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Abstract. We are dealing with solving difficult SAT instances in thipgra We propose a
method for preprocessing SAT instances (CNF formulas) by usingistemcy techniques
known from constraint programming methodology and by using our own consiséehcyque
based on cliqgue decomposition of a graph representing conflicts impiteformula. The clique
decomposition allows us to make a strong reasoning over the SAfAdastehich even in some
cases decides the SAT instance itself without search. dyd¢einented our preprocessing
method in C++ and compared it with several state-of-the-art $Mers on the selected diffi-
cult SAT instances. The result of application of our method spagdup in orders of magni-
tudes compared to the tested SAT solvers.
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1 Introduction

Our recent work on artificial intelligence planning problems [3piresl us to exploit our newly
developed techniques [27] in solviBgolean formula satisfaction problems (SAT). We were study-
ing the problem of finding supporting actions for a goal in Al planning contestcal this asup-
ports problem in short. This is some kind of an important sub-problem which must bedsolaey
times when solving Al planning problems oyanning graphs [6]. We showed that the supports
problem is NP-complete in our work. In doing so we used conversion of ancesththe SAT
problem to the instance of the supports problem [27]. This simple proof uada@mne interesting
similarities between the SAT problem and the supports problersthsspeaking the similarities
itself are neither interesting nor useful. They become more stitggeafter connecting them with
our new method for solving supports problems based on a greedy cligue decampasith was
also proposed in the mentioned work. The positive experiences migd#he/imethod on planning
problems and the observed similarity lead us to the idea to dafgchnique of the greedy clique
decomposition for solving SAT problems.

Boolean formula satisfaction problems and SAT solving techniques plagtramely important
role in theoretical computer science as well as in pecilibe question of whether there exist a
complete polynomial time SAT solver is a key question for theoreticalputer science and is
open for many years (tifevs. NP problem) [7]. On the other hand the practical use of SAT prob-
lems and SAT solvers in real life applications is also vemngite. Applications of SAT solving
techniques range from microprocessor verification [29] and field-pnograble gate array design
[22] to solving Al planning problems by translating them into Boolean formulas [17].

An excellent performance breakthrough was done in solving SAT problemspase years.
Thanks to new algorithms and implementation techniques focused oneeahlif problems many
of the today’s benchmark problems [18, 24] are solved by state-ofitsebaers [11, 12, 14, 15,
20, 26] in time proportional to the size of the input. It seems thatiffieulty of many SAT
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benchmark problems consists in their size only. Lot of smaller bear&hpnoblems are solved in
real-time by today’s state-of-the-art SAT solvers. The observahiat can be deduced upon these
facts is that there is almost no chance to compete with b&8ss&8#ers by own newly written SAT
solver on these problems. That is why we are concentrating on diffistdnces of SAT problems
only, where the word difficult here means difficult for today’s state-of-th&Ait solvers.

A very valuable set of difficult (in the mentioned sense) probleassasllected by Aloul [1]. Al-
though these problems are small in length of the input formula theyfacalltdio be answered.
The detailed discussion about hardness of these problems is providedHo@ver one of the
aspects is that these problems are mostly unsatisfiable (arfddhis well hidden in the problem).
The solver cannot guess a solution using its advanced techniques andcheaarsiich case and
must really perform some search in order to prove that there isluims. In the case of positive
answer the satisfying valuation of variables serves a witnessm@if size) certifying existence of
at least one solution. If the solver obtains a witness its tagkmplete. In contrast to this, there is
no such small witness in the case of negative answer so the search must beegerform

Our contribution to solving SAT problems consists in preprocessing andhgédion of the in-
put Boolean formula i€NF form (conjunctive normal form - conjunction of disjunctions) which of
the result is the answer whether the input formula is unsélsf@a a new formula with the same
set of satisfying valuations as that of the input one. If the inpotuia is not decided by the pre-
processing phase then the preprocessed formula is postponed to tkel\84%Df the user’s choice.
The idea behind this process is to make the task for the S8W&rseasier by deciding the input
formula even within the fast preprocessing phase or by providing equitaiesimpler formula to
the SAT solver. Experiments showed that solving process over mentidfiedlit SAT bench-
marks speeds up by order of magnitudes by using our approach.

