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Abstract

The measurable list chromatic number of a graph G is the smallest
number ξ such that if each vertex v of G is assigned a set L(v) of
measure ξ in a fixed atomless measure space, then there exist sets
c(v) ⊆ L(v) such that each c(v) has measure one and c(v)∩c(v′) = ∅ for
every pair of adjacent vertices v and v′. We show that the measurable
list chromatic number of a finite graph G is equal to its fractional
chromatic number. We also apply our method to obtain an alternative
proof of a measurable generalization of Hall’s theorem due to Hilton
and Johnson [J. Graph Theory 54 (2007), 179–193].

1 Introduction

In this paper, we study colorings and list colorings of graphs with measurable
sets. This concept extends the standard notion of fractional colorings, which
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náměst́ı 25, 118 00 Prague, Czech Republic. E-mail: sereni@kam.mff.cuni.cz. This
author is supported by the European project ist fet Aeolus.

§Technische Universität Ilmenau, Institute of Mathematics, P.O.B. 100 565, D-98684
Ilmenau, Germany. E-mail: stieb@mathematik.tu-ilmenau.de.

1



we recall now. A q-coloring of a graph G with p colors is a mapping that
assigns to each vertex a subset of {1, 2, . . . , p} of size q such that the sets
assigned to adjacent vertices are disjoint. The fractional chromatic number
χf(G) of G is the infimum of p/q taken over all p and q for which G admits
a q-coloring with p colors. It is well-known [9] that if G is finite, then the
infimum is always attained and thus χf(G) is rational. Fractional colorings
form a prominent topic of graph theory, to which a whole book [8] is devoted.

We now consider an extension of fractional colorings introduced by Hilton
and Johnson [6]. Let (X,M, µ) be an atomless measure space, i.e., M is a σ-
algebra on a set X, and µ a measure defined on M such that, for each A ∈ M
with µ(A) > 0, there exists B ⊂ A such that B ∈ M and 0 < µ(B) < µ(A).
A measurable coloring of a graph G over the space (X,M, µ) is a mapping
c : V (G) → M such that µ(c(v)) ≥ 1 for every v ∈ V (G) and c(v)∩c(v′) = ∅
for every pair of adjacent vertices v and v′. The measurable chromatic number
χm(G) of G is the infimum of µ(X) over all atomless measurable spaces
(X,M, µ) over which G admits a measurable coloring. This notion is indeed
a “continuous” extension of fractional colorings as χf (G) = χm(G). We note
that a graph G has a measurable coloring over (X,M, µ) for every atomless
measurable space (X,M, µ) with µ(X) ≥ χm(G).

A list variant of fractional colorings was studied by Alon, Tuza and
Voigt [2]. Fix a graph G. For each positive integer q, let pq be the smallest
integer such that if every vertex v is assigned a list L(v) of pq colors, then
there exists a q-coloring c of G with c(v) ⊆ L(v). The list fractional chro-
matic number χf,`(G) of a graph G is the limit of the ratio pq/q when q tends
to infinity. Alon et al. [2] showed that if G is finite then χf,`(G) exists and is
equal to χf (G). It seems unavoidable to consider the limit when q tends to
infinity in this definition. The reader can consult the book by Scheinerman
and Ullman [8] for further details.

We believe that measurable colorings are a natural extension of fractional
colorings, in particular when related to list colorings since this notion allows
us to avoid the limit in the definition of the list fractional chromatic number.
Let us define measurable list colorings formally. The measurable list chro-
matic number χm,`(G) of a graph G is the infimum of all positive reals α such
that if each vertex v of G is assigned a set L(v) ∈ M with µ(L(v)) = α, then
there exists a measurable coloring c : V (G) → M such that c(v) ⊆ L(v). A
justification that this notion is a “continuous” list variant of fractional color-
ings is the following result, which we prove in Section 4: χm,`(G) = χf (G) for
every finite graph G. Hence, for every finite graph G, all the four quantities

2



χf(G), χf,`(G), χm(G) and χm,`(G) are equal. As we note at the end of the
paper, the equality does not hold in general for infinite graphs.

