
Solving Difficult Problems by Viewing them as Structured

Dense Graphs

Pavel Surynek, Lukáš Chrpa, and Jiří Vyskočil

Charles University

Faculty of Mathematics and Physics
Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic

{surynek, chrpa, vyskocil}@ktiml.mff.cuni.cz

Abstract. We are addressing the solving process over difficult AI problems such as planning
and Boolean formula satisfaction in this paper. We propose a method for disentangling the
structure of the problem hidden in its formulation. Namely we are viewing the problem as a
graph with vertices end edges that we decompose into several complete sub graphs. The clique
decomposition of the graph provides us with information about the structure of the problem
which is then used for further reasoning. This reasoning is primarily targeted on early determin-
ing that a certain decision made during the search is unpromising. We implemented our new
method and performed an experimental evaluation in planning with planning graphs and in Boo-
lean formula satisfaction. The per-formed experiments showed order-of-magnitude improve-
ments in comparison with other state-of-the-art approaches.

Keywords: problem solving, planning, SAT, planning graphs, consistency

1 Introduction

We are addressing the solving process over difficult problems known from artificial intelligence in
this paper. Namely, we are interested in solving planning problems and Boolean formula satisfac-
tion problems. These problems represent some of the most challenging issues in artificial intelli-
gence as well as in theoretical computer science.

Our recent research focused on solving process over these problems showed that a structure of
the problem has a large effect on the ability of a solver to solve it. Namely, the structure of a graph
obtained by some kind of reformulation of the input problem is seemed to be a good measure of the
difficulty the problem. We found that disentangling the structure of the problem hidden in the graph
may significantly improve the process of search for solution.

The problem area of our choice has a wide variety of theoretical and practical implications. A
planning problem is stated as a task of finding a sequence of actions resulting in achieving some
goal [4]. The need of solving planning problems arises almost every time when a complex autono-
mous behavior of a certain agent is required. It is the case of spacecrafts and vehicles for distant
space and planetary exploration [1, 6] as well as the case of unmanned military devices [9].

Boolean formula satisfaction problems and SAT solving techniques play an extremely important
role in theoretical computer science as well as in practice too. The question of whether there exists a
complete polynomial time SAT solver is a key question for theoretical computer science and it is
open for many years (the P vs. NP problem) [10]. On the other hand the practical use of SAT prob-
lems and SAT solvers in real life applications is also very intensive. Applications of SAT solving

2 Pavel Surynek, Lukáš Chrpa, and Jiří Vyskočil

techniques range from microprocessor verification [32] to field-programmable gate array design
[25].

Moreover, the described problem areas overlap. One of the most successful state of the art solver
for planning problems uses translation of the input problem into a Boolean formula which is subse-
quently solved using SAT resolution techniques [21].

The idea behind our method itself is simple. We are viewing the input problem as a graph with
vertices and edges. The vertices of the graph represent contributions to the solution and edges repre-
sent conflicts. The task is to select vertices which together form a solution by their contributions
and that do not conflict with each other. That is, the selected vertices must form a stable set in the
graph.

Conflicting vertices are those that cannot be both selected into a solution. For ex-ample in the
domain of Boolean formulas, the conflicting vertices correspond to positive and negative literals of
the same variable. At most one of such literals can be selected to contribute to the solution in this
case.

Having the graph constructed from the input problem, a clique decomposition of this graph is
found by a greedy algorithm (we do not need optimal clique decomposition; we need just some of
the reasonable quality). The important property of the constructed clique decomposition is that at
most one vertex from each clique can be selected to contribute to the solution. In this situation we
can perform some kind of a contribution counting to rule out vertices of the graph that can never be
selected for the solution. To do this, the maximum contribution of vertices of each clique is calcu-
lated. Then a vertex of a certain clique can be ruled out if the vertices from other cliques together
with the selected vertex do not contribute enough to the solution.

For finding a clique decomposition of a reasonable quality by the greedy algorithm, the graph is
required to be dense. It is expectable that the greedy algorithm would perform better on a graph
with many edges than on a sparse one.

Although this problem reformulation is looking weak it provides a strong reasoning about the
structure of the problem and about the effect of making a decision during solving process (selection
of a vertex) on the existence of a solution. Moreover, on some difficult problems this kind of rea-
soning is strong enough to decide the problem itself without any search.