The reformulation within preprocessing phase itself is simpleal&e&iewing the input Boolean
formula in CNF form as a graph with vertexes and edges. Forlieéareh (variable or its negation)
of the input formula we consider a vertex and for each conflict batWisgals we consider an
edge. Conflicting literals are those that cannot be both satisfied in a singleovebiavariables, for
example positive and negative literals of the same variableoafécting. To be able to use our
reasoning based on cligue decomposition we need a graph with appropriggelyoiaplete sub-
graphs (cliques). Unfortunately the graph arising from the above interpretatitve Boolean for-
mula inCNF form is rather sparse (the largest clique is of size 2}t iShahy we apply further in-
ference by which we deduce more conflicts between the $itarad which allow us to introduce
more edges into the graph. We are using singleton arc-consistencyt{B]iaerence technique for
deducing edges.

Having the graph constructed from the input CNF formula, a clique gexsition of this graph
is found by a greedy algorithm (we do not need optimal clique decomposigameed just some of
the reasonable quality). The important property of the constructed clepgmposition is that at
most one literal from each clique can be assigned the wakieln this situation we perform some
kind of literal contribution counting to rule out literals that can ndéestrue. To do this, the maxi-
mum number of satisfied clauses by literals of each cliqualésilated. Then a literal of a certain
clique can be ruled out if literals from other cliques togeth#r the selected literal do not satisfy
enough clauses to satisfy the input formula.

Although this problem reformulation is looking weak it provides a strongpreag about de-
pendencies among clauses of the CNF Boolean formula and about theoktfextselection of a
value for a variable on the overall satisfiability of the formMareover if all the literals are ruled
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out during the preprocessing phase the input formula is obviously unsatistiafperimental
evaluation showed that this happen on difficult SAT problems very oftder@se a new formula
in CNF form equivalent to the input one is produced. The new formula isrectesl from the
original one by adding clauses which capture all the dependenciesdnfgrtbe initial singleton
arc-consistency stage and by literal contribution counting based on the clique decomposition.

The paper is organized as follows. A detailed formal descriptioheofdformulation of a SAT
instance using the greedy clique decomposition is provided in the seclibe 8ubsequent section
3 is devoted to some experimental comparison of our approach witmgystdte-of-the-art SAT
solvers. We are discussing the contribution of our method within this section too. Finally ouer
work in relation to similar works in the field of Boolean satisility and propose some future re-
search directions of the studied topic.

2 SAT Reformulation Using Greedy Clique Decomposition

We will formally describe details of the process of SAT probteformulation in this section. Let
B=0, Dm_lx be the input Boolean formula in CNF form, Whe(‘p is a literal (variable or its
negation) for aII possible and j . A sub- formulaD”‘.lx of the input formulaB for every possible

i is called a clause. Thi¢hclause of the formuIeB WI|| be denoted a<C. in the following para-
graphs. As it was mentioned in the introduction, the basic idea ofAﬂﬁqo&bIem reformulation
consists in viewing the input formula as an undirected graph withxesri@nd edges in which the
internal structure of the formula is captured in some way. To be etenttre graph will capture
pairs of conflicting literals and will be constructed in several stages.

2.1 Inferenceof Conflicting Literals

We start by the construction of an undirected gr&jh= (V,,E;) which will represent trivially
conflicting literals. The graph will be calledgaaph of trivial conflicts. The graphGg will then
undergo further inference process by which additional conflicts wilhfleered. We will denote the
resulting undirected graph & = (V7,EZ) and call it arintermediate graph of conflicts.

Construction of the undirected grag@ is simple. A vertex is introduced into the gra@h for
each literal occurring in the formulg, that isVy :Ui“:lUrj’le‘j (notice thaq\/é‘ is typically smaller
than the length of the formula, since literals may occur many fimgse formula while only once
in the graph). The construction of the set of edagss also straightforward. An eddex;, X} is
introduced into the graphG; if the literals x; are x‘ are trivially conflicting, that is if
(x =v& x =-v) O (Xj =-Vvé& X =V) for some Boolean variable. The graphG; is finished
by performing this for aII possible pairs of conflicting literalfieTinterpretation of the graph of
conflicts is that if a literal corresponding to a vertex isceld to be assigned the valtreie all
literals corresponding to the neighboring vertexes must be assigned thefalatue

A real-life graph resulting from the described process over atsdldbenchmark problem is
shown in the left part of figure 1. The resulting graph is evidentlssepaince there are edges only
between literals of the same variable. As it is not a goodrgfgobint for our method further infer-
ence mechanism for discovering more conflicting pairs of litdratse edges for the graph) must
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be applied. This further inference mechanism takes the alreadyumtesd graphG, and augments
it by adding new edges, the result of this stage is the intermediate graph of c@flicts

The process of construction of the gragh exploits techniques known from standard SAT reso-
lution approaches and frontonstraint programming [9] - unit propagation [10, 30],
arc-consistency (AC) [19] andsingleton arc-consistency (SAC) [5]. Before describing the construc-
tion of the graphG: let us recall these notions. While doing this we will adapt notatibisese
concepts slightly for the SAT domain to prepare them for our purposesolldweing definitions
assume the input formula in CNF form and a corresponding graph of confliGs (for example
the graphG; expressing trivial conflicts).

