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Abstract

We develop an idea of a local 3-edge-coloring of a cubic graph, a
generalization of the usual 3-edge-coloring. We allow for an unlimited
number of colors but require that the colors of two edges meeting at a
vertex always determine the same third color. Local 3-edge-colorings
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are described in terms of colorings by points of a partial Steiner triple
system such that the colors meeting at each vertex form a triple of the
system. An important place in our investigation is held by the two
smallest non-trivial Steiner triple systems, the Fano plane PG(2, 2)
and the affine plane AG(2, 3). For i = 4, 5, and 6 we identify certain
configurations Fi and Ai of i lines of the Fano plane and the affine
plane, respectively, and prove a theorem saying that a cubic graph
admits an Fi-coloring if and only if it admits an Ai-coloring.

Among consequences of this is the result of Holroyd and Škoviera
(2004) that the edges of every bridgeless cubic graph can be colored
by using points and blocks of any non-trivial Steiner triple system S.
Another consequence is that every bridgeless cubic graph has a proper
edge-coloring by elements of any abelian group of order at least 12 such
that around each vertex the group elements sum to 0.

We also propose several conjectures concerning edge-coloring of
cubic graphs and relate them to several well-known conjectures. In
particular, we show that both the Cycle Double Cover Conjecture and
the Fulkerson Conjecture can be formulated as a coloring problem in
terms of known geometric configurations—the Desargues configura-
tion and the Cremona-Richmond configuration, respectively.

1 Introduction

Edge colorings of cubic graphs have been extensively studied for more than
a century. The original incentive came in 1880 from Tait’s attempt to solve
the Four Color Problem [33], and during the subsequent decades this concept
has established close connections to other areas of graph theory, including
nowhere-zero flows and embeddings of graphs on surfaces.

Edge-colorings divide cubic graphs into two uneven parts. The class of
3-edge-colorable graphs comprises almost all cubic graphs (Robinson and
Wormald [31]) and seems to be easier to understand. Its complement is an
extremely sparse class of graphs consisting of graphs with chromatic index
four and reputed for being closely related to several difficult problems in
graph theory. “Non-trivial” members of this family are known as snarks and
include possible counterexamples to the Cycle Double Cover Conjecture, the
Five Flow Conjecture, and Fulkerson’s Conjecture.

The classification problem, i.e., the problem of determining whether a
cubic graph has chromatic index three or four, is very interesting but, as
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Holyer [18] showed, is exceedingly difficult. It is therefore surprising that very
little attention has so far been given to generalizations of classical 3-edge-
colorings. Such generalizations might shed new light on the classification
problem and on several other problems related to edge-colorings of graphs.

A natural way to generalize the concept of a 3-edge-coloring is to replace
the global condition on the number of colors by a local one. This can be done,
for instance, by allowing the number of colors to be arbitrary, but requiring
that any two colors meeting at a vertex always determine the same third
color. This condition is automatically fulfilled whenever only three colors are
used. Therefore, such colorings include 3-edge-colorings as a special case.

Our local condition allows us to regard the colors as points of a Steiner
triple system S, with triples of colors occurring at vertices being blocks of
the system. This is because in a Steiner triple system any two points belong
to exactly one block. Of course, such a coloring (called a Steiner coloring,
or more specifically, an S-coloring) need not use up all the points or all the
blocks of the system. Thus, in general, it is more appropriate to speak of edge-
colorings by partial Steiner triple systems, or equivalently, by configurations
of points and blocks contained in Steiner triple systems.

Steiner colorings have been previously considered by several authors. In
1986, Archdeacon [1, 2] proposed the study of general Steiner colorings and
conjectured that every bridgeless cubic graph admits an S-coloring for each
Steiner triple system S of order greater than three. He also observed that
every bridgeless cubic graph has a coloring by the smallest non-trivial Steiner
triple system, the projective plane PG(2, 2) of order seven known as the
Fano plane F7 (Figure 1 left). In 2004, Holroyd and Škoviera [17] confirmed
Archdeacon’s conjecture. Their proof identified an “unavoidable set” U of
three configurations (shown in Figure 1) such that

(i) every non-trivial Steiner triple system contains at least one member of
U; and

(ii) each configuration in U colors every bridgeless cubic graph.

The geometric structure of Fano colorings was subsequently investigated by
Máčajová and Škoviera [25]. They showed that six (and conjectured that
four) lines of the Fano plane covering all seven points are enough to color
every bridgeless cubic graph. They also proved that their Four-Line Con-
jecture is equivalent to an older conjecture of Fan and Raspaud [11]: every

bridgeless cubic graph has three perfect matchings with empty intersection.
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The equivalence of these two conjectures establishes a connection between
Steiner colorings and other areas of graph theory such as cycle coverings of
graphs or Fulkerson’s conjecture.
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Figure 1: Unavoidable set of configurations for non-trivial Steiner triple sys-
tems

Archdeacon [1] also proposed another generalization of 3-edge-colorings
of cubic graphs. Given a finite abelian group A, an A-coloring of a cubic
graph G is an assignment of non-zero elements of A to the edges of G subject
to the condition that for each vertex v the values on the edges incident with
v sum to 0 in A. Note that the elements assigned to incident edges do not
need to be distinct. This concept is an undirected analogue of nowhere-zero
A-flows and, at the same time, a generalization of 3-edge-colorings since a
Z2 × Z2-coloring is nothing but the usual 3-edge-coloring.

To emphasize the exceptional role of the group Z2 × Z2, Archdeacon [1]
conjectured that an A-coloring exists for each bridgeless cubic graph and
each abelian group A of order at least five. This conjecture was settled by
Máčajová et al. [26] by exploiting the fact that, in contrast to Z2 × Z2-
colorings, general abelian colorings need not be proper, i.e., incident edges
can be assigned the same color.

Proper abelian colorings generalize 3-edge-colorings. It transpires that
abelian colorings can be conveniently studied within the context of partial
Steiner colorings. For every abelian group A, one can define a partial Steiner
triple system C(A) whose points are all non-zero elements of A and blocks
are all 3-element subsets of A − {0} with zero sum. Thus, a C(A)-colorings
coincide with proper A-colorings.

By employing this interpretation, Máčajová et al. [26] noticed that there
are groups that do not color all bridgeless cubic graphs (e.g., cyclic groups of
order smaller than 10) and they sketched a proof of the fact that all abelian
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groups of order at least 12 do. As for the four groups Z4×Z2, Z3×Z3, Z10 and
Z11, the existence of proper colorings remains open. Each of these groups
contains a configuration of four lines of the Fano plane covering all seven
points, so the existence of such colorings would follow from the Four-Line
Conjecture.