The organization of our paper is following. First we introduce some problem and a consistency
technique for it. This may look like to be far apart from the reality of planning and SAT domain but
it is not as we see later. The consistency technique is based on a clique decomposition of the graph
of the defined problem. The clique decomposition serves as a method for disentangling the hidden
structure of the problem. In next two sections, we put together the defined problem and the consis-
tency technique with the problems of searching for a plan and searching for a satisfying valuation of
a Boolean formula. The connection between the defined problem and application areas of planning
and SAT solving reveals in this section. The proposed consistency technique is used for early de-
termining that some decision made during solving process was wrong. Next, we put our work in
relation to similar works in the field. Finally, we provide some discussion of our work and propose
some future re-search directions of the studied topic.

Solving Difficult Problems by Viewing them as Structured Dense Graphs 3

2 Problem Definition

We formally define our problem and discuss its complexity in this section. The de-fined problem
represents a common sub problem or reformulation for both planning and Boolean formula satisfac-
tion.

Definition 1 (Contribution problem). Let S be a finite set of symbols. The set S represents an
objective we want to satisfy. Next, let (,)G V E= be an undirected graph where each vertex v from
the set V is assigned a set of symbols ()c v which is a (proper) subset of S . The task is to select a
subset of vertices I such that ()v I c v S∈ =∪ and no two vertices from I are adjacent through an
edge from E (that is, (){ , }u I v I u v E∀ ∈ ∀ ∈ ∉). The set of selected vertices thus forms a sable set
in the graph G . Let us call the defined problem a contribution problem for further reference. The
sets ()c v associated with vertices of the set V are called contributions to the objective S .

This problem may look rather artificial however it provides common basis for problems of our in-

terest. Although the contribution problem seems to be not so hard, it is shown in [29] that it is NP-
complete.

Since the contribution problem is NP-complete it is improbable that it can be solved without
search. However, the efficiency of the search varies greatly depending on how informed the search
is. Our method for improving the search is based on a special consistency technique which is able to
discover wrong decisions in early stages.

3 Consistency Technique Based on Greedy Clique Decomposition

The formal description of a new consistency technique for improving the solving process of the
contribution problem is provided in this section. We call our new technique a projection consistency
according to the way how propagation is done through that. The projection consistency introduces
some type of a global reasoning over the contribution problem. That is we consider the problem as a
whole at once. It is designed to improve the search by discovering wrong decisions in early stages.

3.1 Basic Definitions from Constraint Programming

The consistency technique we develop in following paragraphs exploits some concepts of constraint
programming methodology. Therefore some basic definitions from constraint programming are
necessary. The key concept is a constraint satisfaction problem.

Definition 2 (Constraint satisfaction problem) [12]. A constraint satisfaction problem (CSP) is a
triple (, ,)X D C , where X is a finite set of variables, D is a finite domain of values for variables
from the set X and C is a finite set of constraints. A constraint is an arbitrary relation over the

4 Pavel Surynek, Lukáš Chrpa, and Jiří Vyskočil

domains of its variables. A sequence of variables constrained by a constraint c C∈ is denoted as

cX .

Definition 3 (Solution of CSP) [12]. A solution of a constraint satisfaction problem (, ,)X D C is an
assignment of values to the variables : X Dψ → such that all the constrains are satisfied for ψ ,
that is 1 2 1 2()[, , ,] [(), (),k cc C x x x X x xψ ψ∀ ∈ = ⇒… … , ()]kx Cψ ∈… .

CSPs are often solved using so called constraint propagation. If a domain of a variable is

changed then this change is propagated into the domains of other variables through constraints. The
quality of the solving algorithm is often tightly connected with the quality of propagation tech-
niques for individual constraints. It is especially true for so called global constraints which bind
large number of variables and perform fine grained and effective propagation throughout the large
parts of the problem (for example Régin’s allDifferent constraint [26]). Our method is trying to fol-
low the concept of such global propagation.

3.2 Clique Decomposition of Contribution Graph

The basic idea behind our consistency technique is to disentangle the structure of the graph of the
contribution problem. This disentanglement is done by decomposing of the input graph into several
complete sub-graphs (cliques). The knowledge of the clique decomposition of the contribution
graph would allow us to identify a correspondence among vertices from a clique. Having a clique
we know that at most one vertex from the clique can be selected to contribute into the objective S .
Such property can be used for some kind of advanced reasoning afterwards. This is just the first part
of the idea behind the projection consistency.