Our main tool to prove that χf (G) = χm,`(G) is a limit theorem estab-
lished in Section 3, which asserts that if for every ε > 0 there exists a coloring
cε(v) ⊆ L(v) with µ(cε(v)) ≥ 1 − ε, then there also exists a measurable col-
oring c, i.e., a coloring with µ(c(v)) = 1. We also apply the same technique
to give a new proof of a result of Hilton and Johnson [6], which generalizes
an extension of Hall’s theorem by Cropper et al. [4] as we outline in the next
subsection. We believe that our alternative proof is conceptionally simpler
since we restrict ourselves to using only elementary results from the measure
theory and avoid using the Krein-Milman theorem. Our proof also suggests
a method of translating other results on fractional colorings to measurable
colorings. We do not apply our method to such results on fractional colorings
since we believe that it would not provide any new insights.

1.1 Measurable extension of Hall’s theorem

In this subsection, we introduce a theorem of Cropper, Gyarfás and Lehel [4],
which is a generalization of Hall’s theorem, and we discuss its extension to
measurable colorings.

Cropper et al. [4] characterized the class of graphs which have the property
that a Hall-type condition is sufficient for the existence of a multicoloring.
Formally, if κ : V (G) → N is a function that specifies the numbers of colors
each vertex should be assigned and L : V (G) → 2X is a list assignment, we
say that the Hall condition is fulfilled if

∑

v∈V (H)

κ(v) ≤
∑

x∈X

α(x, L, H) for every subgraph H ⊆ G, (1)

where α(x, L, H) is the independence number of the subgraph of H induced
by the vertices v with x ∈ L(v). A color x can be assigned to at most
α(x, L, H) vertices of H and thus the condition (1) is necessary for the ex-
istence of a coloring c. Observe that it is actually enough to verify it for
induced subgraphs H of G. The following theorem provides a characteriza-
tion of graphs for which the Hall condition is also sufficient for the existence
of a coloring c. We let K−

4 be the graph obtained from K4 by removing an
edge.
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Theorem 1 (CGL Theorem [4]). The following statements are equivalent
for a finite graph G.

• For every κ : V (G) → N and L : V (G) → 2X, the Hall condition
(1) is sufficient and necessary for the existence of a coloring c such
that for every v ∈ V (G), c(v) is a subset of L(v) of size κ(v), and
c(v) ∩ c(v′) = ∅ for every pair of adjacent vertices v and v′;

• G is the line graph of a forest;

• every block of G is a clique and each cut-vertex belongs exactly to two
blocks;

• G does not contain K−
4 , K1,3 or a cycle of length more than 3 as an

induced subgraph.

Note that Theorem 1 applied to G = Kn and κ ≡ 1 translates to Hall’s
theorem for a system of n distinct representatives.

Bollobás and Varopoulos [3] generalized Hall’s theorem to measurable
sets. In particular, they proved the following.

Theorem 2 (Bollobás and Varopoulos [3]). Let (X,M, µ) be an atomless
measure space, let (Xα)α∈A be a family of measurable sets of M with (finite
or infinite) index set A, and let κ : A → R

+. If for every finite subset B of
A,

∑

α∈B

κ(α) ≤ µ

(

⋃

α∈B

Xα

)

,

then there exists a family (Yα)α∈A of measurable sets satisfying Yα ⊆ Xα and
µ(Yα) = κ(α) for every α ∈ A, and µ(Yα ∩ Yα′) = 0 whenever α 6= α′.

Inspired by Theorems 1 and 2, Hilton and Johnson [6] considered, for
finite graphs, a common generalization of both these theorems. For an atom-
less measure space (X,M, µ) and for demands κ : V (G) → R

+, an assign-
ment L(v) ∈ M satisfy the generalized Hall condition if

∑

v∈V (H)

κ(v) ≤

∫

X

α(x, L, H) d µ (2)

holds for every subgraph H of G, where α(x, L, H) is the number of vertices v
of H such that x ∈ L(v). Note that the function α(x, L, H) is integrable since
L(v) ∈ M for every vertex v. Hilton and Johnson [6] proved the following.
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Theorem 3 (Measurable CGL Theorem [6]). The following statements
are equivalent for a finite graph G.