In the present paper we continue the study of abelian colorings but with
different emphasis. Instead of treating abelian colorings directly, we focus on
relationships between Steiner colorings hidden below the surface of abelian
colorings. Two particular Steiner triple systems play a prominent role in our
analysis, the projective plane PG(2, 2) of order 7 (the Fano plane), and the
affine plane A(2, 3) of order 9. Our main result, Theorem 3.2, shows that
for i ∈ {4, 5, 6} each of these systems contains a configuration of i lines,
denoted by Fi and Ai, respectively (see Figure 4), such that a cubic graph
is Fi-colorable if and only if it is Ai-colorable. This equivalence is rather
surprising as these colorings are based on projective and affine geometries
over fields of coprime characteristic.

Theorem 3.2 has several important consequences. First of all, the fact
mentioned above that every bridgeless cubic graph has an F6-coloring [25]
now implies that it also has an A6-coloring. Since there is a copy of F6 or a
copy of A6 in C(A) for every abelian group A of order at least 12, it follows
that every bridgeless cubic graph has a proper A-coloring for each such group.

As regards the four exceptional groups Z4×Z2, Z3×Z3, Z10, and Z11, the
C(A)-configuration for Z4×Z2 coincides with F5 (see Figure 6). Although this
configuration is not contained in other exceptional groups, the “equivalent”
configuration A5 is. It follows that the existence of a proper Z4×Z2-coloring
implies the existence of a proper coloring by each of the remaining exceptional
groups.

In addition, we can easily deduce the main result of Holroyd and Škoviera
[17], asserting that every bridgeless cubic graph has an S-coloring for every
non-trivial Steiner triple system S. Indeed, it directly follows from Theo-
rem 3.2 that every bridgeless cubic graph admits a coloring by each member
of the unavoidable set U depicted in Figure 1.

The paper is organized as follows. In the next section we deal with sev-
eral topics related to edge-colorings and partial Steiner triple systems that
we need throughout the paper. In particular, we show that F4 is the smallest
configuration that could color every bridgeless cubic graph and state three
related conjectures. Section 3 is devoted to the main result of this paper,
Theorem 3.2, and its proof. The next three sections deal with applications of
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Theorem 3.2 to general Steiner colorings, to abelian colorings and to various
modifications. In the final section we return to colorings by configurations
in the general sense and concentrate on so-called symmetric configurations.
We show that three well-known conjectures, the Cycle Double Cover Con-
jecture, the Fulkerson Conjecture and the Petersen Coloring Conjecture can
all be formulated as coloring problems in terms of symmetric point-line con-
figurations such as the Desargues configuration and the Cremona-Richmond
configuration known from geometry.

2 Colorings and configurations

Graphs considered in this paper are finite, with parallel edges and loops
permitted. For the most part, however, they are cubic and loopless, as edge-
colorings exclude loops. From now on, an edge-coloring of a graph is an
assignment of colors to the edges of a graph in such a way that adjacent
edges receive distinct colors. Our aim is to study edge-colorings of cubic
graphs where the set of colors is endowed with the structure of a partial
Steiner triple system subject to the condition that the colors meeting at a
vertex form a triple of the system.

A Steiner triple system S = (P,B) of order n is a collection B of three-
element subsets (called triples or blocks) of a set P of n points such that each
pair of points is together present in exactly one triple. The smallest Steiner
triple system is the trivial system I which has three points and a single block.
In general, a Steiner triple system of order n exists if and only if n ≡ 1 or 3
(mod 6) (see, e.g., the monograph by Colbourn and Rosa [6]).

If each pair of points is contained in at most one triple, and if there are
no isolated points, we say that S is a partial Steiner triple system. Note that
there is a partial Steiner triple system of order n for each n ≥ 5.

As shown by Treash [34] in 1971, every partial Steiner triple system can
be embedded into a full Steiner triple system (see also [6]). A partial Steiner
triple system can thus be thought of as a configuration of points and blocks
of a Steiner triple system. This justifies the term configuration which we use
as a short synonym for partial Steiner triple system. (Our usage follows the
one of Grannell et al. [13, 14] and differs from the one of Gropp [15, 16].)

It is sometimes helpful to transform a partial Steiner triple system into
another one. This can be done by mapping the points of S to points of T in
such a way that each block of S becomes a block of T . Such a mapping is
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called a homomorphism from S to T and is denoted by S → T . Note that a
homomorphism is not necessarily injective, but it must be injective on each
block. If S → T , we usually say that S maps to T .

Figure 2: The smallest class 2 configuration C15
∼= F4

Many interesting partial Steiner triple systems come from geometrical
configurations. Two important examples are the projective and the affine
Steiner triple systems. The projective Steiner triple system PG(n, 2), n ≥ 2,
has Z

n+1

2 − {0} as its point set, the blocks of the system being the triples
{x, y, z} of points such that x + y + z = 0. The affine Steiner triple system
AG(n, 3), n ≥ 2, has point set Z

n
3 , the triples of the system being again the

triples of distinct points with zero sum. The first of these classes includes
the smallest non-trivial Steiner triple system PG(2, 2), the Fano plane of
order 7. The second smallest non-trivial Steiner triple system is the unique
system of order 9, the affine plane AG(2, 3).

Certain projective and affine configurations will play an important role
in our further study. For example, it is well known that the Fano plane has
two non-isomorphic configurations of four lines: C15 on seven points (see
Figure 2), and the Pasch configuration C16 isomorphic to the Fano plane
minus a point (the notation is due to Grannell et al. [13, 14]). The Pasch
configuration is the only partial Steiner triple system with six points and four
blocks. In case of seven point configurations contained in the Fano plane, we
define Fm to be the unique configuration isomorphic to m lines of the Fano
plane covering all seven points, for each m ∈ {4, . . . , 7}. (See Figure 4.)

The affine plane AG(2, 3) contains two non-isomorphic configurations of
four lines and seven points: C14 shown in Figure 5 and C15

∼= F4. In the con-
text of the affine plane, the latter configuration will be denoted by A4. The
configuration A4 can be extended into a five-line configuration of AG(2, 3) in
two different ways. If the new line entirely consists of points of A4, the result-
ing configuration is called the mitre (it is shown in Figure 3). Otherwise, the
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(0,1)

(1,1)

(2,2) (2,0)(2,1)

(1,2)(1,0)

Figure 3: The mitre configuration along with affine coordinates of its points

configuration has eight points and is denoted by A5 (see Figure 4). Among
the seven non-isomorphic configurations of six lines covering all nine points of
AG(2, 3) we deal only with the configuration A6

∼= D9 displayed in Figures 1
and 4. For more information about Steiner triple systems and configurations
the reader may consult the monograph by Colbourn and Rosa [6].