The second part of the idea of projection consistency is to take a subset of the given objective and
to calculate how a certain clique of vertices contributes to satisfaction of the subset of the objective.
This reasoning can be used to discover that some vertices within a certain clique do not contribute
enough to the objective and therefore can be ruled out. Vertices that are ruled out are no more con-
sidered along the search and hence the search speeds up since smaller number of alternatives must
be considered.

Projection consistency assumes that a clique decomposition of the contribution graph is known.
Thus we need to perform a preprocessing step in which a clique decomposition (clique cover) of the
graph is constructed.

Let (,)G V E= be a contribution graph. The task is to find a partitioning of the set of vertices

1 2 nV C C C= ∪ ∪ ∪… such that i jC C∩ =∅ for every , {1,2, , } &i j n i j∈ ≠… and iC is a clique
with respect to E for {1,2, , }i n= … .

Cliques of the partitioning do not cover all the edges in general case. That is,
2 2 2
1 2()nF E C C C= − ∪ ∪ ∪ ≠ ∅… (where 2 {{ , } | , & }C a b a b C a b= ∈ ≠). Our requirement is to

minimize n and F . Unfortunately the problem of clique cover of the defined property is
NP-complete on a graph without any restriction. The proof of this claim was provided by Golumbic
in [9].

As an exponential amount of time spent in preprocessing step is unacceptable it is necessary to
abandon the requirement on optimality of the clique cover. It is sufficient to find some clique cover

Solving Difficult Problems by Viewing them as Structured Dense Graphs 5

to be able to introduce projection consistency. However, the better the clique cover is (with respect
to n and F) the better is the performance of projection consistency. Our experiments showed that
a simple greedy algorithm provides satisfactory results.

The greedy algorithm we are using is listed as algorithm 1. Its complexity is polynomial in size of
the input graph that is acceptable for preprocessing step.

Observation 1 (Complexity of the greedy clique cover algorithm). The greedy algorithm for
finding clique cover (algorithm 1) for a graph (,)G V E= can be implemented to run in

2()O V E+
steps.

Proof: Suppose that all the sets appearing in the algorithm are implemented as lists. A selection of a
vertex of highest degree takes ()O V steps and must be performed ()O V times. Each edge from
E is considered at most constant number of times. More precisely each directed edge is either in-
cluded into the constructed clique or into the set of remaining edges F .

The described greedy algorithm is particularly successful on dense graphs. Graphs obtained by

reformulation of the difficult problems we studied mostly satisfy this property.

Algorithm 1: Greedy algorithm for finding clique cover

function cliqueCover (,)V E : pair
1: 1n ← ; F ←∅
2: while V ≠ ∅ do
3: nC ←∅ ; nV V← ; nE E←
4: while nV ≠ ∅ do
5: (,) (,)| ()deg () deg ()

n n n nn n V E V Ev V u V v u∈ ∀ ∈ ≥
6: { }n nC C v← ∪
7: { | (){ , } }n n nV u w C u w E← ∀ ∈ ∈
8: {{ , } |{ , } &{ , } }n n nE u v u v E u v V← ∈ ⊆
9: {{ , } |{ , } & { , } 1}nF F u v u v E u v C← ∪ ∈ ∩ =
10: nV V C← −
11: 2()nE E C F← − ∪
12: 1n n← +
13: return 1 2({ , , , },)nC C C F…

3.3 Clique Contribution Counting

For the following description of projection constraint consider the graph (,)G V E= of a contribu-
tion problem for which a clique cover 1 2 nV C C C= ∪ ∪ ∪… of the set of vertices V with respect to
the set of edges E was computed. Further suppose we have the set F consisting of edges outside
the clique cover. Projection consistency is defined over the above decomposition for an objective p
which is a subset of the objective S . The objective p is called a projection objective in this con-

6 Pavel Surynek, Lukáš Chrpa, and Jiří Vyskočil

text. The fact that at most one vertex from a clique can be selected allows us to introduce the fol-
lowing definition.

Definition 4 (Clique contribution). A contribution of a clique 1 2{ , , , }nC C C C∈ … to the projection
objective p is defined as max(() |)c v p v C∩ ∈ . The contribution of a clique C to the projection
objective p is denoted as (,)c C p .

