , }I n⊆ � be a set of indexes of clauses of the formula B . The set I defines a
sub-formula IB of the formula B , where I i I iB C∈= ∧ .

Definition 3 (Literal contribution). A contribution of a literal y to the sub-formula IB is defined
as { | }ii I y C∈ ∈ and is denoted as (,)c y I . o

Definition 4 (Clique contribution). A contribution of a clique 1 2{ , , , }sK K K K∈ � to the sub-
formula IB is defined as max ((,))y K c y I∈ and is denoted (,)c K I . o

The concept of clique contribution is helpful when we are trying to decide whether it is possible

to satisfy the sub-formula IB using the literals from the clique decomposition. If for instance
(,)i I ic K I I∈ <� holds then the sub-formula IB cannot be satisfied and hence also B cannot be

Solving Difficult SAT Instances Using Greedy Clique Decomposition 7

satisfied. Moreover we can handle a more general case as it is described in the following defini-
tions.

Definition 5 (Clique-consistent literal). A literal iy K∈ for {1,2, , }i n∈ � is said to be clique-
consistent with respect to the sub-formula IB if & (,)j I j i jc K I∈ ≠ ≥� (,)I c y I− . o

Definition 6 (Clique-consistent formula). A formula B is clique-consistent with respect to the
sub-formula IB if all the literals of the formula B are clique-consistent with respect to IB . o

It is easy to see that a clique-inconsistent literal with respect to some sub-formula of B cannot be

selected to be assigned the value true . Thus such literals can be ruled out from further reasoning.
The proof of this claim is provided in technical report [27]. In addition this type of consistency is
strictly stronger than the discussed unit propagation, arc-consistency and singleton arc-consistency.
The proof of this claim is again provided in [27].

The remaining question is now how to select the described sub-formulas IB of B which are used
for computation of clique-inconsistent literals. This selection is crucial for the strength of the pro-
posed clique-consistency. It is expectable that we need to rule out as many as possible inconsistent
literals. As it is impossible to compute the defined consistency with respect to all such sub-formulas
of B , because they are too many, we need to select them with care. The experimentation carried out
in [27] shows that a good strength of the clique-consistency can be obtained by selecting clauses
into the sub-formula IB which have the same number of literals. More precisely, we use
sub-formulas

r rI i I iB C∈= ∧ of B , where { {1,2, , } | }r iI i n m r= ∈ =� for all possible r ∈� for which

rIB is not empty (we suppose that a clause of B does not contain an individual literal more than
once). Let us note that we do not know whether this selection is the best possible.

Theorem 1 (Complexity of clique-consistency enforcing algorithm). There exists a polynomial
time algorithm for enforcing clique-consistency with respect to a sub-formula of a given input for-
mula. n

The proof of this theorem can be found in [27]. Having such algorithm it is possible to extend it

for multiple sub-formulas
rIB simply by running the algorithm for each r ∈� for which

rIB is non-
empty. Since r is proportional to the size of the input the resulting algorithm is also polynomial.

2.3 Output of the Reformulation Process

At this point everything is ready to introduce the final step of our reformulation method. We will be
constructing a modified formula β which is initially set to be same as B . We will further preproc-
ess B by the singleton version of the defined clique-consistency. Conflicts inferred by this further
preprocessing will be stored into a new graph of conflicts 3 3 3(,)B B BG V E= which is initially set to be
same as the graph 2BG . The graph 3

BG will be called a final graph of conflicts in this context.
Singleton clique-consistency is computed in the following way. For each literal y of the input

formula B we enforce clique-consistency for the formula obtained from B by selecting the literal
y to be assigned the value true . More precisely, clauses containing y are removed and negation of
the literal y is removed from remaining clauses of B (removal of a literal i

kx from the clause

8 Pavel Surynek

1
im i

i j jC x== ∨ of the formula B is defined as replacement of the clause iC by the clause
1
1 1() ()imk i i

j j j k jx x−
= = +∨ ∨ ∨). The clique-consistency is then enforced for the resulting formula. During

enforcing consistency some literals may be found inconsistent. These literals are in conflict with the
literal y . If for some clause all its literals are found inconsistent with y then the literal y cannot
be selected to be true and a new clause y¬ is added to β (yβ β← ∧ ¬). Otherwise conflicting
literals are stored into the graph of conflicts 3

BG as new edges (that is if the literal y is in conflicts
with the literal z , the edge { , }y z is included into 3

BG).
If for some clause it is discovered by the clique-consistency that no of its literals can be assigned

the value true the process terminates with the answer that the formula B cannot be satisfied. This
outcome is ensured by the correctness of the method. Our experiments showed that this situation is
the most successful case, because an answer to the satisfiability is obtained in polynomial time
without any expensive search for solution.