• For every κ : V (G) → R
+, an atomless measure space (X,M, µ) and

L : V (G) → M, the generalized Hall condition (2) is sufficient and
necessary for the existence of a coloring c : V (G) → M such that
for every v ∈ V (G), c(v) is a subset of L(v) of measure κ(v), and
c(v) ∩ c(v′) = ∅ for every pair of adjacent vertices v and v′;

• G is the line graph of a forest;

• every block of G is a clique and each cut-vertex belongs exactly to two
blocks;

• G does not contain K−
4 , K1,3 or a cycle of length more than 3 as an

induced subgraph.

The proof of the harder implication of Theorem 3 given by Hilton and
Johnson [6] is six pages long, and it is quite involved. Our method allows us
to present a shorter proof in Section 5.

2 Notation

In this section, we introduce notation used throughout the paper. All mea-
sure spaces considered in this paper are atomless. Carathéodory established
that if (X,M, µ) is such a measure space and A ∈ M, then for every real
β ∈ (0, µ(A)) there exists a measurable set B ⊂ A such that µ(B) = β. The
reader is refered to the book of Fremlin [5] for more details.

It turns out that in our considerations it is useful to work with demand
and list size functions both in the measure and the ordinary setting. Let
us first introduce the notation for multicolorings. Let κ : V (G) → R

+ and
λ : V (G) → R

+ be two functions from the vertex set of a graph G to non-
negative real numbers. A λ-list assignment is a function L that assigns to
each vertex v of G a set L(v) of at least λ(v) colors. A mapping c that
assigns to each vertex a set c(v) ⊆ L(v) is a κ-coloring with respect to L if
|c(v)| ≥ κ(v) for every vertex v ∈ V (G), and c(v) ∩ c(v′) = ∅ for every pair
of adjacent vertices v and v′. If G admits a κ-coloring with respect to every
λ-list assignment, we say that G is (κ, λ)-choosable.
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We slightly abuse the notation and in case that t is a real number, tλ is
the function assigning to a vertex v the number tλ(v), and tκ is the function
assigning to v the number tκ(v). A δ-approximate λ-list assignment is a
(1 − δ)λ-list assignment, and an ε-close κ-coloring is a (1 − ε)κ-coloring.

The just introduced definitions readily translate to measurable colorings.
A measurable λ-list assignment is a mapping L : V (G) → M such that
µ(L(v)) ≥ λ(v). A mapping c that assigns to each vertex a measurable
set c(v) ⊆ L(v) is a measurable κ-coloring with respect to L if µ(c(v)) ≥
κ(v) for every v ∈ V (G) and c(v) ∩ c(v′) = ∅ for every pair of adjacent
vertices v and v′. The definitions of measurably (κ, λ)-choosable graphs, δ-
approximate measurable λ-list assignment and ε-close measurable κ-coloring
are analogous. We also slightly extend our notation and for t ∈ R

+, we call
c a t-coloring if it is a κ-coloring where κ ≡ t. Similarly, we define a t-list
assignment. Observe that using this extended notation, the measurable list
chromatic number of G is the smallest t such that G has a 1-coloring for
every t-list assignment.

3 Limit theorem

In this section, we establish a sufficient condition for a finite graph to be
measurably choosable. It is the core of our arguments presented in the next
sections.

Theorem 4. Let G be a finite graph and let κ and λ be two mappings from
V (G) to R

+. Suppose that for every real ε > 0 there exists a real δ > 0 and a
positive integer t such that every δ-approximate (t′λ)-list assignment admits
an ε-close (t′κ)-coloring for every integer t′ ≥ t. Then, G is measurably
(κ, λ)-choosable.

Proof. Fix an atomless measure space (X,M, µ), and a measurable λ-list
assignment L0 : V (G) → M. Let L0 : 2V (G) → M be the function that
assigns to a subset U of V (G) the set of the elements of X contained in all
the sets L0(u) for u ∈ U , and in none of the sets L0(u) for u 6∈ U . Formally,

L0(U) =

(

⋂

u∈U

L0(u)

)

\

(

⋃

u 6∈U

L0(u)

)

.
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Finally, let λ0 : 2V (G) → R
+ be the function that assigns to a subset U of

V (G) the measure of the set L0(U). Note that for every vertex u,
∑

U⊆V (G)
u∈U

λ0(U) = µ(L0(u)) ≥ λ(u). (3)