The concept of clique contribution is helpful when we are trying to decide whether it is possible

to satisfy the projection objective using the vertices from the clique cover. If for instance
1 (,)n

i ic C p p=∑ < holds then the projection objective p cannot be satisfied. Nevertheless the projec-
tion consistency can handle a more general case as it is described in the following definitions.

Definition 5 (Supported vertex). A vertex iv C∈ for {1,2, , }i n∈ … is supported with respect to
projection consistency with the projection objective p if 1, (,) ()n

j j i jc C p p c v= ≠∑ ≥ − holds.

Definition 6 (Consistency of a problem). The preprocessed instance of the contribution problem
consisting of vertices 1 2 nV C C C= ∪ ∪ ∪… , edges E , and the objective S is projection consistent
with respect to a projection objective p S⊆ , p ≠ ∅ if every vertex iv C∈ for 1,2, ,i n= … is sup-
ported.

If cliques of the clique cover are regarded as CSP variables and vertices from the cliques are re-

garded as values for these variables then we can introduce a projection constraint. The projection
constraint bounds domains of all the clique variables. That is, the constraint bounds all the variables
of the CSP problem. The constraint with respect to the projection objective p S⊆ is satisfied for an
assignment 1 1 2 2(, , ,)n nC v C v C v= = =… if 1 ()n

iip c v=⊆ ∪ .
To enforce projection consistency over the contribution problem for some projection objective p

we can easily remove values from the domains of variables. Specifically it is necessary to rule out
values (vertices) which are not supported according to the definition 5 for the projection objective
p . Notice that projection consistency is not a sufficient condition to obtain a solution. There still

remain assignments for which the constraint is not satisfied.
The second note is on the slight difference of the definition of a solution of the constraint satis-

faction problem over the clique variables from the standard definition. We do not necessarily need
to assign all the clique variables to solve the problem. The solution requires satisfaction of the pro-
jection objective only.

Proposition 1 (Correctness of projection consistency). Projection consistency is correct. That is
the set of solutions of the contribution problem Γ is the same as the set of solutions of the contribu-
tion problem ′Γ which we obtain from Γ by enforcing projection consistency with respect to a
projection objective p S⊆ .

Proof: The proposition is easy to prove by observing that an unsupported vertex cannot participate
in any solution satisfying the objective S . Let iv C∈ be an unsupported vertex for {1,2, , }i n∈ … ,
that is 1, (,) ()n

j j i jc C p p c v= ≠∑ < − . Thus after selecting the vertex v into the solution, there is no

Solving Difficult Problems by Viewing them as Structured Dense Graphs 7

chance to satisfy the projection objective p . Hence there is even less chance to satisfy the objective
S since it is superset of p .

A useful property of the projection consistency with a single projection objective p is that re-

moval of an unsupported vertex does not affect any of the remaining supported vertices. We call
this property a monotonicity. The usefulness consist in the fact that it is enough check each vertex of
the problem only once to enforce the projection consistency with respect to a single projection ob-
jective.

Proposition 2 (Monotonicity of projection consistency). Projection consistency with a projection
objective p is monotone. That is if an arbitrary unsupported vertex v is removed from a clique iC
for {1,2, , }i n∈ … the set of supported vertices within the problem remains unchanged.

Proof: Let ju C∈ be an unsupported vertex after removal of v from iC . That is after removal of v
from iC the inequality 1, (,) ()n

k k j kc C p p v u= ≠∑ < − holds.
First let us investigate the case when i j= . Observe that removal of v has no effect on the truth

value of the expression 1, (,) ()n
k k j kc C p p c u= ≠∑ < − . Hence the vertex u was unsupported even be-

fore v was removed.
For the case when i j≠ the situation is similar. If (,) ({ },)i ic C p c C v p= − , then the removal of

the vertex v has no effect on the truth value of the expression 1, (,) ()n
k k j kc C p p c u= ≠∑ < − . If

(,) ({ },)i ic C p c C v p> − , then () (,)ip c v c C p∩ = . From the assumption that
1, (,) ()n

j j i jc C p p c v= ≠∑ < − we have 1 (,)n
k kc C p p=∑ < . Hence also 1, (,) ()n

k k j kc C p p c v= ≠∑ < − .