Definition 1 (Arc-consistency in SAT instance with respect to the graph of conflicts). Consider
two clausesC. and C, for i,k 0{L,2,...,n} of the formulaB. A literal xij (iof,2,...,m}) from
the clauseC, is supported by the clauseC, with respect to the given graph of confliédg if there
exists a literalx‘ (1 0{1,2,...,m}) from the clauseC,, such that the literalg, and x‘ are not in a
conflict with respect to the grap,. An ordered pair of clause&C,C,) of the formulaB is
called anarc in this context. An arqC,C,) for somei,k{1,2,...,n} is consistent (or arc-
consistent) with respect to the graph of conflicts; if all the literals of the claus€, are supported
by the clauseC, with respect to the graph of conflic®, . The formulaB is calledarc-consistent
with respect to the graph conflicts; if all the arcs (C,C,) for all i,k=1,2,..n are
arc-consistent with respect to the graph of confligis o

The reason for having the definition of arc-consistency is thattdrals which are not supported
according to the definition cannot be assigned the vale (this means that the corresponding
variable cannot be assigned the valdge in the case of negative literal). So the solver can rule out
such literals from further attempts to assign them the vialies which may reduce the size of the
search space. Notice that the definition has the graph of corBjcias a parameter. It is possible
to put any correct graph of conflicts as a parameter of this definwhereas correct means, that if
{y, 3 is the edge of the graph thé— y # z must be a tautology. This is obviously true for the
graph of trivial conflictsG; . Notice also that if we use the graph of trivial confli&s the defini-
tion becomes identical to unit propagation [10, 30].

Having the Boolean formul@ the question is how to make it arc-consistent with respect to the
given graph of conflicts. For this purpose we adopt techniques developed iraiconEogram-
ming and by SAT community, namely the arc-consistency enforcing algor[ni®] and unit
propagation [10, 30]. There is a great variety of such algorithms, howewecdhamon feature is
the search for supports for every value (literal) which is suisgdeof not being supported. The main
difference among these algorithms is the efficiency of the lsdarcsupports. If an unsupported
literal is detected it is ruled out. Ruling out an unsupported llitegg cause that some other literal
lose its support. This chain like propagation of changes continues stulbla state is reached. For
purposes of SAT domain this propagation process is usually augmenteadditeonal simplifica-
tion rule. If the consistency enforcing algorithm detects that withimesclause there is only one
literal that can be selected to tvee, it is fixed to the valudrueand the corresponding clause is cut
out from further reasoning (it is exactly the simplification rule from unit propagat

Unfortunately the defined arc-consistency over Boolean formulas inNlfef@m is too weak to
infer significantly more conflicts than they are already preserhéngraph of trivial conflicts.
Therefore we need to make the consistency stronger. Perhaps phessimay to do this is to make
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the selected consistency techniguagleton [5]. The following definition again assumes the Boo-
lean formulaB and the corresponding graph of confli€s (again graph of trivial conflictss;
can be used).

Definition 2 (Singleton arc-consistency in SAT instance with respect to the graph of conflicts).
A literal x (1 0{L,2,...,m}) from a clauseC, for k{1,2,...,n} of the formulaB is singleton
arc-consistent with respect to the given graph of conflicg if the formula obtained fronB by
replacing the clauseC, by the literal x* (the resulting formula is(CS 07, x,) Ox O
OO, O, x‘j)) is arc-consistent with respect to the graph of confli#fso

Unsupported literals in the formula modified by replacing the claisey the literal x are in
conflict with the literal x*. This is quite intuitive, the selection of the litergl to be assigned the
value true rules out some other literals. Hence these literals azenfiict with the selected literal
x. Having singleton arc-consistency we are ready to infer new edges for graph atsonfli

The intermediate graph of conflic8? is constructed from the graph of trivial conflig®, in
the following way. Initially the graplG: is same as the graph;, that is we start with the initiali-
zationVy — V, and EZ — E;. Then for every literaly OV; singleton arc-consistency with respect
to the graph of conflict$s;, is enforced. If the consistency discovers some unsupported literals, s
literals z,,z,,...,z,,, edgeq y, z} foralli=1,2,.. m are added into the set of eddgs.

