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1 Introduction

The relation of existence of a homomorphism on the class of all relational struc-
tures of a fixed type is reflexive and transitive; it is a quasiorder. There are
standard ways to transform a quasiorder into a partial order – by identifying
equivalent objects, or by choosing a particular representative for each equiva-
lence class. The resulting partial order is identical in both cases.

Properties of this partial order (the homomorphism order) have been inten-
sively studied in algebraic, category theory, random and combinatorial context,
see [5]. Particular interest has been paid to density and universality. Here,
we are interested in the characterisation of all finite maximal antichains in the
homomorphism order.

We show that for structures with at most two relations all finite maximal
antichains correspond to what is known as finite homomorphism dualities (see [4,
8]). In addition, we examine the splitting property of finite maximal antichains
in the homomorphism order (see [2]). We derive a structural condition which
implies that most finite maximal antichains split. This was previously known
for digraphs [3] and structures with at most one relation [4].

2 Definitions

2.1 Relational structures

A type ∆ is a sequence (δi : i ∈ I) of positive integers; I is a finite set of indices.
A (finite) relational structure A of type ∆ is a pair

(

X, (Ri : i ∈ I)
)

, where X is
a finite nonempty set and Ri ⊆ Xδi ; that is, Ri is a δi-ary relation on X .

In this abstract, we are interested only in relational structures with no unary
relations, i.e. δi ≥ 2 for all i ∈ I.

If A =
(

X, (Ri : i ∈ I)
)

, the base set X is denoted by A and the relation Ri

by Ri(A). We often refer to a relational structure of type ∆ as ∆-structure.
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The elements of the base set are called vertices and the elements of the Ri’s are
called edges.

The shadow of a ∆-structure A is the undirected multigraph Sh(A) whose
vertices are the elements of A and there is one edge from a to b for each edge in
some Ri(A) of arity δi ≥ 2 such that (a1, . . . , aδi

) ∈ Ri(A) with aj = a, aj+1 = b

for some 1 ≤ j < δi.
A ∆-structure A is called connected if its shadow Sh(A) is connected.
A ∆-structure A is called a ∆-tree or simply a tree if Sh(A) is a tree; it is

called a ∆-forest or just a forest if Sh(A) is a forest. A ∆-tree P is called a
∆-path if every edge of P intersects at most two other edges.

2.2 Homomorphisms

Let A and A′ be two relational structures of the same type ∆. A mapping
f : A → A′ is a homomorphism from A to A′ if for every i ∈ I and for every
m1, m2, . . . , mδi

∈ A the following implication holds:

(m1, m2, . . . , mδi
) ∈ Ri(A) ⇒

(

f(m1), f(m2), . . . , f(mδi
)
)

∈ Ri(A
′).

The fact that f is a homomorphism from A to A′ is denoted by f : A → A′.
If there exists a homomorphism from A to A′, we say that A is homomorphic
to A′ and write A → A′; otherwise we write A 9 A′. If A is homomorphic
to A′ and at the same time A′ is homomorphic to A, we say that A and A′ are
homomorphically equivalent and write A ∼ A′. If on the other hand there exists
no homomorphism from A to A′ and no homomorphism from A′ to A, we say
that A and A′ are incomparable. Note that the composition of homomorphisms
is a homomorphism as well and that homomorphic equivalence is indeed an
equivalence relation on the class of all ∆-structures.

A finite ∆-structure C is called a core if it is not homomorphic to any proper
substructure of C. A substructure C of A is called the core of A if it is a core
and A and C are homomorphically equivalent.

For a fixed type ∆ = (δi : i ∈ I), all ∆-structures (objects) and their
homomorphisms (morphisms) form a category. Finite products and finite sums
exist in this category; sums are disjoint unions of structures. (See [5] for a
general introduction to relational structures and their homomorphisms.)

2.3 Height labelling and balanced structures

We say that a ∆-structure A is balanced if A is homomorphic to a ∆-forest.
Let A be a ∆-structure and let ג be a labelling of its vertices with (

∑

i∈I δi−
|I|)-tuples of integers, indexed by (i, 1), (i, 2), . . . , (i, δi − 1), i ∈ I.