3.4 Propagation Algorithm

Algorithm 2: Projection consistency propagation algorithm

function propagateProjectionConsistency 1 2({ , , , },)nC C C p… : set
1: 0γ ←
2: for 1,2, ,i n= … do
3: ic ← calculateCliqueContribution (,)iC p
4: icγ γ← +
5: for 1,2, ,i n= … do
6: for each iv C∈ do
7: if () () ic v p p c v cγ + ∩ < − + then { }i iC C v← −
8: return 1 2{ , , , }nC C C…

function calculateCliqueContribution (,)C p : integer
9: 0c ←
10: for each v C∈ do
11: max(, ())c c c v p← ∩
12: return c

8 Pavel Surynek, Lukáš Chrpa, and Jiří Vyskočil

In order to be able to discuss complexity issues of our approach we have to formally define
propagation algorithm for projection consistency. The propagation algorithm for projection consis-
tency is shown as algorithm 2. The input of the algorithm is a projection objective p and the clique
decomposition of the contribution problem.

Theorem 2 (Complexity of projection consistency). Propagation algorithm for projection consis-
tency with a projection objective p S⊆ over the contribution problem consisting of vertices

1 2 nV C C C= ∪ ∪ ∪… , edges E , and an objective S runs in ()O p S V steps.

Proof: Since the algorithm for enforcing projection consistency is quite straightforward it is easy
compute its complexity. The auxiliary function calculateCliqueContribution performs ()O p C
steps (the loop on lines 10-11 performs exactly C iterations, each iteration of the loop takes p S
steps). Hence lines 2-4 of the main function propagateProjectionConsistency takes

1
() ()n

i
O p S C O p S V

=
=∑ . Finally lines 5-7 of the main function performs a conditional state-

ment on line 7 V times. Each check of the condition in the conditional statement on line 7 takes
p S steps. Hence we have ()O p S V steps in total.

3.6 How to Select Projection Objectives

Until now, we were not concerned with the question of how to select projection objectives for a
problem with an objective S . The only condition on a projection objective p is that p S⊆ . It is
suitable to enforce projection consistency with respect to several projection objectives. Each of
these objectives filters out different vertices from cliques of the decomposition. The selection of all
the sub-objectives of the objective S is unaffordable since they are 2 S which is too many. Hence
we can select only a limited number of projection objectives. At the same time the selection must be
done carefully in order to achieve strongest possible filtration.

Our preliminary experimentations showed that propagation of a good quality can be obtained by
using projection objectives which have the constant number of supporting vertices. More formally
let { | & { | ()} }ip t t S v V t c v i= ∈ ∈ ∈ = then projection consistency is enforced for every

{1,2, }i = … for which ip ≠ ∅ . Let us note that we do not know whether there exists a set of projec-
tion objectives which provides better results.

It takes
2

1,2, &
() ()

i
ii p

O p S V O S V
= ≠∅

=∑ …
 steps to enforce projection consistency with respect

to all projection objectives as defined above. If the projection consistency is enforced with respect
to one projection objective it may happen that it becomes inconsistent with respect to another pro-
jection objective. Therefore the consistency should be enforced repeatedly in AC-1 [12] style until
cliques of vertices are changing. This takes

2 2()O S V . However, empirical tests showed that such
repeating does not provide any significant extra filtration. Hence we use the only iteration of projec-
tion consistency with respect to projection objectives ip for {1,2, }i = … where ip ≠ ∅ .

An example of projection consistent problem with respect to the multiple projection objectives ip
is shown in figure 1. In this example, all the vertices which are not part of the only one solution of
the problem are ruled out by the projection consistency. So the problem was solved by projection
consistency itself. On larger problems the situation is not so lucky in general.

Solving Difficult Problems by Viewing them as Structured Dense Graphs 9

Fig. 1. An instance of the contribution problem consisting of a graph with eight vertices. Doted lines con-
necting a vertex and a symbol depict the contributions. Double-circled vertices depict the solution of the
problem (that is, the set of vertices which together form the objective S by their contributions). Projection
consistency with respect to multiple projection objectives is enforced in this contribution problem. Cliques
detected by the greedy algorithm are: C1={1,2,3,4}, C2={6,8}, C3={5}, and C4={7}. Unsupported vertices
for the projection objectives are: p1={c,e,f}, p2={a,b,d,g}, and p3={h} are depicted by squared vertices. For
example vertex 3 is unsupported for the projection objective p1={c,e,f} since vertex 3 contributes by 0, C2
contributes by 2, C3 contributes by 0, and C4 contributes by 0 which is together less than the size of p1.