Let (εn)n∈N be a decreasing sequence of positive reals that converges to
0, e.g., εi = 1

i+1
. Further, let δi be the value of δ from the statement of the

theorem for ε = εi and ti the value of t. Finally, set t′i = max{ti, 1/(δim0)}
where m0 is the smallest non-zero value of λ0(U) for a subset U of V (G).
For every positive integer i and every non-empty subset U of V (G), we fix a
set Ai,U of bλ0(U)t′ic elements in such a way that the sets Ai,U and Ai,U ′ are
disjoint whenever U 6= U ′. Finally, for a vertex u ∈ V (G) we set

Li(u) =
⋃

U⊆V (G)
u∈U

Ai,U (4)

Since for every i, the sets Ai,U are pairwise disjoint, we infer from (3) and
(4) that

|Li(u)| =
∑

U⊆V (G)
u∈U

|Ai,U | ≥
∑

U⊆V (G)
u∈U

(

λ0(U)t′i − 1
)

≥
∑

U⊆V (G)
u∈U

(

λ0(U)t′i − δit
′
im0

)

≥
∑

U⊆V (G)
u∈U

(1 − δi)λ0(U)t′i ≥ (1 − δi)t
′
i

∑

U⊆V (G)
u∈U

λ0(U)

= (1 − δi)t
′
iλ(u),

where the sums are taken only over the sets U with λ0(U) > 0. Hence, the list
assignment Li is a δi-approximate (t′iλ)-list assignment. By the assumption
of the theorem, there exists an εi-close (t′iκ)-coloring ci for this assignment,
i.e., ci(u) is a subset of Li(u) with |ci(u)| ≥ (1 − εi)κ(u)t′i for every vertex u
of G and ci(u) ∩ ci(u

′) = ∅ for every pair of adjacent vertices u and u′.
Let us now define a function σi : 2V (G) × 2V (G) → N0 so that σi(U, W ) is

the number of elements of the set Ai,U assigned precisely to the elements of
the set W , i.e.,

σi(U, W ) =

∣

∣

∣

∣

∣

(

Ai,U ∩
⋂

w∈W

ci(w)

)

\
⋃

w 6∈W

ci(w)

∣

∣

∣

∣

∣

.
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Note that if σi(U, W ) > 0, then W is necessarily an independent set of
vertices of G, which is a subset of U . Observe that for every u ∈ V (G)

|ci(u)| =
∑

U,W⊆V (G)
u∈W

σi(U, W ) ≥ (1 − εi)κ(u)t′i, (5)

and for every non-empty subset U of V (G),

∑

W⊆V (G)

σi(U, W ) ≤ |Ai,U | ≤ λ0(U)t′i. (6)

Finally, let σ′
i(U, W ) = σi(U, W )/t′i.

Each of the functions σ′
i(U, W ) can be viewed as a 22|V (G)|-dimensional

vector of real numbers from the interval [0, λ0(U)] ⊆ [0, maxv∈V (G) λ(v)].
Using this correspondence, the functions σ′

i form a sequence of 22|V (G)|-
dimensional vectors contained in a bounded and closed subspace of R

2|V (G)|.
Thus, by the theorem of Heine-Borel, there exists a converging subsequence
of (σ′

i)i. Let σ0(U, W ) be the function equal to such a limit vector.
As (5) and (6) hold for every i, we obtain for every vertex u

∑

U,W⊆V (G)
u∈W

σ0(U, W ) ≥ κ(u), (7)

and for every non-empty subset U of V (G)

∑

W⊆V (G)

σ0(U, W ) ≤ λ0(U). (8)

By (8) and the fact that the considered measure space is atomless, there exist
disjoint subsets KU,W of L0(U) such that µ(KU,W ) = σ0(U, W ). Observe that
the subsets KU,W are mutually disjoint, as the sets L0(U) are.

We are now ready to define the desired measurable coloring. For every
vertex u of G, we set

c0(u) =
⋃

U,W⊆V (G)
u∈W

KU,W .

By (7), we obtain µ(c0(u)) ≥ κ(u) for every vertex u, as the sets KU,W are
disjoint. It remains to argue that the obtained coloring is proper and colors
each vertex with a subset of its list.
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Let u and u′ be two adjacent vertices. Then, as noted earlier, for all
subsets U and W of V (G) such that {u, u′} ⊆ W , it holds that σ′

i(U, W ) = 0
for every index i. Hence, σ0(U, W ) = 0 and so KU,W = ∅. Since the sets
KU,W are mutually disjoint, we infer that c(u) ∩ c(u′) = ∅.