An example of the resulting graph of conflicts is shown in the rightgbdhte figure 1. It is con-
structed from the original graph of trivial conflicts from thet fedirt of the figure 1. The required
complete sub-graphs of the graph are clearly visible.

Fig. 1. Left part of the figure shows a graph of trivial conflifds the SAT benchmark problem pigeon-hole
principle number 6 (hole06.cnf). Vertexes represents liteealges are between pairs of positive and nega-
tive literals of the same variable. Right part of the figghows an intermediate graph of conflicts inferred
from the original graph from the left by singleton arc-consistemhg. graph contains edges from the origi-
nal graph plus the inferred edges. Six complete sub-graphs eachmiconsgiven vertexes are clearly visible
and can be found by a simple greedy algorithm.

The described process of inference of conflicting literalelistively generic. Both alternative
initial graphs of trivial conflicts as well as alternativansistency techniques to arc-consistency and
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singleton arc-consistency for inference of new edges can be Bs#dentities may be considered
as parameters of the method.

2.2 Greedy Clique Decomposition and Literal Contribution Counting

To deduce yet more information from the graph of conflefs= (V7,EZ) a clique decomposition
of the graph is constructed. Formally said a partition of vertggesK, 0 K, 0...00 K, such that
each set of vertexek; for i =1,2,.. s induces a clique over the set of eddg€sand K, n K, =0
forall i,j=1,2,.. s &l # j. Let E, denotes the set of edges induced by the clllqp,elet =
denotes the set of edges outside the clique decomposition, fati&; —J>, E, . Our mference
method based on literal contribution counting requires cliques of the pesctmn to be largest as
possible (that is must be smallest as possible) and the sizE.ofo be smallest as possible. The
better the quality of the decomposition is the stronger resultwaderced by our inference method.
Since the problem of finding optimal clique decomposition with respetttet@bove criterion is
obviouslyNP-complete on a general graph [16], we cannot afford to construct dpkEt@amposi-
tion and must abandon this requirement. Nevertheless experiments shawvdtetsimple greedy
algorithm can find a clique decomposition of acceptable quality (e#perct to clique sizes and the
number of edges outside the decomposition).

Our greedy algorithm for finding clique decomposition is based on the stagréaxaly algorithm
for finding the largest clique. A vertex of the highest degree is fouttikigraph and is included
into the constructed clique. Then the graph is restricted on the neighborhthedsefected vertex
and a vertex of the highest degree in this neighborhood is selectedoad.s€hen the graph is
again restricted on the neighborhood of these two vertexes (tltatsislered vertexes are neighbor
of both the first and the second selected vertex) and algorithm contintiethe neighborhood of
selected vertexes is non-empty. The constructed clique andgttaehood is removed from the
graph and the next clique is constructed. This main loop continues until the graph is non-empty.

The described greedy algorithm performed over the graph from theaghdf the figure 1 finds
the cligue decomposition consisting of six cliques of size sevenfahehat at most one literal
from a clique can be selected to be assigned the watués used in our inference method.

For the following definitions us have a Boolean form#éla (1", (17, x'J and the corresponding
clique decompositioV, =K, 0K, O...0 K, of the mtermedrate graph of conflic®’ = (VZ,Ef).
Next let | O{1,2,...,n} be a set of mdexes of clauses of the formBlaThe setl defrnes a
sub-formulaB, of the formulaB, whereB, =, C..

Definition 3 (Literal contribution). A contribution of a literal y to the sub-formulaB, is defined
asf{i 01| yOC}| and is denoted ag(y,1). 0

Definition 4 (Clique contribution). A contribution of a clique K O{K, K,,...,K} to the sub-
formula B, is defined asmax ., €(y,l )) and is denoted(K,I).0

The concept of clique contribution is helpful when we are trying taddeshether it is possible
to satisfy the sub-formuldB, using the literals from the clique decomposition. If for instance
> ¢(K;,1)<|l] holds then the sub-formulB, cannot be satisfied and hence aBocannot be
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satisfied. Moreover we can handle a more general casesadescribed in the following defini-
tions.