4 Application in Solving AI Planning Problems

In this section we describe application of contribution problems and projection consistency in the
area of planning. Namely we exploit the technique developed in previous sections in solving plan-
ning problems over planning graphs by the GraphPlan algorithm [8].

For purposes of clarity we are using a simple language for expressing planning problems. To de-
scribe a problem over a certain planning domain we use language L with finitely many predicate
and constant symbols. The set of predicates will be denoted as LP and the set of constants as LC .
Constants represent objects appearing in the planning world and predicate symbols are used to ex-
press relations over objects. Let us note that simplicity of the language is not at the expense of ex-
pressivity (in [18] Ghallab et al. show more approaches for describing planning problems). The fol-
lowing definitions assume a fixed language L .

Definition 7 (Atom). An atomic formula (atom) is a construct of the form 1 2(, , ,)np c c c… where

Lp P∈ and i Lc C∈ for 1,2, ,i n= … .

Definition 8 (State, Goal, Goal satisfaction). A state is a finite set of atoms. A goal is also a finite
set of atoms. The goal g is satisfied in the state s if g s⊆ .

States provide a formal description of a situation in the planning world. A goal is a formal de-

scription of a situation which we want to establish. The situation in the planning world is changed

1

c(1)={a,b}

2

3

4

5

6

7

8

c(2)={c}

c(4)={h}

c(3)={d}

c(5)={a,b}

c(6)={e,f} c(7)={d,g,h}

c(8)={g,h}

a b c d e f g h Objective S =

10 Pavel Surynek, Lukáš Chrpa, and Jiří Vyskočil

by actions. Actions formally define possible transitions between states. Action applied to the state
results into a new state.

Definition 9 (Action, Applicability, Application). An action a is a triple ((), (), ())p a e a e a+ − ,
where ()p a is a precondition of the action, ()e a+ is a positive effect of the action and ()e a− is a
negative effect of the action. All the action three components are finite sets of atoms. An action a is
applicable to the state s if ()p a s⊆ . The result of the application of the action a to the state s is a
new state (,)s aγ , where (,) (()) ()s a s e a e aγ − += − ∪ .

For purposes of planning graphs there are also assumed so called no-op actions. For every atom t

we assume a no-op action (, ,)tnoop t t= ∅ . Briefly said a no-op action preserves an atom into the
next state.

Given a set of allowed actions and a goal the objective is to transform a given initial state into a
state satisfying the goal. State transitions to achieve the objective are carried out by applying actions
from the set of allowed actions.

Definition 10 (Planning problem). A planning problem P is a triple 0(, ,)s g A , where 0s is an
initial state, g is a goal and A is a finite set of allowed actions.

Definition 11 (Application of sequence of actions, Solution). We inductively define application
of a sequence of actions 1 2[, , ,]na a aφ = … to a state 0s in the following way: 1a must be applicable
to 0s , let us inductively denote the result of application of the action ia to the state 1is − as is for all

1,2, ,i n= … ; the condition that ia is applicable to the state 1is − for all 2,3, ,i n= … must hold. The
result of application of the sequence of actions φ to the state 0s is the state ns . Sequence

1 2[, , ,]na a aξ = … is a solution of the planning problem 0(, ,)P s g A= if the sequence ξ is applica-
ble to the initial state 0s and the goal g is satisfied in the result of application of the sequence ξ
and ia A∈ for all 1,2, ,i n= … .

4.1 Planning Graphs and GraphPlan Algorithm

The GraphPlan algorithm relies on the idea of state reachability analysis. The state reachability
analysis is done by constructing a special data structure called planning graph. The algorithm itself
works in two interleaved phases. In the first phase planning graph is incrementally expanded. Then
in the second phase an attempt to extract a valid plan from the extended planning graph is per-
formed. The GraphPlan algorithm uses standard backtracking to extract plan from planning graphs.
If the second phase is unsuccessful the process continues with the first phase. That is the planning
graph is extended again.

The planning graph for a planning problem 0(, ,)P s g A= is defined as follows. It consists of two
alternating structures called proposition layer and action layer. The initial state 0s represents the
0th proposition layer 0P . The layer 0P is just a list of atoms occurring in 0s . The rest of the plan-
ning graph is defined inductively. Consider that the planning graph with layers

0P , 1A , 1P , 2A , 2P , … , kA , kP has been already constructed (iA denotes the ith action layer, iP
denotes the ith proposition layer). The next action layer 1kA + consists of actions whose preconditions

Solving Difficult Problems by Viewing them as Structured Dense Graphs 11

are included in the kth proposition layer kP and which satisfy the additional condition that no two
propositions of the action are mutually excluded (we briefly say that they are mutex). The next
proposition layer 1kP + consists of all the positive effects of actions from 1kA + (this is the reason for
having no-op actions).