It remains to show that c0(u) ⊆ L0(u) for every vertex u. Indeed, since
c0(u) is a union of sets KU,W such that u ∈ W ⊆ U and KU,W ⊆ L0(U), the
inclusion c0(u) ⊆ L0(u) follows by the definition of L0(U).

A similar limit statement appears also in the proof of the Measurable CGL
Theorem [6], where the problem is solved with the help of the Krein-Milman
theorem—by considering extreme points of a certain nonempty compact con-
vex set in L∞(X) which corresponds to measurable κ-colorings. We also note
that our technique cannot be translated to infinite graphs. In particular, it
does not seem to yield an elementary proof of Theorem 2.

4 Fractional colorings

Theorem 4 can be used to establish a relation between measurable choosabil-
ity and fractional colorings. In order to apply Theorem 4, we have to show
that every graph with fractional chromatic number χf is almost t-choosable
for every (χf t)-list assignment. As mentioned in the Introduction, a state-
ment of this form was proved by Alon et al. [2]. Our arguments essentially
follow the lines of their proof but we decided to include a full argument since
we need a statement that slightly differs from theirs, and we also want the
presented arguments to be complete.

Theorem 5. If a finite graph G has fractional chromatic number χf , then
G is measurably (1, χf)-choosable. In particular, χm,`(G) = χf .

To prove this theorem, we shall use the Chernoff Bound [7]. The binomial
random variable BIN(n, p) is the sum of n independent zero-one random vari-
ables, each being 1 with probability p. A simple and well-known corollary [1]
of the Chernoff Bound yields that for every δ ∈ [0, 1]

Pr (BIN(n, p) < (1 − δ)np) < exp
(

−
np

3
δ2
)

.

Proof of Theorem 5. By Theorem 4, it is enough to show that for every real
ε > 0 there exists a real δ > 0 and a positive integer t such that every
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δ-approximate (χf t
′)-list assignment admits an ε-close t′-coloring for every

integer t′ ≥ t.
Since G is finite, there exist two integers p and q such that χf = p/q.

Thus, there exists a q-coloring cf : V (G) →
(

{1,...,p}
q

)

. Let ε ∈ (0, 1/3). We

set δ = ε/2 and

t =

⌈

16q ln(pn)

ε2

⌉

(9)

where n is the number of vertices of G.
Consider now an integer t′ ≥ t and a δ-approximate (χf t

′)-list assignment
L. Let A be the union of the lists L(v) taken over all the vertices v ∈ V (G).
We assert that there exists a partition of A into sets A1, . . . , Ap such that for
every index i and every vertex v, |L(v) ∩ Ai| ≥ (1 − ε)t′/q. This assertion is
established using a probabilistic argument.

Consider a random partition of A into p parts A1, . . . , Ap, where each
element of A is included to one of the sets A1, . . . , Ap uniformly and in-
dependently at random. The random variable |L(v) ∩ Ai| is the binomial
random variable BIN (|L(v)|, 1/p). Hence the Chernoff bound implies that

Pr

(

|L(v) ∩ Ai| < (1 − δ)
|L(v)|

p

)

≤ exp

(

−
δ2|L(v)|

3p

)

.

Since |L(v)| ≥ (1 − δ)χf t
′ = (1 − δ)t′p/q and (1 − δ)2 = (1 − ε) > 2/3, we

infer from (9) that

Pr

(

|L(v) ∩ Ai| < (1 − ε)
t′

q

)

< exp

(

−
ε2(2 − ε)t′

24q

)

<
1

pn
,

which proves the assertion, since there are p choices for i and n choices for
v ∈ V (G). Let us fix such a partition A1, . . . , Ap for the rest of the proof.

We are now ready to define an ε-close t′-coloring as follows. For every
vertex v ∈ V (G), let

c(v) = L(v) ∩
⋃

i∈cf (v)

Ai for every vertex v ∈ V (G).