If the process does not terminate with the negative answer all the edges of the graph of conflicts
3
BG are translated into new clauses of the formula β . That is for every edge 3{ , } By z E∈ we add a

clause y z∨ ¬ into the formula β (()y zβ β← ∧ ∨ ¬). The resulting formula β is equivalent with
the original input formula B . Notice that conflicts inferred by the preceding reformulation stages
are also reflected in the formula β , since the graph 3

BG subsumes the preceding graphs of conflicts
1
BG and 2

BG . The formula β is finally postponed to the SAT solver of the user’s choice. Justifica-
tion of this step is provided by the following corollary of the correctness of the clique-consistency.

Fig. 2. A final graph of conflicts for the SAT benchmark problem pigeon-hole principle number 6
(hole06.cnf). The graph contains edges from the intermediate graph of conflicts from figure 1 plus the edges
inferred by singleton clique-consistency.

Corollary 1 (Correctness of reformulation). The formula β resulting from the described pre-
processing has the same set of satisfying valuations as the original formula B . n

Solving Difficult SAT Instances Using Greedy Clique Decomposition 9

The graph of conflicts 3
BG resulting from processing the intermediate graph of conflicts 2

BG for
the SAT benchmark problem from figure 1 is shown in figure 2.

3 Experimental Results

We chose three state-of-the-art SAT solvers for comparison with our reformulation method. The
SAT solvers of our choice were zChaff [14, 20], HaifaSAT [15, 26] and MiniSAT [11, 12] (we used
the latest available versions to the time of writing this paper). Our choice was guided by the results
of several last SAT competitions [18, 24] in which these solvers numbered among winners. The
secondary guidance was that complete source code (in C/C++) for all these solvers is available on
web pages of their authors. As we implemented our method in C++ too, this fact allowed us to
compile all source codes by the same compiler with the same optimization options which guaran-
tees more equitable conditions for comparison (complete source code implementing our method in
C++ can be found at the web page: http://ktiml.mff.cuni.cz/~surynek/software/ssat/ssat.html). All
the tests were run on a machine with two AMD Opteron 242 processors (1600 MHz) with 1GB of
memory under Mandriva Linux 10.2. Our method as well as the listed SAT solvers were compiled
by the gcc compiler version 3.4.3 with options provided maximum optimization for the target test-
ing machine (-O3 -mtune=opteron). Although the testing machine has two processors no parallel
processing was used.

3.1 Difficult SAT Instances Selected for Experiments

The testing set consisted of several difficult unsatisfiable SAT instances. This set of benchmark
problems was collected by Aloul [1] and is provided at his research web page. The details about
hardness and construction of these instances are discussed in [2]. Though let us briefly introduce the
problems.

Pigeon Hole Instances. [hole] This is the standard SAT benchmark encoding the pigeon hole
principle problem. The problem asks whether it is possible to place 1n + pigeons in n holes
without two pigeons being in the same hole. The problem is obviously unsatisfiable. We used six
instances of this problem ranging from 6 to 12 holes.

Randomized Urquhart Instances. [urq] This set of benchmark problems contains several
artificially constructed hard unsatisfiable instances. More details about these problems are provided
in [28]. In addition the problems were randomized for our testing purposes. We used four instances
of the problems of this type.

10 Pavel Surynek

Field Programmable Gate Array Routing Instances. [fpga, chnl] This benchmark problem
resembles the pigeon hole problem. The question is whether it is possible to route n connection
through m tracks provided by the field programmable gate array component. If n m> the problem
cannot be satisfied. We used sixteen unsatisfiable instances of this problem for various number of
required routes and connections. Two different encodings of the problem are used - denoted fpga
and chnl. More details about encoding of this problem is provided in [22].