Definition 12 (Independence of actions). A pair of actions { , }a b is independent if

() (() ())e a p b e b− +∩ ∪ =∅ and () (() ())e b p a e a− +∩ ∪ =∅ . Otherwise { , }a b is a pair of depend-
ent actions.

Definition 13 (Action mutex and mutex propagation). We call a pair of actions { , }a b within the
action layer iA a mutex if either the pair { , }a b is dependent or an atom of the precondition of the
action a is mutex with an atom of the precondition of the action b (defined in the following defini-
tion).

Definition 14 (Proposition mutex and mutex propagation). We call a pair of atoms { , }p q within
the proposition layer iP a mutex if every action a within the layer iA where ()p e a+∈ is mutex with
every action b within the action layer iA for which ()q e b+∈ and the action layer iA does not con-
tain any action c for which { , } ()p q e c+⊆ .

4.2 Problem of Finding Supporting Actions for a Goal

A problem of finding supports for a sub-goal is definable for arbitrary action layer of the planning
graph and for arbitrary goal. Consider an action layer of a given planning graph. Let A be a set of
actions of the action layer and let Aµ be a set of mutexes between actions from A . Next let us
have a goal g . For the given goal g and action layer the question is to determine a set of actions

Aζ ⊆ where no two actions from ζ are mutex with respect to Aµ and ζ satisfies the goal g .
The set of actions ζ satisfies the goal g if ()ag e aζ

+
∈⊆ ∪ (notice that positive and negative ef-

fects of actions from the set of non-mutex actions does not interfere). The actions from the set ζ
are called supports for the goal g in this context. The goal g is called a sub-goal to distinguish it
from the global goal for which we are building a plan. Typically many sub-goals must be satisfied
along the search for the global goal in the standard GraphPlan algorithm.

The effectiveness of a method for solving problem of finding supports has a major impact on the
performance of the planning algorithm as a whole. It is because this sub-problem must be solved
many times during the process of finding a plan.

The problem of finding supports for a goal in this context is actually the contribution problem
where the set of vertices is equal to A , set of edges is equal to Aµ , and each vertex corresponding
to the action a is assigned the set of contributions ()e a+ . The objective is the goal g here. Having
this we can apply the projection consistency technique. We use a backtracking based search from
the standard GraphPlan algorithm augmented by maintaining projection consistency whenever a
decision is made.

12 Pavel Surynek, Lukáš Chrpa, and Jiří Vyskočil

4.3 Experimental Results for Planning Problems

We have implemented the proposed projection consistency propagation algorithm within our ex-
perimental planning system written in C++. The projection consistency is used to improve solving
of the problems of finding supports within backtracking based plan extraction of the GraphPlan
algorithm. We exactly follow the standard GraphPlan algorithm [8] except the part for solving the
problem of finding supporting actions for a goal. The difference is that we are viewing the problem
as contribution problem and maintain projection consistency with respect to the discussed projec-
tion objectives along the search for a solution of the problem. That is, whenever the backtracking
algorithm makes a decision the projection consistency is enforced in order to prune the remaining
search space.

We have made several experiments with our algorithm on simple planning domains. We were
comparing the standard GraphPlan algorithm with our new version which maintains projection con-
sistency.

Table 1. Time statistics of solving process over several planning problems. The line Length shows planning
graph length / solution plan length. The line PlanGraph shows time spent by building planning graphs, the
line Extraction shows time spent by extracting plans from planning graphs, the line Cliques shows time spent
by building clique covers and the line Total shows the total time necessary to find a solution.