Definition 5 (Clique-consistent literal). A literal yOK, for i OfL,2,...,n} is said to beclique-
consistent with respect to the sub-formula B, if 3., . ¢(K,,1)=|l|-c(y,1).0

Definition 6 (Clique-consistent formula). A formula B is clique-consistent with respect to the
sub-formula B, if all the literals of the formuld are clique-consistent with respectBp. o

It is easy to see that a clique-inconsistent literal witheetsto some sub-formula & cannot be
selected to be assigned the vatoge. Thus such literals can be ruled out from further reasoning.
The proof of this claim is provided in technical report [27]. In additios type of consistency is
strictly stronger than the discussed unit propagation, arc-consistencingledos arc-consistency.
The proof of this claim is again provided in [27].

The remaining question is now how to select the described sub-forBulaisB which are used
for computation of clique-inconsistent literals. This selectiorrusial for the strength of the pro-
posed clique-consistency. It is expectable that we need to rule mamgsas possible inconsistent
literals. As it is impossible to compute the defined consisteittyrespect to all such sub-formulas
of B, because they are too many, we need to select them with care. The experimeanaidoat
in [27] shows that a good strength of the clique-consistency can be obbgirsetecting clauses
into the sub-formulaB, which have the same number of literals. More precisely, we use
sub-formulasB, =0, C of B, wherel, ={i[{1,2,...,r}| m =1} for all possibler IN for which
B, is not empty (we suppose that a clauseBotioes not contain an individual literal more than
once). Let us note that we do not know whether this selection is the best possible.

Theorem 1 (Complexity of clique-consistency enforcing algorithm). There exists a polynomial
time algorithm for enforcing clique-consistency with respect to a sub-formula of a given input for-
mula. n

The proof of this theorem can be found in [27]. Having such algorithnpissible to extend it
for multiple sub-formulasB, simply by running the algorithm for eaciIN for which B, is non-
empty. Sincer is proportlonal to the size of the input the resulting algorithm is also polynomlal.

2.3 Output of the Refor mulation Process

At this point everything is ready to introduce the final step of dormeulation method. We will be
constructing a modified formul® which is initially set to be same &. We will further preproc-
ess B by the singleton version of the defined clique-consistency. Conflicséaf by this further
preprocessing will be stored into a new graph of confiigls= (Vo,ES) which is initially set to be
same as the grapB’. The graphG_ will be called dinal graph of conflicts in this context.
Singleton clique-consistency is computed in the following way. For e@ehlly of the input
formula B we enforce clique-consistency for the formula obtained frhy selecting the literal
y to be assigned the valumie. More precisely, clauses containiygare removed and negation of
the literal y is removed from remaining clauses Bf (removal of a literalx, from the clause
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C :D'}lei. of the formula B is defined as replacement of the clauSe by the clause

(D';;ixij)Dj(DT:kﬂxij)). The clique-consistency is then enforced for the resulting formulandpur
enforcing consistency some literals may be found inconsistent. Titezaéslare in conflict with the
literal y. If for some clause all its literals are found inconsistetit wi then the literaly cannot

be selected to b&#ue and a new clausey is added tof (S — S -y). Otherwise conflicting
literals are stored into the graph of confli@§ as new edges (that is if the literglis in conflicts
with the literal z, the edggy, 3 is included intoG?).

If for some clause it is discovered by the clique-consistencynthaf its literals can be assigned
the valuetrue the process terminates with the answer that the forlButannot be satisfied. This
outcome is ensured by the correctness of the method. Our experghewsd that this situation is
the most successful case, because an answer to the satgfiabdbtained in polynomial time
without any expensive search for solution.

If the process does not terminate with the negative answitreadidges of the graph of conflicts
G. are translated into new clauses of the form@laThat is for every edggy, 2 OE; we add a
clausey [l=z into the formulag (8 — BUO(yO-2z)). The resulting formulas is equivalent with
the original input formulaB . Notice that conflicts inferred by the preceding reformulatiaiges
are also reflected in the formuj8, since the grapiG; subsumes the preceding graphs of conflicts
G, and GZ. The formulag is finally postponed to the SAT solver of the user’s choice. Justific
tion of this step is provided by the following corollary of the correctness of the clansestency.

Fig. 2. A final graph of conflicts for the SAT benchmark problem pighole principle number 6
(hole06.cnf). The graph contains edges from the intermediate graphfbtts from figure 1 plus the edges
inferred by singleton clique-consistency.