We say that ג is a height labelling of A if whenever (x1, x2, . . . , xδi
) ∈ Ri(A)

and 1 ≤ j < δi, then

(

(xj+1)ג
)

(i,j)
=

(

(xj)ג
)

(i,j)
+ 1, and

(

(xj+1)ג
)

(i′,j′)
=

(

(xj)ג
)

(i′,j′)
for (i′, j′) 6= (i, j).

Proposition 2.1. If A is a balanced ∆-structure, then A has a height labelling.
If a height labelling of a connected structure exists, then it is unique up to an
additive constant vector.
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2.4 Homomorphism duality

Let F and D be two finite sets of ∆-structures such that no homomorphisms
exist among the structures in F and among the structures in D. We say that
(F ,D) is a finite homomorphism duality (often just a finite duality) if for every
∆-structure A we have

∃F ∈ F : F → A ⇔ ∀D ∈ D : A 9 D.

Theorem 2.2 ([8]). If
(

{F}, {D}
)

is a finite homomorphism duality, then F is
homomorphically equivalent to a ∆-tree. Conversely, if F is a ∆-tree with more
than one vertex, then there exists a unique (up to homomorphic equivalence)
structure D such that

(

{F}, {D}
)

is a finite homomorphism duality.

Theorem 2.3 ([4]). If (F ,D) is a finite homomorphism duality, then all ele-
ments of F are homomorphically equivalent to ∆-forests and D is determined
by F uniquely up to homomorphic equivalence. Conversely, for any finite col-
lection F of ∆-forests there exists D such that (F ,D) is a finite homomorphism
duality.

3 Finite maximal antichains

The set of all (non-isomorphic) cores with the relation → is a partially ordered
set, denoted by C(∆); we speak of the homomorphism order of relational struc-
tures.

We use the slightly unusual notation A → B instead of the more common
A ≤ B for the homomorphism partial order. Where convenient, however, we
use A < B to denote that A → B and at the same time B 9 A.

A set Q of ∆-structures is an antichain if any two distinct elements of Q are
incomparable; it is a maximal antichain if moreover for any ∆-structure A there
exists Q ∈ Q such that A → Q or Q → A. A finite maximal antichain Q splits if
there are disjoint sets F and D such that F ∪D = Q and for any ∆-structure A

there exists F ∈ F such that F → A or there exists D ∈ D with A → D.
We are going to investigate which finite maximal antichains in the homo-

morphism order split.

Definition 3.1. Let Q = {Q1, Q2, . . . , Qn} be a finite maximal antichain
in C(∆). Recursively, define the sets F0, F1, . . . , Fn in this way:

1. Let F0 = ∅.

2. For i = 1, 2, . . . , n: check whether there exists a ∆-structure X satisfying

(i) Qi < X ,

(ii) F 9 X for any F ∈ Fi−1, and

(iii) Qj 9 X for any j > i.

If such a structure X exists, let Fi = Fi−1∪{Qi}, otherwise let Fi = Fi−1.

3. Finally, let F = Fn and D = Q \ F .

The definition directly implies the following two properties of the partition
of Q into F and D:
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Lemma 3.2. Let Q be a finite maximal antichain and F , D be defined in 3.1.
If Q ∈ Q, X is a ∆-structure, and Q < X, then there exists F ∈ F such that
F < X.

Lemma 3.3. Let Q be a finite maximal antichain and F , D be defined in 3.1.
For every F in F there exists a ∆-structure F̌ such that F < F̌ and moreover
F is the only element of F that is homomorphic to F̌ .

Next, we examine the properties of the structures in F .

Lemma 3.4. Let Q be a finite maximal antichain and F , D be defined in 3.1.
If F ∈ F , then F is balanced.