Table 1. Experimental comparison of three SAT solvers over selected difficult benchmark SAT instances.
We used the timeout of 10.0 minutes (600.00 seconds) for all the tests.

Instance Satisfiable

Number of
variables /
number of

clauses

MiniSAT
(seconds)

zChaff
(seconds)

HaifaSAT
(second)

chnl10_11 unsat 220/1122 34.30 7.54 > 600.00
chnl10_12 unsat 240/1344 101.81 9.11 > 600.00
chnl10_13 unsat 260/1586 200.30 11.47 > 600.00
chnl11_12 unsat 264/1476 > 600.00 33.49 > 600.00
chnl11_13 unsat 286/1472 > 600.00 187.08 > 600.00
chnl11_20 unsat 440/4220 > 600.00 329.57 > 600.00
urq3_5 unsat 46/470 95.04 > 600.00 > 600.00
urq4_5 unsat 74/694 > 600.00 > 600.00 > 600.00
urq5_5 unsat 121/1210 > 600.00 > 600.00 > 600.00
urq6_5 unsat 180/1756 > 600.00 > 600.00 > 600.00
hole6 unsat 42/133 0.01 0.01 0.01
hole7 unsat 56/204 0.09 0.04 0.02
hole8 unsat 72/297 0.49 0.23 0.94
hole9 unsat 90/415 3.64 1.46 478.16
hole10 unsat 110/561 39.24 7.53 > 600.00
hole11 unsat 132/738 > 600.00 32.36 > 600.00
hole12 unsat 156/949 > 600.00 372.18 > 600.00
fpga10_11 unsat 220/1122 44.77 12.58 > 600.00
fpga10_12 unsat 240/1344 119.26 33.82 > 600.00
fpga10_13 unsat 260/1586 362.24 76.15 > 600.00
fpga10_15 unsat 300/2130 > 600.00 274.84 > 600.00
fpga10_20 unsat 400/3840 > 600.00 546.00 > 600.00
fpga11_12 unsat 264/1476 > 600.00 55.70 > 600.00
fpga11_13 unsat 286/1742 > 600.00 237.54 > 600.00
fpga11_14 unsat 308/2030 > 600.00 > 600.00 > 600.00
fpga11_15 unsat 330/2340 > 600.00 > 600.00 > 600.00
fpga11_20 unsat 440/4220 > 600.00 > 600.00 > 600.00

For each benchmark SAT instance we measured the overall time necessary to decide its satisfi-

ability. The results are shown in table 1 and table 2. The speedup obtained by using our method
compared to a selected SAT solver is also shown.

Solving Difficult SAT Instances Using Greedy Clique Decomposition 11

Table 2. Experimental comparison of three SAT solvers with the method using clique-consistency over se-
lected difficult benchmark SAT instances. Again timeout of 10.0 minutes (600.00 seconds) for all the tests
was used.

Instance
Decided by
preprocess-

ing

Cliques
(count x

size)

Decision
(seconds)