The inclusion c(v) ⊆ L(v) follows from the definition. Since the subsets Ai

are disjoint, |c(v)| ≥ q(1 − ε)t′/q = (1 − ε)t′. Finally, assume that v and
v′ are adjacent vertices of G. Since the sets Ai form a partition of the set
A and cf (v) ∩ cf(v

′) = ∅, we deduce that
⋃

i∈cf (v) Ai and
⋃

i∈cf (v′) Ai are

disjoint. Consequently, c(v) and c(v′) are also disjoint. We conclude that c
is an ε-close t′-coloring of G for the list assignment L.
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5 Proof of the Measurable CGL Theorem

The technique used in the proof of Theorem 4 allows us to give a shorter
proof of Theorem 3.

Proof of Theorem 3. If G contains K−
4 , K1,3 or a cycle of length more than

three as an induced subgraph, then a measurable list assignment L and a
mapping κ : V (G) → R

+ that satisfy the generalized Hall condition and
such that G has no κ-coloring for L can be constructed (see [6] for details).
In the rest, we focus on proving that if G contains no K−

4 , no K1,3 and no
cycle of length more than three as induced subgraphs, then G is measurably
κ-choosable for a list assignment L whenever κ and L satisfy the generalized
Hall condition.

Let us fix an atomless measure space (X,M, µ), a mapping κ : V (G) →
R

+ and a list assignment L : V (G) → M that satisfy the generalized Hall
condition. For every ε > 0, we show that there exists an ε-close κ-coloring
c : V (G) → M with c(v) ⊆ L(v). Once this statement is established,
we can define L and eventually construct σ0 as in the proof of Theorem 4
corresponding to a κ-coloring of G. Since all the arguments are analogous to
those presented in the proof of Theorem 4, we omit further details on this
final step.

It remains to establish the existence of an ε-close κ-coloring cε for every
ε > 0. Our argument involves the function L : 2V (G) → M as defined in the
proof of Theorem 4, i.e., for every U ⊆ V (G), L(U) is the set of those points

that are contained exactly in
⋃

u∈U

L(u). Let

x0 =
ε

2
· min











min
v∈V (G)
κ(v)>0

κ(v), min
U⊆V (G)

µ(L(U))>0

µ(L(U))











. (10)

The value of x0 represents the measure corresponding to one color in the
list assignment defined in the sequel. For U ⊆ V (G), choose a set AU of
bµ(L(U))/x0c colors so that the sets AU are pairwise disjoint. By the choice
of x0, it holds that

|AU | ≥
µ(L(U))

x0

− 1 ≥
(

1 −
ε

2

) µ(L(U))

x0

. (11)
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We define the list assignment L′ by setting

L′(v) =
⋃

U⊆V (G)
v∈U

AU

for every v ∈ V (G). Note that |L′(v)| ≥ (1−ε/2)µ(L(v))/x0 by (11). Finally,
define κ′(v) = b(1 − ε/2)κ(v)/x0c and observe that κ′(v) ≥ (1 − ε)κ(v) by
the choice of x0.

We verify that the function κ′ and the list assignment L′ satisfy the
generalized Hall condition. Consider a subgraph H of G. Since L and κ
satisfy the generalized Hall condition, it holds that

∑

v∈V (H)

κ(v) ≤

∫

x

α(x, L, H) dµ(x) =
∑

U⊆V (G)

α(H [U∩V (H)])·µ(L(U)). (12)

We infer from (11) that

∑

v∈V (H)

κ(v) ≤
x0

1 − ε/2

∑

U⊆V (G)

α(H [U ∩ V (H)]) · |AU |, (13)

and consequently that

∑

v∈V (H)

κ′(v) =
∑

v∈V (H)

⌊

1 − ε/2

x0
κ(v)

⌋

≤
∑

U⊆V (G)

α(H [U ∩ V (H)]) · |AU |

=
∑

x∈∪v∈V (H)L
′(v)

α(x, L′, H).

Hence, κ′ and L′ satisfy the generalized Hall condition. By Theorem 1,
there exists a κ′-coloring c′ for the list assignment L′. Based on c′, for
every U, W ⊆ V (H), we define σ(U, W ) to be the number of elements of
AU assigned precisely to the vertices contained in W . Moreover, we let
σ′(U, W ) = σ(U, W )x0.