Let us now return to colorings. Given a partial Steiner triple system S,
an S-coloring of a cubic graph G is a coloring of the edges of G by points of
S such that the colors of any three pairwise incident edges form a block of
S. A graph which admits such a coloring is said to be S-colorable. If a cubic
graph G is S-colorable and S maps to a configuration T , then G is also T -
colorable. In particular, if S maps to the trivial system I, then a cubic graph
is S-colorable if and only if it is 3-edge-colorable. Borrowing our terminology
from Vizing’s edge-coloring theorem, we call a non-empty configuration class

1 if it maps to I, and class 2 otherwise. For example, C14 and the Pasch
configuration C16 are easily checked to be class 1 whereas C15

∼= F4 is class 2.
The latter can either be verified directly or can be derived from the fact that
the Petersen graph is F4-colorable [25, Figure 1] but not 3-edge-colorable.

In fact, F4 is the smallest class 2 configuration. We leave the straightfor-
ward proof of the following proposition to the reader.

Proposition 2.1. Let C be a configuration of class 2 with the least number

of points and blocks. Then C is isomorphic to F4.

Somewhat surprisingly, the smallest class 2 configuration F4 seems to be
sufficient to color every bridgeless cubic graph. Indeed, no bridgeless cubic
graph that lacks an F4-coloring has been found so far. This led Máčajová
and Škoviera [25] to propose the following conjecture.

Conjecture 2.2. (Four-Line Conjecture) Every bridgeless cubic graph ad-
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mits an F4-coloring.

Danziger et al. [9] showed that the F5-configuration of the Fano plane
(known as mia) and the mitre are the only two five-line configurations on
seven points. Both of them contain the four-line configuration of the Fano
plane F4, and so these three configurations are the smallest three configu-
rations of class 2. Therefore the following two conjectures [25] are natural
relaxations of the Four-Line Conjecture.

Conjecture 2.3. (Five-Line Conjecture) Every bridgeless cubic graph admits

an F5-coloring.

Conjecture 2.4. (Mitre Conjecture) Every bridgeless cubic graph admits a

mitre-coloring.

Colorings by projective configurations can conveniently be seen as nowhere-
zero flows. An A-flow on a graph G is an orientation of the edges of G and a
function ξ : E(G) → A from the edge-set of G to an abelian group A (written
additively) such that for each vertex the sum of incoming values equals the
sum of outgoing values. A flow is nowhere-zero if it is non-zero on every edge
of G.

If each element of A is self-opposite, then the orientation of G becomes
irrelevant and we may view ξ as a function on an undirected rather than a
directed graph. In this case, the group A is isomorphic to a direct product
of copies of Z2.

Since the lines of any projective Steiner triple system correspond to triples
of points from Z

n+1

2 −{0} whose sum is 0, it follows immediately from the def-
inition that a coloring by any configuration contained in a projective Steiner
triple system PG(n, 2) is just a nowhere-zero Z

n+1

2 -flow on G. An important
consequence of this fact is that a cubic graph which has a bridge cannot be
colored by any projective configuration because an arbitrary flow must take
the value zero on any bridge. Conversely, every bridgeless cubic graph G
admits a nowhere-zero Z2 × Z2 × Z2-flow (see [10, Chapter 6], or [22]), and
hence G can be F7-colored. Thus a cubic graph is F7-colorable if and only if
it is bridgeless.

3 Projective and affine colorings

The purpose of this section is to establish a fundamental relationship be-
tween the projective and the affine colorings of a cubic graph, more precisely
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between the colorings by configurations in the Fano plane and the colorings
by configurations in the affine plane.

Let us start with the observation that for i = 4, 5 and 6 the projective
configuration Fi is a homomorphic image of the affine configuration Ai. This
is trivial for i = 4 because F4

∼= A4. Furthermore, F5 arises from A5 by
identifying the points labeled (0, 1) and (0, 2) into one point (see Figure 4
middle), and F6 results from A6

∼= D9 by identifying the points labeled
(0, 1) and (0, 2) into one point and the points labeled (1, 0) and (2, 0) into
another point (see Figure 4). In all the three cases the identified pairs of
points come from disjoint blocks, implying that the resulting mapping is a
homomorphism. Thus Ai maps in Fi and, consequently, every Ai-coloring
yields an Fi-coloring.

Surprisingly, there is a relationship between the colorings in the opposite
direction, too. This relationship is far less obvious because it cannot be
supported by a homomorphism argument. Nevertheless, we show that each
Fi-coloring of a cubic graph G gives rise to an Ai-coloring of G, although
the resulting coloring need not be uniquely determined by an Fi-coloring
anymore.

The tool that transfers the colorings from the Fano plane to the affine
plane involves the structural concept of a “triad” of parity subgraphs. Fol-
lowing Zhang [35], we define a parity subgraph of a graph G to be a subgraph
P with the property that for each vertex v of G the degree of v in P has the
same parity as its degree in G.

In a cubic graph every parity subgraph is a spanning subgraph with all
vertices having degree one or three. We may therefore unambiguously iden-
tify such a parity subgraph with its edge-set. A triad of a cubic graph G is
a set {P1, P2, P3} of three parity subgraphs of G such that P1 ∩ P2 ∩ P3 = ∅.
Note that a cubic graph containing a triad must be bridgeless because a
bridge belongs to every parity subgraph.

In a cubic graph, each 1-factor is a parity subgraph. Let us call the
number of 1-factors in a triad its weight. The weight then measures the
“quality” of a triad—the heavier triad is, the more difficult it is to find.

It may be useful to note that the concept of a parity subgraph is in some
sense complementary to the concept of a Z2-flow on a graph. Indeed, the
complement G − E(P ) of a parity subgraph P is an even subgraph of G,
i.e., a spanning subgraph with all vertices of even degree. In turn, every
even subgraph H gives rise to, and arises from, a unique Z2-flow: an edge
of G belongs to H if and only if its flow value is 1. Thus, we can say that
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a given even subgraph determines a Z2-flow, or that an even subgraph is
determined by a given Z2-flow. Hence for every graph there is a one-to-one
correspondence between its parity subgraphs and its Z2-flows.

In particular, if {P1, P2, P3} is a triad in a cubic graph G, then the set
{P ′

1, P
′

2, P
′

3} consisting of the complements P ′

i = E(G) − Pi, is a covering of
G by three even subgraphs. The weight of the triad then equals the number
of 2-factors in {P ′

1, P
′

2, P
′

3}.
Our first result shows that triads of parity subgraphs in a cubic graph are

essentially Fi-colorings.

Theorem 3.1. In every cubic graph there exists a one-to-one correspondence

between the triads of weight w and the F7−w-colorings.