Speedup
ratio w.r.t.
MiniSAT

Speedup
ratio w.r.t

zChaff

Speedup
ratio w.r.t
HaifaSAT

chnl10_11 yes 20 x 11 0.43 79.76 17.53 > 1395.34
chnl10_12 yes 20 x 12 0.60 169.68 8.51 > 1000.00
chnl10_13 yes 20 x 13 0.78 256.79 14.70 > 769.23
chnl11_12 yes 22 x 12 0.70 > 857.14 47.84 > 857.14
chnl11_13 yes 22 x 13 0.92 > 652.17 203.34 > 652.17
chnl11_20 yes 22 x 20 5.74 > 104.42 57.41 > 104.42
urq3_5 no 47 x 2 130.15 0.73 N/A N/A
urq4_5 no 73 x 2 > 600.00 N/A N/A N/A
urq5_5 no 120 x 2 > 600.00 N/A N/A N/A
urq6_5 no 179 x 2 > 600.00 N/A N/A N/A
hole6 yes 6 x 7 0.01 1.0 1.0 1.0
hole7 yes 7 x 8 0.02 4.5 2.0 1.0
hole8 yes 8 x 9 0.04 12.25 5.75 23.5
hole9 yes 9 x 10 0.08 45.5 18.25 5977.00
hole10 yes 10 x 11 0.13 301.84 57.92 > 4615.38
hole11 yes 11 x 12 0.20 > 3000.00 161.8 > 3000.00
hole12 yes 12 x 13 0.30 > 2000.00 1240.6 > 2000.00
fpga10_11 yes 20 x 11 0.46 97.32 27.34 > 1304.34
fpga10_12 yes 20 x 12 0.64 186.34 52.84 > 937.50
fpga10_13 yes 20 x 13 0.84 431.23 90.65 > 714.28
fpga10_15 yes 20 x 15 1.39 > 431.65 197.72 > 431.65
fpga10_20 yes 20 x 20 4.72 > 127.11 115.67 > 127.11
fpga11_12 yes 22 x 12 0.76 > 789.47 73.28 > 789.47
fpga11_13 yes 22 x 13 1.01 > 594.05 235.18 > 594.05
fpga11_14 yes 22 x 14 1.30 > 461.53 > 461.53 > 461.53
fpga11_15 yes 22 x 15 1.67 > 359.28 > 359.28 > 359.28
fpga11_20 yes 22 x 20 5.96 > 100.67 > 100.67 > 100.67

3.2 Effect of Problem Reformulation

As it is evident from our experimentation the proposed method brings significant improvement in
term of time necessary for decision of the selected difficult benchmark problems (Pigeon hole,
FPGA routing instances). The improvements are in orders of magnitudes with respect to all tested
state-of-the-art SAT solvers. It seems that the improvement on selected benchmarks is exponential
with respect to the best tested SAT solver. The conclusion is that there is still room to improve SAT
solvers. However the domain of the improvement is more likely over difficult instances of SAT
problems which are typically unsatisfiable. It also evident that the clique-consistency is not an uni-
versal method for difficult SAT instances. There is no improvement on instances where no cliques
of reasonable size are found (randomized Urquhart instances). The interesting feature of the tested
SAT instances is that they contain cliques of the same size. This may be accounted to the symmetri-
cal formulation of the problems.

12 Pavel Surynek

In our minor experiments we also performed the presented experiments with RSAT solver [23].
The results were very similar in the sense that the solver does not cope well with these problems.
Unfortunately the solver is provided without the source code as an executable only so we do not
consider this test as relevant one. Another SAT solver which worth consideration for our tests
(achieved good results in the SAT Race competition [24]) - Eureka [21] - is not provided at all (no
source code nor executables are provided).

We also tested our approach on SAT instances where the preprocessing stage does not terminate
by the answer that the given SAT instance cannot be satisfied. This is the situation when the prob-
lem is not decided by the preprocessing stage and new equivalent SAT instance is produced and
postponed to the solver. In such situations our method does not provide competitive results. The
resulting formula is typically solved slightly faster but the preprocessing stage takes too much time.
The unaffordable time consummation in the preprocessing stage is caused by extensive propagation
performed by the method by which huge numbers of conflicts are inferred. It seems that on these
problems the proposed approach is too strong and represents an overhead only. The numbers of
inferred conflicts is not proportional to the time saved in the search for solution stage. But this is
expectable. Moreover, as it was mentioned in the introduction, there is almost no room for improv-
ing SAT solvers on such easy (satisfiable) SAT instances.

The question may be now what to do when we have a new problem of unknown difficulty. That
is shall we use our preprocessing method or the SAT solver of our choice directly ? The answer is
easy. We can run both the preprocessing method and the SAT solver in parallel. On a machine with
more than one processor we obtain an exponential speedup (the method succeeds) or no improve-
ment. On a machine with only one processor we may obtain an exponential speedup at the expense
of constant slowdown (where the constant is approximately 2).

3.3 Implementation Issues

Although we obtained significant speedup compared to the tested SAT solvers on selected SAT
instances we presume that the speedup can be yet improved by a better implementation of our pre-
processing method. Our current implementation is an experimental prototype and the quality of our
code is uncompetitive with the quality of code of the tested SAT solvers.

4 Related Works

Our method for SAT problem reformulation was originally proposed for solving planning problems
over planning graphs. It was named projection consistency and it was described in the technical
report [27] by Surynek. The clique-consistency proposed in this paper is an adaptation of projection
consistency for the SAT domain.