Corollary 1 (Correctness of reformulation). The formula S resulting from the described pre-
processing has the same set of satisfying valuations as the original formula B . n
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The graph of conflictsa] resulting from processing the intermediate graph of conflgdsfor
the SAT benchmark problem from figure 1 is shown in figure 2.

3 Experimental Results

We chose three state-of-the-art SAT solvers for comparistn aur reformulation method. The
SAT solvers of our choice were zChaff [14, 20], HaifaSAT [15, 26] and MiniSAT [11wil6ed
the latest available versions to the time of writing this pagaury choice was guided by the results
of several last SAT competitions [18, 24] in which these solvers nathmnong winners. The
secondary guidance was that complete source code (in C/C++) foes# solvers is available on
web pages of their authors. As we implemented our method in C++thisofact allowed us to
compile all source codes by the same compiler with the same pgtiom options which guaran-
tees more equitable conditions for comparison (complete source cpligniemting our method in
C++ can be found at the web page: http://ktiml.mff.cuni.cz/~surgoéiware/ssat/ssat.html). All
the tests were run on a machine with two AMD Opteron 242 proced$i8 MHz) with 1GB of
memory under Mandriva Linux 10.2. Our method as well as the listddsBivers were compiled
by the gcc compiler version 3.4.3 with options provided maximum optimizatichdaiarget test-
ing machine (-O3 -mtune=opteron). Although the testing machine has twesgors no parallel
processing was used.

3.1 Difficult SAT Instances Selected for Experiments

The testing set consisted of several difficult unsatisfiabld@ 8&tances. This set of benchmark
problems was collected by Aloul [1] and is provided at his reseaethpage. The details about
hardness and construction of these instances are discussed in [2]. Though |8yusthyduce the
problems.

Pigeon Hole Instances. [hole] This is the standard SAT benchmark encoding the pigeon hole
principle problem. The problem asks whether it is possible to pteacke pigeons inn holes
without two pigeons being in the same hole. The problem is obviously ursddésiWe used six
instances of this problem ranging fradnto 12 holes.

Randomized Urquhart Instances. [urq] This set of benchmark problems contains several
artificially constructed hard unsatisfiable instances. Moreildethout these problems are provided
in [28]. In addition the problems were randomized for our testing purposess®d four instances
of the problems of this type.
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Field Programmable Gate Array Routing Instances. [fpga, chnl] This benchmark problem
resembles the pigeon hole problem. The question is whether it islpdssiiouten connection
through m tracks provided by the field programmable gate array componemt: ih the problem
cannot be satisfied. We used sixteen unsatisfiable instances pfdhlem for various number of
required routes and connections. Two different encodings of the problemseste denotetbga
andchnl. More details about encoding of this problem is provided in [22].

Table 1. Experimental comparison of three SAT solvers over seledtiiclll benchmark SAT instances.
We used the timeout of 10.0 minutes (600.00 seconds) for all the tests.

Number of
Instance Satisfiable variables / MiniSAT zChaff HaifaSAT
number of (seconds) (seconds) (second)
clauses
chnl10 11 unsat 220/1122 34.30 7.54 > 600.00
chnl10_12 unsat 240/1344 101.81 9.11 > 600.00
chnl10_13 unsat 260/1586 200.30 11.47 > 600.00
chnlll 12 unsat 264/1476 > 600.00 33.49 > 600.00
chnll1l 13 unsat 286/1472 > 600.00 187.08 > 600.00
chnll1l 20 unsat 440/4220 > 600.00 329.57 > 600.00
urg3_5 unsat 46/470 95.04 > 600.00 > 600.00
urg4 5 unsat 74/694 > 600.00 > 600.00 > 600.00
urg5_5 unsat 121/1210 > 600.00 > 600.00 > 600.00
urg6 5 unsat 180/1756 > 600.00 > 600.00 > 600.00
hole6 unsat 42/133 0.01 0.01 0.01
hole7 unsat 56/204 0.09 0.04 0.02
hole8 unsat 721297 0.49 0.23 0.94
hole9 unsat 90/415 3.64 1.46 478.16
hole10 unsat 110/561 39.24 7.53 > 600.00
hole11 unsat 132/738 > 600.00 32.36 > 600.00
hole12 unsat 156/949 > 600.00 372.18 > 600.00
fpgalO_11 unsat 220/1122 44.77 12.58 > 600.00
fpgalo_12 unsat 240/1344 119.26 33.82 > 600.00
fpgal0 13 unsat 260/1586 362.24 76.15 > 600.00
fpgalO 15 unsat 300/2130 > 600.00 274.84 > 600.00
fpgal0o 20 unsat 400/3840 > 600.00 546.00 > 600.00
fpgall 12 unsat 264/1476 > 600.00 55.70 > 600.00
fpgall 13 unsat 286/1742 > 600.00 237.54 > 600.00
fpgall 14 unsat 308/2030 > 600.00 > 600.00 > 600.00
fpgall 15 unsat 330/2340 > 600.00 > 600.00 > 600.00
fpgall 20 unsat 440/4220 > 600.00 > 600.00 > 600.00