The ε-close κ-coloring cε is defined based on σ′(U, W ) analogously to the
construction presented in the proof of Theorem 4. More precisely, for every
subsets U and W of V (G), we let KU,W be a subset of L(U) of measure
σ′(U, W ), such that the sets KU,W are pairwise disjoint. Now, for each vertex
v ∈ V (G), we define cε(v) to be the union of the sets KU,W for all subsets
U and W of V (G) such that v ∈ W . Note that cε is ε-close since κ′(v)x0 ≥
(1 − ε)κ(v) for every vertex v of G.
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The construction of the coloring cε for every ε > 0 allows to finish the
proof of the theorem, by defining L and σ0(U, W ) in an analogous manner
as in the proof of Theorem 4.

6 Conclusion

In this section, we briefly discuss a possible extension of our main result
(Theorem 5) to infinite graphs. First, we show that there exists a locally
finite bipartite graph G that is not measurably 2-choosable.

Proposition 6. There exists a locally finite bipartite graph G with a count-
able number of vertices that is not measurably 2-choosable.

Proof. Let us define the graph G as follows.

V (G) =
⋃

i∈N

{

wj
i : j = 1, . . . ,

(

2i

2i−1

)}

∪ {ai : i ∈ N} ,

E(G) =
{

wj
i w

j′

i′ : |i − i′| = 1
}

∪ {aiw
j
i } ∪ {aiai+1}.

The graph G is obviously a locally finite bipartite graph with a countable
number of vertices. The measure space which we consider is the interval
[0, 3] ⊆ R enhanced with the Lebesgue measure λ.

Set L(ai) = [0, 2] for all i ∈ N. For i ∈ N, the vertices {wj
i | j =

1, . . . ,
(

2i

2i−1

)

} are assigned all sets of the form S ∪ [2, 3] where S is a subset
of the interval [0, 2], λ(S) = 1 and S can be written as a union of a finite
number of closed intervals of the type [x2−i+1, y2−i+1] where x, y ∈ N0 (there

are
(

2i

2i−1

)

choices for S).
Suppose now that there is a proper 1-coloring c of G with c(v) ⊆ L(v)

for every vertex v of G. By altering the sets c(ai) by sets of measure zero if
needed, we may assume that c(a2i−1) = c(a2j−1) and c(a2i) = c(a2j) for all
positive integers i and j. Furthermore, there exist closed sets S1 and S2 that
are unions of closed intervals of the type [x2−`+1, y2−`+1] for some number
` ∈ N, and λ(S1 ∩ c(a1)) ≥ 3/4 and λ(S2 ∩ c(a2)) ≥ 3/4.

We can assume without loss of generality that ` is odd and consider
vertices wi

` and wj
`+1 such that S1 ⊆ L(wi

`) and S2 ⊆ L(wj
`+1). Since λ(c(a`)∩

S1) ≥ 3/4, it follows that λ(c(wi
`) ∩ [2, 3]) ≥ 3/4. Similarly, λ(c(wj

`+1) ∩

[2, 3]) ≥ 3/4. We conclude that the sets c(wi
`) and c(wj

`+1) are not disjoint
which contradicts that c is proper.
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We have seen that if G is an infinite graph, then G need not be mea-
surably χf (G)-choosable. We conjecture that if G is locally finite, then G is
measurably (χf(G)+ε)-choosable for every ε > 0, and thus χf (G) = χm,l(G).

Conjecture 1. If G is a locally finite graph with a countable number of
vertices, then χf(G) = χm,l(G).

The assumption that G is locally finite is necessary—it is easy to observe
that Kω,ω, the complete bipartite graph with two countable parts, is not
measurably k-choosable for any k ≥ 2.
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[4] M. Cropper, A. Gyárfás, J. Lehel: Edge list multicoloring trees: an ex-
tension of Hall’s theorem, J. Graph Theory 42 (2003), 246–255.

[5] D. H. Fremlin: Measure theory. Torres Fremlin, 2002.

[6] A. J. W. Hilton, P. D. Johnson, Jr.: List multicolorings of graphs with
measurable sets, J. Graph Theory 54 (2007), 179–193.

[7] C. McDiarmid: On the method of bounded differences, In Surveys in
Combinatorics, Proc. 14th British Combinatorial Conference, Cambridge
University Press, Cambridge, (1989), 148–188.

14



[8] E. R. Scheinerman, D. H. Ullman: Fractional graph theory: A rational

approach to the theory of graphs. John Wiley & Sons, 1997, New York.

[9] A. Vince: Star chromatic number, J. Graph Theory 12 (1988), 551–559.

15