The idea of exploiting structural information for solving problems is not new. There is lot of
works concerning this topic. Many of these works are dealing with methods for breaking symme-
tries [2, 4, 8]. We share the goal with these methods, which is to reduce the search space. However
we differ in the way how we are doing this. We are rather trying to infer what would happen if the
search over the problem proceeds in some way. And if that direction seems to be unpromising the

Solving Difficult SAT Instances Using Greedy Clique Decomposition 13

corresponding part of the search space is skipped. Symmetry breaking methods are rather trying no
to do the same work twice (or more times) by clever a transformation of the original problem.

Our work was much influenced by the paper of Aloul, Markov and Sakallah [2]. We are studying
the same set of difficult SAT problems. However it seems that our method is simpler to implement
and more effective on the set of selected testing problems.

Finally let us note that the detection of cliques in the structure of the problem is not new. A work
dealing with a consistency based on cliques of inequalities was published by Sqalli and Freuder
[25]. They use information about cliques to reach more global reasoning about the problem. An-
other work dealing with the similar ideas is [13] in which the authors use graph structure of the
problem to transform it into another formulation based on global constraints, which provide
stronger propagation that the original formulation.

5 Conclusions and Future Work

We proposed a method for preprocessing difficult (unsatisfiable) SAT instances based on the
greedy clique decomposition of the transformed input CNF formula. Although the method is not
universal it provides improvements in orders of magnitudes compared to the state-of-the-art SAT
solvers on tested SAT instances. Moreover our method can be easily integrated into a SAT solver
(new or existing) which may significantly improve its performance on difficult SAT instances.

For future we plan to further tune the method to be able to cope better with the problems having
few edges in the graphs of conflicts (for example Urquhart instances). This may be done by some
alternative consistency technique instead of singleton arc-consistency. We also plan to investigate
the possibility to make the preprocessing iterative. That is to further preprocess the formula result-
ing from the previous preprocessing.

We also plan to write an experimental SAT solver which would utilize the clique-consistency
during search. This may be useful for early determining that a certain part of the search space does
not contain a solution.

Finally the interesting research direction is some kind of a combination of existing symmetry
breaking methods and the proposed clique-consistency.

References

1. Aloul, F. A.: Fadi Aloul's Home Page - SAT Benchmarks. Personal Web Page.
http://www.eecs.umich.edu/~faloul/benchmarks.html, University of Michigan, USA, (March 2007).

2. Aloul, F. A., Ramani, A., Markov, I. L., Sakallah, K. A.: Solving Difficult SAT Instances in the Pres-

ence of Symmetry. Proceedings of the 39th Design Automation Conference (DAC-2002), 731-736, USA,
ACM Press, 2002.

3. Allen, J., Hendler, J., Tate, A. (editors): Readings in Planning. Morgan Kaufmann Publishers, 1990.

4. Benhamou, B., Sais, L.: Tractability through Symmetries in Propositional Calculus. Journal of Auto-

mated Reasoning, volume 12-1, 89-102, Springer-Verlag, 1994.

14 Pavel Surynek

5. Bessière, C., Debruyne, R.: Optimal and Suboptimal Singleton Arc Consistency Algorithms. Proceed-
ings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-2005), 54-59, Canada,
Professional Book Center, 2005.

6. Blum, A. L., Furst, M. L.: Fast Planning through Planning Graph Analysis. Artificial Intelligence 90,

281-300, AAAI Press, 1997.

7. Cook, S. A.: The Complexity of Theorem Proving Procedures. Proceedings of the 3rd Annual ACM

Symposium on Theory of Computing, 151-158, USA, ACM Press, 1971.

8. Crawford, J. M., Ginsberg, M. L., Luks, E. M., Roy, A.: Symmetry-Breaking Predicates for Search

Problems. Proceedings of the 5th International Conference on Principles of Knowledge Representation
and Reasoning (KR-96), 148-159, Morgan Kaufmann, 1996.

9. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, 2003.

10. Dowling, W., Gallier, J.: Linear-time algorithms for testing the satisfiability of propositional Horn for-

mulae. Journal of Logic Programming, 1(3), 267-284, Elsevier, 1984.