For each benchmark SAT instance we measured the overalhéioessary to decide its satisfi-
ability. The results are shown in table 1 and table 2. The speedup oliginesthg our method
compared to a selected SAT solver is also shown.
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Table 2. Experimental comparison of three SAT solvers with the method) whique-consistency over se-
lected difficult benchmark SAT instances. Again timeout of 10.Qutes (600.00 seconds) for all the tests

was used.

Decided by Cliques Decisi Speedup Speedup Speedup
ecision . : .
Instance preprocess- (count x (seconds) ratio w.r.t. ratio w.r.t ratio w.r.t
ing size) MiniSAT zChaff HaifaSAT
chnl10_11 yes 20x11 0.43 79.76 17.53 > 1395.34
chnl10_12 yes 20x 12 0.60 169.68 8.51 > 1000.00
chnl10_13 yes 20x13 0.78 256.79 14.70 > 769.23
chnlll 12 yes 22x12 0.70 > 857.14 47.84 > 857.14
chnlll 13 yes 22 x13 0.92 > 652.17 203.34 > 652.17
chnl1l 20 yes 22x20 5.74 >104.42 57.41 > 104.42
urg3_5 no 47 x2 130.15 0.73 N/A N/A
urg4 5 no 73x2 > 600.00 N/A N/A N/A
urg5_5 no 120x 2 > 600.00 N/A N/A N/A
urg6_5 no 179x2 > 600.00 N/A N/A N/A
hole6 yes 6x7 0.01 1.0 1.0 1.0
hole7 yes 7x8 0.02 4.5 2.0 1.0
hole8 yes 8x9 0.04 12.25 5.75 23.5
hole9 yes 9x10 0.08 45.5 18.25 5977.00
holel0 yes 10x11 0.13 301.84 57.92 > 4615.38
holell yes 11x12 0.20 > 3000.00 161.8 > 3000.00
hole12 yes 12 x13 0.30 > 2000.00 1240.6 > 2000.00
fpgalo_11 yes 20x11 0.46 97.32 27.34 > 1304.34
fpgalo 12 yes 20x12 0.64 186.34 52.84 > 937.50
fpgalo_13 yes 20x13 0.84 431.23 90.65 > 714.28
fpgal0 15 yes 20 x 15 1.39 >431.65 197.72 > 431.65
fpgal0 20 yes 20 x 20 4.72 >127.11 115.67 >127.11
fpgall 12 yes 22x12 0.76 >789.47 73.28 > 789.47
fpgall 13 yes 22 x13 1.01 > 594.05 235.18 > 594.05
fpgall 14 yes 22 x14 1.30 > 461.53 > 461.53 > 461.53
fpgall 15 yes 22 x15 1.67 > 359.28 > 359.28 > 359.28
fpgall_ 20 yes 22 x20 5.96 > 100.67 >100.67 >100.67

3.2 Effect of Problem Reformulation

As it is evident from our experimentation the proposed method bringsicggmifmprovement in
term of time necessary for decision of the selected difficuichmmark problems (Pigeon hole,
FPGA routing instances). The improvements are in orders of magniutitifiesespect to all tested
state-of-the-art SAT solvers. It seems that the improvemeselected benchmarks is exponential
with respect to the best tested SAT solver. The conclusitiatishtere is still room to improve SAT
solvers. However the domain of the improvement is more likely ovecuifinstances of SAT
problems which are typically unsatisfiable. It also evident thatlifge-consistency is not an uni-
versal method for difficult SAT instances. There is no improveraerihstances where no cliques
of reasonable size are found (randomized Urquhart instances). Tiestinigg feature of the tested
SAT instances is that they contain cliques of the same sizemByide accounted to the symmetri-
cal formulation of the problems.
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In our minor experiments we also performed the presented experimémBBSAT solver [23].
The results were very similar in the sense that the solver miatecope well with these problems.
Unfortunately the solver is provided without the source code as an execataplso we do not
consider this test as relevant one. Another SAT solver which worthdeoaison for our tests
(achieved good results in the SAT Race competition [24]) - EJ2Ha is not provided at all (no
source code nor executables are provided).