Proof. Let G be a cubic graph, and let {P1, P2, P3} be a triad of weight
w in G where 0 ≤ w ≤ 3. We may assume that 1-factors of the triad
are listed first. We show that G can be F7−w-colored. Define a mapping
φ : E(G) → Z2 × Z2 × Z2 by setting φ(e) = (φ1(e), φ2(e), φ3(e)) where
φi(e) = 0 if and only if the edge e belongs to Pi. Observe that each coordinate
mapping φi is the characteristic function of an even subgraph. Hence φi is a
Z2-flow. As P1 ∩ P2 ∩ P3 = ∅, no edge receives the value (0, 0, 0) by φ. By a
direct verification one can easily see that this coloring does not use the first w
of the following lines in the Fano plane: l1 = {(0, 0, 1), (0, 1, 0), (0, 1, 1)}, l2 =
{(0, 0, 1), (1, 0, 0), (1, 0, 1)}, l3 = {(0, 1, 0), (1, 0, 0), (1, 1, 0)}. For example, if
P1 is a 1-factor, then at each vertex of G the colors of exactly two edges have
their first coordinate equal to 1. This excludes the line l1, but not l2 and l3.
The situation is similar for P2 and P3. Finally, it follows from the definition
that two distinct triads result in two distinct F7−w-colorings.

Let, on the other hand, φ = (φ1, φ2, φ3) be a F7−w-coloring which omits
the first w of the lines l1, l2, and l3 described above. For i = 1, 2, 3 define
Pi to be the spanning subgraph formed by the set of all edges e for which
φi(e) = 0. Since each φi is a Z2-flow on G, the subgraph Pi is a complement
of an even subgraph and therefore a parity subgraph of G. As the triple
(0, 0, 0) does not occur in the Fano plane, we have P1 ∩ P2 ∩ P3 = ∅. Thus
{P1, P2, P3} forms a triad.

Note that the Fano plane contains exactly one line with 0 on the i-th
coordinate of all its three points, namely the line xi = 0 which is exactly the
line li. Therefore, Pi is a 1-factor only if the line li is not used in the coloring.
It follows that the weight of {P1, P2, P3} equals w.
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Theorem 3.1 with m = 3 implies that Conjecture 2.2 is equivalent to an
older conjecture of Fan and Raspaud [11] asserting that in every bridgeless
cubic graph there exist three perfect matchings with no edge in common.
This equivalence was first proved by Máčajová and Škoviera [25].

Before proceeding with the main result we introduce another important
tool. Given a graph G and a spanning subgraph H ⊆ G, we define the quo-

tient graph G/H of G by H to be the graph obtained from G by contracting
each component of H into a single vertex. In addition, for any spanning
subgraph K of G we set K/H to be the subgraph (K ∪H)/H of G/H . Note
that in general the quotient graph K/H may have multiple edges and loops
even when K is simple.

By using a straightforward flow argument one can establish the following
useful property of the quotient mapping G→ G/H :

If P is a parity subgraph of G, then P/H is a parity subgraph of G/H .

We are now ready for the main result.

(0,1,1)

A4A5A6

(0,1,1)

(1,0,1)(1,0,0)
(0,1,0)

(0,0,1)(1,1,1) (1,1,0) (1,1,1)

(1,2) (1,2)

(0,2)

(0,1,1)

(0,1,0)
(1,0,0) (1,0,1)

(0,0,1) (1,1,0)

(1,0,0) (1,0,1)
(0,1,0)

(0,0,1)(1,1,1) (1,1,0)

(1,1)

(2,2) (2,1)

(1,1)

(0,0)

(1,2)

(0,2)(0,1)

(2,0) (2,1)(2,2) (2,0)

(0,0)

(1,1)

(2,2) (2,1)

F4F5F6

(0,1) (0,2)

(1,0)

(0,0)

(2,0)

Figure 4: Projective and affine configurations in Theorem 3.2
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Theorem 3.2. Let G be a bridgeless cubic graph and let i ∈ {4, 5, 6}. Then

G admits an Fi-coloring if and only if it admits an Ai-coloring.

Proof. An Ai-coloring induces an Fi-coloring for each i ∈ {4, 5, 6} because
the configuration Fi is a homomorphic image of the configuration Ai. For
the converse, we use a method similar to that of Holroyd and Škoviera [17,
Lemma 5.2]. Assume that a cubic graph G has an Fi-coloring for some i ∈
{4, 5, 6}. We want to show that G also has an Ai-coloring. By Theorem 3.1,
G contains a triad {P1, P2, P3} of weight w = 7 − i. We may assume that
1-factors are listed first in the triad. In particular, the parity subgraph P1 is
a 1-factor.

Before constructing an Ai-coloring of G, we modify the triad {P1, P2, P3}
to obtain a new triad {Q1, Q2, Q3} with a more convenient structure. Let F
be the 2-factor of G complementary to P1. If Pj is a 1-factor, set Qj = Pj. If
Pj is not a 1-factor, we proceed as follows. Since Pj is a parity subgraph of
G, the quotient Pj/F is a parity subgraph of G/F . Observe that every graph
contains an acyclic parity subgraph. Let P ′

j be an acyclic parity subgraph of
Pj/F . There exists a parity subgraph Qj of G such that Qj ∩P1 = P ′

j . Since
Q1 ∩Qj = P1 ∩Qj ⊆ P1 ∩ P

′

j , it follows that Q1 ∩Q2 ∩Q3 = ∅.
In order to derive an affine coloring from {Q1, Q2, Q3}, we define a weak

3-edge-coloring of a cubic graphK to be a mapping θ : E(K) → Z3 such that,
at each vertex of K, the colors are either all distinct or all equal. Furthermore
the weakness set of θ is the set of those vertices of G where the colors are
all equal. It is straightforward to see that a mapping θ = (θ1, θ2) : E(K) →
Z3 × Z3 is an AG(2, 3)-coloring of K if and only if both θ1 and θ2 are weak
3-edge-colorings and their weakness sets are disjoint.

For each j ∈ {2, 3}, we use Qj to define a weak 3-edge-colorings ψj :
E(G) → Z3.

If Qj is a 1-factor, color the edges of P1 ∩Qj and the edges of F \Qj with
the color 1, the edges of F ∩ Qj with the color 2, and the edges of P1 \ Qj

with 0. The obtained coloring ψj is a weak coloring, and its weakness set is
comprised of the vertices incident to the edges of P1 ∩Qj .

If Qj is not a 1-factor, the definition of ψj is similar although not so
uniform. We keep the assignment ψj(e) = 0 for each edge e ∈ P1−Qj . Recall
that Qj/F is now a spanning forest of G/F . Thus we can order the vertices
of G/F as w1, w2, . . . , wm in such a way that each wk is adjacent in Qj/F
to at most one of its predecessors. Give the circuits of F the corresponding
ordering C1, C2, . . . , Cm.
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Now color the edges of C1 by 1 and 2 in such a way that two consecutive
edges of C1 have the same color if and only if the third edge incident with their
common vertex belongs to Qj ∩ P1. Furthermore, for each edge f ∈ Qj ∩ P1

incident with C1 define ψj(f) to be the color of the two adjacent edges of
C1. Note that such a coloring is possible since Qj/F is a parity subgraph of
G/F .