11. Eén, N., Sörensson, N.: MiniSat — A SAT Solver with Conflict-Clause Minimization. Poster, 8th Inter-

national Conference on Theory and Applications of Satisfiability Testing (SAT-2005), Scotland, 2005.

12. Eén, N., Sörensson, N.: The MiniSat Page. Research Web Page.

http://www.cs.chalmers.se/Cs/Research/ FormalMethods/MiniSat/Main.html, Chalmers University, Swe-
den, (March 2007).

13. Frisch, A. M., Miguel, I., Walsh, T.: CGRASS: A System for Transforming Constraint Satisfaction

Problems. Barry O'Sullivan (Editor): Recent Advances in Constraints, 15-30, LNCS 2627, Springer-
Verlag, 2003.

14. Fu, Z., Marhajan, Y., Malik, S.: zChaff. Research Web Page. http://www.princeton.edu/ ~chaff/

zchaff.html, Princeton University, USA, (March 2007).

15. Gershman, R., Strichman, O.: HaifaSat – a new robust SAT solver. Research Web Page.

http://www.cs.technion.ac.il/~gershman/HaifaSat.htm, Technion Haifa, Israel, (March 2007).

16. Golumbic, M. C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, 1980.

17. Kautz, H. A., Selman, B.: Planning as Satisfiability. Proceedings of the 10th European Conference on

Artificial Intelligence (ECAI-92), 359-363, Austria, John Wiley and Sons, 1992.

18. Le Berre, D., Simon, L.: SAT Competition 2005. Competition Web Page,

http://www.satcompetition.org/2005/, Scotland, (March 2007).

19. Mackworth, A. K.: Consistency in Networks of Relations. Artificial Intelligence 8, 99-118, AAAI

Press, 1977.

Solving Difficult SAT Instances Using Greedy Clique Decomposition 15

20. Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient
SAT Solver. Proceedings of the 38th Design Automation Conference (DAC-2001), 530-535, USA, ACM
Press, 2001.

21. Nadel, A.: Alexander Nadel's Page. Research Web Page. http://www.cs.tau.ac.il/~ale1/, Tel-Aviv Uni-

versity, Israel, (March 2007).

22. Nam, G.-J., Sakallah, K. A., Rutenbar, R.: A New FPGA Detailed Routing Approach via Search-Based

Boolean Satisfiability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
volume 21-6, 674-684, IEEE Press, 2002.

23. Pipatsrisawat, K., Darwiche, A.: RSat - ...veRSATile... Research Web Page.

http://reasoning.cs.ucla.edu/rsat/, University of California Los Angeles, USA, (March 2007).

24. Sinz, C.: SAT-Race 2006. Competition Web Page, http://fmv.jku.at/sat-race-2006/, USA, (March 2007).
25. Sqalli, M. H., Freuder, E. C.: Inference-Based Constraint Satisfaction Supports Explanation. Proceed-

ings of the 13th National Conference on Artificial Intelligence and 8th Innovative Applications of Artifi-
cial Intelligence Conference (AAAI-96 / IAAI-96), 318-325, AAAI Press / The MIT Press, 1996.

26. Strichman, O., Gershman, R.: HaifaSat: a New Robust SAT Solver. Proceedings of the 1st Interna-

tional Haifa Verification Conference, LNCS 3875, 76-89, Israel, Springer-Verlag. 2005.

27. Surynek, P.: Projection Global Consistency: An Application in AI Planning. Technical report, ITI Se-

ries, 2007-333, http://iti.mff.cuni.cz/series, Charles University, Prague, Czech Republic, 2007.

28. Urquhart, A.: Hard Examples for Resolution. Journal of the ACM, volume 34, 209-219, ACM

Press, 1987.

29. Velev, M. N., Bryant, R. E.: Effective Use of Boolean Satisfiability Procedures in the Formal Verifica-

tion of Superscalar and VLIW Microprocessors. Journal of Symbolic Computation (JSC), volume 35-2,
73-106, Elsevier, 2003.

30. Zhang, H., Stickel, M.: An efficient algorithm for unit-propagation. Proceedings of the 4th International

Symposium on Artificial Intelligence and Mathematics, USA, 1996.