Sketch of proof. Let F ∈ F be arbitrary. We use a tool called the “sparse incom-
parability lemma” (the concept is based on [1, 7]). In particular, there exists a
∆-structure H that is locally a tree (any substructure with at most |F | vertices
is a forest) and with prescribed existence of homomorphisms to a finite number
of structures. Specifically, we want that H → F̌ and H 9 Q for any Q ∈ Q.
Then F → H because the antichain is maximal and because of Lemmas 3.2
and 3.3, and the image of F by this homomorphism is a forest.

The following lemma describes “obstacles to splitting”.

Lemma 3.5. Let Q be a finite maximal antichain and F , D be defined in 3.1.
Then exactly one of the following conditions holds:

(1) The pair (F ,D) is a finite duality and Q splits.

(2) There exists a structure Y such that Q 9 Y for any Q ∈ Q and Y 9 D

for any D ∈ D.

We will now investigate those maximal antichains that satisfy (2). The struc-
ture Y has to be comparable with some element of the maximal antichain Q,
and because of the condition (2) there exists F ∈ F such that Y < F .

Every ∆-path has a height labelling; we say that a core ∆-path P is a
forbidden path if it has two edges of the same kind whose vertices are not
labelled the same. (This property does not depend on what height labelling we
choose, see Proposition 2.1.)

Lemma 3.6. Let Q be a finite maximal antichain in C(∆) and let F , D be
defined in 3.1. If Y is a ∆-structure such that Y 9 D for any D ∈ D and
Y < F for some F ∈ F , and P is a forbidden path, then P 9 Y .

Sketch of proof. Construct an unbalanced structure W with the property that if
any sufficiently small (in terms of the number of vertices) structure maps to W

then it maps to P . This can be done by taking a long cycle-like structure that
contains P .

Then consider the sum W + Y . It is comparable with some some element
of the maximal antichain Q. However, W + Y 9 D for any D ∈ D because
of Y , and W + Y 9 F for any F ∈ F because W is not balanced. Therefore
F → W +Y for some F ∈ F , and the construction of W is such that F → P +Y .
As F 9 Y (by the definition of Y ), necessarily P 9 Y .

4



Lemma 3.7. Let C be a connected ∆-structure. If no forbidden path is homo-
morphic to C, then C is homomorphic to a tree with at most one edge of each
kind.

Sketch of proof. First we observe that if no forbidden path is homomorphic to C,
then C has a height labelling. In this labelling, any two edges of the same kind
get identical labels. We construct a tree that contains vertices with exactly the
same labels as are those used for vertices of C; the height labelling of C is then
a homomorphism to this tree.

Let D∗ be the sum of all ∆-trees with at most one edge of each kind.
As a direct consequence of the two preceding lemmas we get:

Proposition 3.8. If Y satisfies the condition (2) of 3.5, then Y → D∗.

This shows that the cases when the antichain does not split are very specific
(and one would like to say they are rather rare):

Theorem 3.9. Let Q be a finite maximal antichain in C(∆). Suppose that
every element Q ∈ Q has the property that whenever Y < Q and Y → D∗ then
there exists a ∆-structure X such that Y < X < Q and X 9 D∗. Then the
antichain Q splits.

Further examination reveals that in the case of structures with at most two
relations there are no infinite increasing chains below D∗. From that we can
conclude that all elements of F are ∆-forests and thus we get the following
theorem.

Theorem 3.10. Let ∆ = (δi : i ∈ I) be a type such that |I| ≤ 2. Then all finite
maximal antichains in the homomorphism order C(∆) are exactly the sets

Q = F ∪ {D ∈ D : D 9 F for any F ∈ F}

where (F ,D) is a finite homomorphism duality.

The case of three or more relations (|I| ≥ 3) is presently open. There may
be a “quantum leap” here as indicated by the following result, which can be
deduced from [6].

Proposition 3.11. Let ∆ = (2, 2, 2). Then the suborder of C(∆) induced by
all structures homomorphic to D∗ is a universal countable partial order; that is,
any countable partial order is an induced suborder of this order.
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[1] P. Erdős and A. Hajnal. On chromatic number of graphs and set-systems.
Acta Math. Hungar., 17(1–2):61–99, 1966.
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