Process the circuits of F in order. If an edge t of Qj ∩P1 is incident with
a circuit Ck and with some predecessor, assign the two adjacent edges of Ck

the color ψj(t) already defined. Extend the coloring to the whole of Ck only
using the colors 1 and 2 subject to the condition that two consecutive edges
of Ck have the same color if and only if they are incident with an edge of
Qj ∩P1. Continue by defining ψj(f) for each edge f ∈ Qj ∩P1 incident with
Ck to be the color of the two adjacent edges of Ck. Since there is at most
one adjacency with a predecessor circuit, the result is a weak 3-edge-coloring
of G with weakness set consisting of the vertices incident with an edge of
Qj ∩ P1.

Since both Q2∩P1 and Q3∩P1 are matchings and (Q2∩P1)∩(Q3∩P1) =
Q1 ∩ Q2 ∩ Q3 = ∅, the weakness sets of ψ2 and ψ3 are disjoint and the pair
(ψ2, ψ3) is a proper affine edge-coloring.

By combining the possibilities for ψ2 and ψ3 around any given vertex of
G, we can verify that the coloring ψ = (ψ2, ψ3) uses the first i of the following
lines of the affine plane AG(2, 3):

{(0, 0), (1, 1), (2, 2)}, {(0, 0), (1, 2), (2, 1)}, {(2, 0), (2, 1), (2, 2)},

{(0, 2), (1, 2), (2, 2)}, {(0, 1), (1, 1), (2, 1)}, and {(1, 0), (1, 1), (1, 2)}.

As these lines form an Ai-configuration, ψ is the Ai-coloring sought.

We finish this section with a theorem which establishes another necessary
and sufficient condition for the existence of an F5-coloring. A cut in G is the
set of all edges that have exactly one vertex in each of X and X ′ for some
partition {X,X ′} of V (G). A cut is odd if either X or X ′ has an odd number
of vertices. Observe that in a cubic graph, a cut is odd whenever it contains
an odd number of edges.

Theorem 3.3. A cubic graph G admits an F5-coloring if and only if it con-

tains two 1-factors M1 and M2 such that each odd cut in G has an edge

outside M1 ∩M2.
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Proof. Assume that G has an F5-coloring. Then, according to Theorem 3.1,
it contains a triad of weight 2, that is to say, two 1-factors M1 and M2 and
a parity subgraph P with no edge in common. Since P is a parity subgraph
of G, it intersects every odd cut of G. However, M1 ∩M2 ∩ P = ∅, so every
odd cut must have an edge outside M1 ∩M2, as asserted.

For the converse, assume that G contains two 1-factors M1 and M2 such
that each odd cut has an edge outside M1 ∩M2. Then every component of
H = G \ (M1 ∩M2) has even order. It is a routine matter to find a parity
subgraph K of G included in H . Consequently, M1 ∩M2 ∩ K = ∅. Thus
{M1,M2, K} is a triad of weight 2 in G. By Theorem 3.1, G admits an
F5-coloring.

4 Colorings by general Steiner triple systems

We illustrate the power of Theorem 3.2 by reproving the main result of the
paper by Holroyd and Škoviera [17] which states that every bridgeless cubic
graph has an S-coloring for each non-trivial Steiner triple system S. In the
course of the proof we also indicate how this result is related to the fact
established by Máčajová and Škoviera [25] that every bridgeless cubic graph
is F6-colorable.

The following lemma can be derived from a result of Bermond et al. [3,
Lemma 3.2] on “heavy” 2-factors in bridgeless graphs. It also follows from
a lemma of Kaiser et al. [23, Lemma 3] or from a theorem of Plesńık [28,
Theorem 1].

Lemma 4.1. Let G be a bridgeless cubic graph and let e be an edge of G.

Then G has a 1-factor M such that e ∈ M and no three edges of M form a

cut of G.

The following theorem combines results of [17] and [25] with the results
of the previous section.

Theorem 4.2. [17, 25] The following three statements are true for every

bridgeless cubic graph G.

(1) G admits an F6-coloring.

(2) G admits an A6-coloring.

(3) G contains a 1-factor and two parity subgraphs with empty intersec-

tion, that is, a triad of weight one.
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Proof. We first prove that every bridgeless cubic graph G has an F6-coloring.
By Lemma 4.1, G contains a 1-factor which does not include a cut of size 3
in G. Let F be the complementary 2-factor. Observe that G/F contains no
cut of size one or three. Hence, by a result of Jaeger [22, Theorem 4.7], G/F
admits a nowhere-zero Z2 × Z2-flow φ. Let Φ′ be a Z2 × Z2-flow on G that
is equal to φ on E(G) \ E(F ). We define a coloring λ of G by setting

λ(e) = (0, φ′(e)) if e ∈ E(G) \ E(F ) and

λ(e) = (1, φ′(e)) if e ∈ E(F ).

It is straightforward to verify that λ is a Z2 × Z2 × Z2-coloring of G, and
thus a Fano coloring. Observe that any line of F7 occurring in λ contains two
points whose first coordinate is 1. Hence the line {(0, 0, 1), (0, 1, 0), (0, 1, 1)}
of the Fano plane is never used. Therefore the coloring is an F6-coloring of
G.

The proof is now finished by observing that a triad of weight 1 in G exists
due to Theorem 3.1 and an A6-coloring of G exists by Theorem 3.2.

Before the next theorem, we need a lemma proved by Holroyd and Škoviera
[17, Section 5].

Lemma 4.3. Every non-trivial Steiner triple system either contains a copy

of F6, a copy of D8 or a copy of D9
∼= A6.

f

b c

e

a

g

d

Figure 5: The C14-configuration

Theorem 4.4. [17] Every bridgeless cubic graph has an S-coloring for every

non-trivial Steiner triple system S.

16



Proof. By Theorem 4.2, every bridgeless cubic graph admits both an F6-
coloring and a D9-coloring. Since D8 is a homomorphic image of D9 (which
arises by identifying the points h and i of D9, see Figure 1), every bridgeless
cubic graph can be D8-colored as well. By Lemma 4.3, at least one of these
three configurations is contained in every non-trivial Steiner triple system
S. Thus every bridgeless cubic graph has an S-coloring for every such S, as
stated.

5 Abelian colorings

Given an abelian group A, an A-coloring of a cubic graph G is an assignment
of non-zero elements of A to the edges of G in such a way that the sum of
colors at each vertex equals 0. An A-coloring can be either improper or
proper according to whether adjacent edges can have or must not have equal
colors.