We also tested our approach on SAT instances where the preprostagangoes not terminate
by the answer that the given SAT instance cannot be satisfiedisThis situation when the prob-
lem is not decided by the preprocessing stage and new equivalenn§aiice is produced and
postponed to the solver. In such situations our method does not provide dompesitilts. The
resulting formula is typically solved slightly faster but the prepsicg stage takes too much time.
The unaffordable time consummation in the preprocessing stagesedchy extensive propagation
performed by the method by which huge numbers of conflicts are inferrgekrtis that on these
problems the proposed approach is too strong and represents an overhead onlynbérs of
inferred conflicts is not proportional to the time saved in thechefar solution stage. But this is
expectable. Moreover, as it was mentioned in the introduction, thdraastano room for improv-
ing SAT solvers on such easy (satisfiable) SAT instances.

The question may be now what to do when we have a new problem of unknteuitgdifThat
is shall we use our preprocessing method or the SAT solver of our chi@cdy ? The answer is
easy. We can run both the preprocessing method and the SAT solveilgl.ganaa machine with
more than one processor we obtain an exponential speedup (the methodsjumcee improve-
ment. On a machine with only one processor we may obtain an exponentialspé¢he expense
of constant slowdown (where the constant is approximaly

3.3 Implementation I ssues

Although we obtained significant speedup compared to the tested SATssoilveselected SAT
instances we presume that the speedup can be yet improved by arésrentation of our pre-
processing method. Our current implementation is an experimental prototgigae quality of our
code is uncompetitive with the quality of code of the tested SAT solvers.

4 Related Works

Our method for SAT problem reformulation was originally proposeddbring planning problems
over planning graphs. It was named projection consistency and it wasbddsicrithe technical
report [27] by Surynek. The clique-consistency proposed in this paper is@atemtaof projection
consistency for the SAT domain.

The idea of exploiting structural information for solving problems isrmest. There is lot of
works concerning this topic. Many of these works are dealing with methodseaking symme-
tries [2, 4, 8]. We share the goal with these methods, which elte the search space. However
we differ in the way how we are doing this. We are rather triorigfer what would happen if the
search over the problem proceeds in some way. And if that direceamsge be unpromising the
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corresponding part of the search space is skipped. Symmetry breaking nagthoatber trying no
to do the same work twice (or more times) by clever a transformation of the opgb&m.

Our work was much influenced by the paper of Aloul, Markov and Sakallah hré/studying
the same set of difficult SAT problems. However it seemsahatethod is simpler to implement
and more effective on the set of selected testing problems.

Finally let us note that the detection of cliques in the structiutlee problem is not new. A work
dealing with a consistency based on cliques of inequalities was pubhbgh8qalli and Freuder
[25]. They use information about cliques to reach more global reasoning hboortoblem. An-
other work dealing with the similar ideas is [13] in which the autlises graph structure of the
problem to transform it into another formulation based on global constraiftich provide
stronger propagation that the original formulation.

5 Conclusionsand Future Work

We proposed a method for preprocessing difficult (unsatisfiable) B&fEnces based on the
greedy cligue decomposition of the transformed input CNF formula. Alththeyimethod is not
universal it provides improvements in orders of magnitudes compared $statheof-the-art SAT
solvers on tested SAT instances. Moreover our method can be easisaiat into a SAT solver
(new or existing) which may significantly improve its performance on difficult 8&tances.

For future we plan to further tune the method to be able to cope Wwétieghe problems having
few edges in the graphs of conflicts (for example Urquhart instantiess) may be done by some
alternative consistency technique instead of singleton arc-congisiétecalso plan to investigate
the possibility to make the preprocessing iterative. That is tbeflupreprocess the formula result-
ing from the previous preprocessing.

We also plan to write an experimental SAT solver which would etilie clique-consistency
during search. This may be useful for early determining that aircgrart of the search space does
not contain a solution.

Finally the interesting research direction is some kind of a conntnnaf existing symmetry
breaking methods and the proposed clique-consistency.
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