The study of abelian colorings was initiated by Archdeacon [1] in 1986
(see also [2]). In response to his paper, Máčajová et al. [26] proved that every
bridgeless cubic graph has an improper A-coloring for every abelian group
A of order at least 5, thereby establishing Archdeacon’s conjecture. Proper
abelian colorings have been first studied by Máčajová et al. [26], where it was
indicated that the analogous existence problem for proper colorings is much
more difficult. In this section we deal with proper A-colorings in a greater
detail. Since henceforth we consider only proper A-colorings, we omit the
adjective “proper”. In particular, we say that a cubic graph is A-colorable if
it admits a proper A-coloring.

Let A be an abelian group. Form a partial Steiner triple system C(A) by
taking all 3-element subsets {x, y, z} of A − {0} with x + y + z = 0 as its
blocks. Then a proper A-coloring is nothing but a C(A)-coloring. This fact
enables us to investigate abelian colorings by the methods developed in the
previous sections.

An abelian group A is class 1 or class 2 according to whether the config-
uration C(A) is class 1 or class 2. If |A| ≤ 5 and A is not the Klein group
Z2 × Z2, then A is neither class 1 nor class 2, because C(A) = ∅. The Klein
group and the cyclic groups of order 6, 7, 8, and 9 are class 1. If |A| ≥ 6, the
configuration C(A) covers all non-zero elements of A; in particular C(A) 6= ∅.

We summarize these facts in the following proposition whose proof is left
to the reader.
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Proposition 5.1. Let A be an abelian group.

(1) The configuration C(A) is non-empty if and only if A = Z2 × Z2 or

|A| ≥ 6. Moreover, if C(A) 6= ∅ then C(A) covers all points of A− {0}.
(2) If A is one of Z2 × Z2, Z6, Z7, Z8, and Z9, then a cubic graph is

A-colorable if and only if it is 3-edge-colorable.

Our next aim is to show that all sufficiently large groups are class 2.

Theorem 5.2. If A is an abelian group of order at least 12 or A = Z2 ×
Z2 × Z2, then every bridgeless cubic graph is A-colorable.

Proof. Let us express A as a direct product of cyclic groups—say A = Zk1
×

Zk2
× · · · × Zkm

where k1 ≥ · · · ≥ km. If k1 = 2, then also k2 = k3 = 2, so
A contains a subgroup B isomorphic to Z2 × Z2 × Z2. By Jaeger’s 8-flow
theorem [20], G has a nowhere-zero B-flow which is a Z2 × Z2 × Z2-coloring
of G.

Now let k1 ≥ 3. Consider the subgroup B of A isomorphic to Zk1
×

Zk2
× · · · × Zkr

, where r is the smallest integer such that |B| ≥ 12. Thus,
r ≤ 3. Taking into account that the direct product of cyclic groups of coprime
orders is again cyclic, it can be deduced from Table 1 that for each such B
the configuration C(B) contains a copy of D9. Since C(B) ⊆ C(A), there is a
copy of D9 in C(A) for every abelian group A of order at least 12. The result
now follows from the fact that, by Theorem 4.2, every bridgeless cubic graph
D9-colorable.

There are exactly four non-isomorphic abelian groups not treated by
Proposition 5.1 and Theorem 5.2, namely Z4 × Z2, Z3 × Z3, Z10

∼= Z5 × Z2,
and Z11. We call them the exceptional groups. Since each of them contains
an F4-configuration, we propose the following conjecture.

Conjecture 5.3. Every bridgeless cubic graph has an A-coloring for every

abelian group A ∈ {Z4 × Z2,Z3 × Z3,Z10,Z11}.

It can be verified that the configurations corresponding to the exceptional
groups are all non-isomorphic and neither of them can be mapped to another.
Surprisingly, however, the smallest among the exceptional groups, the group
Z4 × Z2, plays a special role.

Theorem 5.4. If a cubic graph is Z4 × Z2-colorable, then it is A-colorable

for every A ∈ {Z3 × Z3,Z10,Z11}.
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group a b c d e f g h i

Zk1

k1 = 12 or k1 ≥ 15 1 k1 − 3 4 k1 − 1 k1 − 5 2 3 8 k1 − 6
k1 = 13 or k1 = 14 1 k1 − 3 5 k1 − 2 k1 − 6 2 4 9 k1 − 7

Zk1
× Zk2

k1 = 4, k2 = 4 (0, 2) (3, 2) (1, 3) (0, 3) (3, 3) (1, 0) (0, 1) (2, 3) (2, 1)
k1 = 5, k2 = 5 (0, 1) (4, 4) (1, 2) (0, 4) (4, 2) (1, 0) (0, 3) (2, 4) (3, 3)

k1 = 6 or k1 ≥ 10, k2 = 2
or (1, 0) (k1 − 3, 0) (1, 1) (2, k2 − 1) (k1 − 2, k2 − 1) (2, 0) (0, 1) (5, 1) (k1 − 3, k2 − 1)

k1 ≥ 6, k2 ≥ 3
k1 = 8, k2 = 2 (1, 0) (k1 − 1, 1) (2, 1) (k1 − 1, 0) (1, k2 − 3) (1, 0) (0, 3) (0, 4) (0, k2 − 2)

Zk1
× Zk2

× Zk3

k1 = 3, k2 = 3, k3 = 3 (0, 0, 1) (1, 1, 1) (2, 1, 1) (0, 1, 1) (1, 2, 1) (2, 2, 1) (0, 2, 1) (1, 0, 1) (2, 0, 1)
k1 = 4, k2 = 2, k3 = 2 (0, 1, 0) (3, 1, 0) (2, 1, 1) (3, 0, 1) (2, 0, 1) (1, 0, 0) (1, 0, 1) (3, 1, 1) (1, 1, 1)
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(3,0)

(1,1)(3,1)

(2,0)(0,1) (2,1)

(1,0)

Figure 6: C(Z4 × Z2) ∼= F5
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(0, 1) (1, 1) (2, 1)

(2, 0)
(1, 2)(0, 2)

(1, 0)

(2, 2) 3 6

3
7

8

Figure 7: A5-configuration in C(Z3 × Z3), C(Z10), and C(Z11)

Proof. If a cubic graph G has a Z4 × Z2-coloring, then it also has an F5-
coloring. The isomorphism C(Z4 × Z2) ∼= F5 is indicated in Figure 6. By
Theorem 3.2, G has an A5-coloring as well. Since for each A ∈ {Z3 ×
Z3,Z10,Z11} the configuration C(A) contains a copy of A5 (see Figure 7), G
has an A-coloring for each A ∈ {Z3 × Z3,Z10,Z11}.

6 Variations on an abelian theme

We introduce three different modifications of the concept of an abelian color-
ing. In the first of them we simply extend the set of available colors with the
zero elements of the group. The other modifications draw their inspiration
from the analogy with nowhere-zero flows.

Define an extended A-coloring of a cubic graph to be a proper edge-
coloring by elements of A, including 0, such that the colors of any three
pairwise adjacent edges sum to 0. Let C∗(A) be the extended configuration
for A whose blocks are all three-element subsets of A. An extended A-coloring
is nothing but a C∗(A)-coloring.
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The following theorem yields a similar classification of abelian groups as
Proposition 5.1 and Theorem 5.2 for the case of the abelian colorings.

Theorem 6.1. Let A be an abelian group.

(1) The configuration C∗(A) is non-empty if and only if |A| ≥ 3.
(2) If A is any of Z3, Z4, Z5, Z6, and Z2 ×Z2, then a cubic graph has an

extended A-coloring if and only if it is 3-edge-colorable.
(3) Let A be an abelian group of order at least 8. Then every bridgeless

cubic graph has an extended A-coloring.

Proof. Claim (1) is trivial. Since for each group listed in (2) the configuration
C∗(A) maps to the trivial configuration I, every extended A-coloring induces
a 3-edge-coloring.

We now prove (3). Let A be an abelian group. If |A| ≥ 12 or A =
Z2 × Z2 × Z2, then the conclusion follows from Theorem 5.2. Thus we are
left with groups such that 8 ≤ |A| < 12 other than A = Z2 × Z2 × Z2. As
in the proof of Theorem 5.2, it is sufficient to show that C∗(A) contains a
copy of one of the configurations F6, D8, and D9; this is a consequence of
Theorem 4.2 and the fact that D8 is a homomorphic image of D9. By a direct
verification one can see that C∗(Z4×Z2) contains F6, C

∗(Z8) and C∗(Z4×Z2)
contain D8, and C∗(Z9), C

∗(Z3 × Z3), C
∗(Z10), and C∗(Z11) contain D9.

The only non-trivial abelian group not covered by Theorem 6.1 is Z7. The
extended configuration for this group is isomorphic to the mitre-configuration
introduced in Section 2. Thus extended Z7-colorings provide the Mitre Con-
jecture from Section 2 with an algebraic interpretation.

We proceed with the second variation on the definition of an abelian
coloring. The relationship between flows with values in finite abelian groups
of order k and integer nowhere-zero k-flows suggests the following definition.
An integer k-coloring of a cubic graph G is a Z-coloring σ satisfying the
condition that 0 < |σ(e)| < k for each edge e of G. Let Ik be the configuration
whose points are all non-zero integers n with |n| < k and blocks are all
three-element subsets with zero sum. Then an integer k-coloring is exactly
an Ik-coloring.

As we show next, integer colorings are closely related to both Fano and
abelian colorings.

Theorem 6.2. The following two statements hold for every bridgeless cubic

graph G.
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(1) For i = 4, 5 and 6, if G admits an Fi-coloring, then it also admits an

integer (i+ 2)-coloring.

(2) If G admits an integer 6-coloring, then it admits both a Z10-coloring

and a Z11-coloring.

Proof. (1) Let i ∈ {4, 5, 6} and assume that G has an Fi-coloring. Theo-
rem 3.2 implies that G also admits an Ai-coloring. As shown in Figure 8,
the configuration Ii+2 contains a copy of Ai. Hence G also admits an integer
(i+ 2)-coloring.

+7

−1 −1 −1

−4

+5

−3

−2

+4

+3 +3 −2

−4

+4

−3

+5

+3 −2

+4

−4−4

+5

+6+6

Figure 8: Ai-configuration in Ii+2

(2) Let σ be an integer 6-coloring of G. Define σ′(e) as the reduction of
σ(e) modulo 10 and σ′′(e) as the reduction of σ(e) modulo 11. Since reduction
modulo 11 establishes a bijection from the point-set of I6 to Z11 − {0} that
preserves the zero sum, we see that σ′′ is a Z11-coloring. The argument for σ′

is similar, except that the elements 5 and −5 collapse into the same element
of Z10−{0}. Fortunately, in σ, the colors 5 and −5 cannot occur on adjacent
edges, because otherwise the color of the third edge at their common vertex
would have to be 0. Therefore σ′ is a proper edge-coloring and consequently
it is a Z10-coloring of G.

By combining the previous result with Theorem 4.2 we obtain the follow-
ing corollary.

Corollary 6.3. Every bridgeless cubic graph has an integer 8-coloring.

Observe that I5 is a class 1 configuration while I6 contains a copy of F4.
This leads us to propose the following two conjectures, the latter being a
weaker form of the former.

Conjecture 6.4. Every bridgeless cubic graph admits an integer 6-coloring.
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Conjecture 6.5. Every bridgeless cubic graph admits an integer 7-coloring.

As our third variation we could consider extended integer k-colorings de-
fined analogously as above except that 0 would become an admissible color.
This definition, however, does not bring anything new: the extended config-
uration I∗4 is isomorphic to the mitre while I∗5 contains A6. Thus a bridgeless
cubic graph has an extended integer 4-coloring if and only if it admits an
extended Z7-coloring. Finally, by Theorem 4.2, every bridgeless cubic graph
has an extended integer 5-coloring.

7 Concluding remarks

We have presented a systematic approach to edge-colorings of cubic graphs
based on configurations with 3-element blocks. There are many other con-
figurations besides those considered in this paper. Perhaps the first type of
configurations to try are so called symmetric configurations n3.

In general, a symmetric configuration nk consists of n points and n lines
(or blocks) arranged in such a way that k lines pass through each point,
and there are k points on each line. Furthermore, there is at most one line
through any pair of points. With each symmetric configuration one can
associate a bipartite cubic graph, called the incidence graph—or the Levi

graph—of a configuration. The parts of the incidence graph correspond to
the points and the lines, two vertices being adjacent if the corresponding
point and the line are incident. It is well known [5, Proposition 1] that every
bipartite cubic graph of girth at least six uniquely determines a symmetric
configuration, and vice versa. Exchanging the roles of the parts results in
the dual configuration.

Although many interesting symmetric configurations are of geometric ori-
gin, the terms point and line need not have any geometric significance. Sym-
metric configurations were defined by Reye [29] in 1876 and as such belong
to the oldest combinatorial structures. For modern investigation of configu-
rations the reader is referred to [4, 5, 15, 16, 27]. In particular, Betten et al.
[4] lists all small n3-configurations.

The smallest symmetric configuration is the Fano plane, the unique 73-
configuration. Its incidence graph is the Heawood graph. There is a single
83-configuration known as the Möbius-Kantor configuration. It is isomor-
phic to the affine plane AG(2, 3) minus a point which in turn is isomorphic
to C(Z3×Z3). Its incidence graph is the generalized Petersen graph GP (8, 3).
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There exist exactly three non-isomorphic 93-configurations: the Pappus con-
figuration from his famous Hexagon Theorem is easily seen to be class 1. Its
incidence graph is the Haar graph H(261) described by Pisanski and Randić
[27]. The remaining two 93-configurations are both class 2 and contain a
copy of F4, but no copy of F5 or the mitre.

{1,2}

{2,4}

{3,5}

{3,4}

{4,5}

{1,4}{1,3}

{1,5}

{2,5}{2,3}

Figure 9: Desargues configuration

One of the most famous geometric configurations, the Desargues config-
uration shown in Figure 9, is a configuration of type 103. Its incidence graph
is the generalized Petersen graph GP (10, 3). The configuration arises in the
following Theorem of Desargues from projective geometry: If two triangles

are perspective from a point, they are perspective from a line, and conversely ;
see, e.g., Coxeter’s textbook [7, p. 238]. Surprisingly, the same configuration
arises in graph theory in connection with the Cycle Double Cover Conjecture
[21]. Its more specific form, the 5-Cycle Double Cover Conjecture (5-CDC),
asserts that every bridgeless graph admits a 5-cycle double cover, that is, a
collection of five even subgraphs such that each edge belongs to exactly two
of them. It is well known that the 5-CDC is equivalent to its restriction on
cubic graphs, and currently it is known to be true for cubic graphs of oddness
at most 4 [19].

We next observe that the 5-CDC is equivalent to the statement that the
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Desargues configuration colors every bridgeless cubic graph.

Theorem 7.1. A cubic graph has a 5-cycle double cover if and only if it has

a D-coloring, where D is the Desargues configuration.

Proof. Assume that a cubic graph G has a double cover by five even sub-
graphs H1, . . . , H5. Color each edge e of G by a two-element subset {j, k} ⊆
{1, 2, . . . , 5} whenever e belongs to both Hj and Hk. Since every vertex of
G is incident with an even number of edges of each Hi (either zero or two),
we deduce that, at every vertex, three of the five even subgraphs must meet
each other. It follows that our coloring is proper and that the color pattern
at each vertex consists of three two-element subsets which are contained in
the same three-element subset of {1, 2, . . . , 5}. In other words, every 5-cycle
double cover of G induces a C-coloring with a configuration C isomorphic
to the Desargues configuration depicted in Figure 9. The converse can be
established simply by reversing the arguments.

{1,4}

{4,5}

{1,5}

{2,4}
{5,6}

{2,5}

{4,6}

{3,6}

{3,5}

{3,4}

{2,6}

{1,3}

{1,2}

{2,3}

{1,6}

Figure 10: Cremona-Richmond configuration

Another remarkable configuration, is the Cremona-Richmond configura-
tion of type 153. The stellar representation of this configuration given in
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Figure 10 is due to Boben et al. [5]. The incidence graph is the well known
Tutte 8-cage (see [4, 27]).

The origins of the Cremona-Richmond configuration are quite vague. In
algebraic geometry, it emerged in the studies of families of straight lines
on cubic surfaces which were popular in the second half of the nineteenth
century. Cremona [8] seems to have been the first to give a description
which can be interpreted as the list of points and lines of this configuration.
Richmond [30] found its realization by points and lines in the 4-dimensional
projective space over an infinite field.

We now show that the same configuration arises in connection with the
famous Fulkerson’s Conjecture whose origin is in mathematical programming
[12]. The conjecture states that in every bridgeless cubic graph there exists a
collection of six perfect matchings such that each edge belongs to exactly two
of them. Such a collection is called a double cover by six perfect matchings.

Theorem 7.2. A cubic graph has a double cover by six perfect matchings

if and only if it has a CR-coloring where CR is the Cremona-Richmond

configuration.

Proof. Assume that a cubic graph G has a double cover by six 1-factors
M1, . . . ,M6, and color every edge e of G by a two-element subset {j, k} ⊆
{1, 2, . . . , 6} whenever e belongs to both Mj and Mk. In this way, every
double cover of G by six 1-factors induces a C-coloring where C is a config-
uration whose points are all two-element subsets of {1, 2, . . . , 6} and three
points form a block if and only if their union is the whole {1, 2, . . . , 6}. It is
immediate that C is a 153-configuration. The fact that C is isomorphic to
the Cremona-Richmond configuration follows from the labeling displayed in
Figure 10. Again, the converse implication can be established by reversing
the arguments.

There is another conjecture in graph theory where the Cremona-Richmond
configuration plays an important role, namely the Petersen Coloring Conjec-
ture [22]. The conjecture states that the edges of every bridgeless cubic graph
G can be mapped into the edges of the Petersen graph in such a way that any
three mutually incident edges of G are mapped to three mutually incident
edges of the Petersen graph. Such a mapping is called a Petersen coloring of
G. Let us define a partial Steiner triple system P by taking its points to be
the edges of the Petersen graph and its blocks to be the triples of pairwise
adjacent edges. Note that a Petersen coloring of a graph is nothing but a
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P -coloring. The configuration P has 15 points and 10 lines. In particular it is
not a symmetric configuration. However, it is a routine matter to verify that
P results from the Cremona-Richmond configuration by removing a parallel
class of blocks, i.e., a set of disjoint blocks covering every point. An example
of such a set is indicated in Figure 10 by bold lines. We call P the depleted

Cremona-Richmond configuration.

Theorem 7.3. A cubic graph has a Petersen coloring if and only if it has a

P -coloring, where P is the depleted Cremona-Richmond configuration.

To conclude this section we summarize the conjectures presented in this
paper and the relations between them. In Figure 11, each box represents a
conjecture or a theorem. A box with a bold frame represents a theorem,
otherwise it represents a conjecture. Each conjecture or theorem is encoded
either by its name or by the corresponding partial Steiner triple system. A
box containing the symbol of a configuration or of a group C represents the
statement that every bridgeless cubic graph is C-colorable. An arrow between
boxes means that the validity of the “initial” statement implies the validity
of the “terminal” statement.

Note that the Petersen graph admits both a 5-cycle double cover and a
double cover by six 1-factors. Thus if a graph G admits a Petersen coloring,
then both a 5-cycle double cover and a double cover by six 1-factors of G can
be obtained by “lifting” the corresponding structure from the Petersen graph
to G. This explains the two implications at the bottom of Figure 11. The
first of them also follows from the fact that the depleted Cremona-Richmond
configuration is contained in the Cremona-Richmond configuration.

Finally, we would like to point out that Kaiser and Raspaud [24] have
recently verified the 5-Line Conjecture for bridgeless cubic graphs of oddness
2.
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Mat. časopis 22 (1972), 310–318.

[29] T. Reye, Geometrie der Lage I, Second Ed., Rümpler, Hannover, 1876.
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