Problem han02 pln04 dwr02 dwr01 han04 pln01 han03 pln10 han07
Length 14/14 5/9 6/10 6/12 10/12 5/9 30/30 10/15 14/20

Standard GraphPlan
PlanGraph 0.90 4.35 5.13 5.23 4.30 15.07 5.47 6.37 14.03
Extraction 0.43 0.28 2.69 8.53 6.75 0.51 12.03 165.82 142.15

Total 1.33 4.63 7.82 13.76 11.05 15.58 17.50 172.19 156.18
GraphPlan with maintaining projection consistency for contribution problems

PlanGraph 0.92 4.35 5.09 5.14 4.35 15.29 5.30 6.42 13.70
Cliques 0.09 9.48 1.09 1.09 0.87 46.29 0.77 6.54 4.67

Extraction 0.24 0.1 0.55 1.13 3.53 0.24 5.41 6.96 40.09
Total 1.25 13.93 6.73 7.36 8.75 61.82 11.48 19.92 58.46

Problem pln05 dwr05 pln06 pln11 dwr07 han08 dwr16 pln13 dwr17
Length 6/14 14/28 9/14 10/14 16/36 20/26 18/34 10/16 20/38

Standard GraphPlan
PlanGraph 38.6 57.9 44.0 54.8 N/A 39.9 N/A N/A N/A
Extraction 460.3 554.3 2660.2 3441.3 N/A 2056.2 N/A N/A N/A

Total 499.0 612.2 2704.2 3496.1 N/A 2096.1 N/A N/A N/A
GraphPlan with maintaining projection consistency for contribution problems

PlanGraph 40.0 57.5 44.1 56.1 99.08 40.9 204.9 86.3 369.8
Cliques 178.1 32.5 122.6 158.3 46.77 22.3 123.9 331.9 236.4

Extraction 12.2 12.3 29.1 37.5 49.95 376.7 121.5 53.9 992.4
Total 230.5 102.4 195.9 252.0 195.80 440.0 450.4 472.2 1598.7

All the planning problems which were used for our experiments are available at the web site:

http://ktiml.mff.cuni.cz/~surynek/research/iicai2007/. The planning domains are the same as that
used for empirical tests in [31]. They are Dock Worker Robots planning domain, Refueling Planes
planning domain and Towers of Hanoi planning domain. The used planning domains are described
in details in [31]. Several problems of varying difficulty of each planning domain were used for our

Solving Difficult Problems by Viewing them as Structured Dense Graphs 13

experiments. The planning problems were selected to cover the range from easy problems to rela-
tively hard problems. The lengths of solutions varied from 9 to 38 actions. Performance results on
some of these problems are shown in table 1.

The tests were performed on a machine with two AMD Opteron 242 processors (2×1600MHz)
and 1 GB of memory running Mandriva Linux 10.2. The implementation was compiled by the gcc
compiler version 3.4.3 with maximum optimization for the target machine (-O3 -mtune=opteron).
No parallel execution was used.

4.4 Analysis of Experimental Results

The version of the GraphPlan algorithm based on contribution problems and maintaining projection
consistency brings significant improvement on hard problems compared to the standard version.
Notice that the version of the algorithm with projection consistency must perform clique decompo-
sitions before the search can proceed. Although the clique decompositions represent an overhead on
easy problems the improvement in plan extraction with projection consistency overrides this disad-
vantage on hard problems.

Moreover, we can say that the larger the portion of time is spent by search the better the im-
provement by use of projection consistency is. It is also possible to observe that the projection con-
sistency is especially successful on problems with many interacting objects in the planning world
and high parallelism of actions (for example planes problems 11 and 13 and dock worker robots
problem 07). On the other hand if the interaction between objects in the planning world is low and
if there is a low parallelism, the advanced reasoning over problems of finding supports does not
represent any significant improvement (for example Hanoi tower problem 07 and 08).

5 Application in Solving Difficult SAT Instances

The proposed contribution problem and projection consistency can be also applied in solving Boo-
lean formula satisfaction problems. We will formally describe details of the process of SAT prob-
lem reformulation in order to apply projection consistency in this section.

An excellent performance breakthrough was done in solving SAT problems over past years.
Thanks to new algorithms and implementation techniques focused on real life SAT problems many
of the today’s benchmark problems [22, 27] are solved by state-of-the-art solvers [14, 16, 17] in
time proportional to the size of the input. It seems that the difficulty of many SAT benchmark prob-
lems consists in their size only. Lot of smaller benchmark problems are solved in real-time by to-
day’s state-of-the-art SAT solvers. The observation that can be deduced upon these facts is that
there is almost no chance to compete with best SAT solvers by own newly written SAT solver on
these problems. That is why we are concentrating on difficult instances of SAT problems only,
where the word difficult here means difficult for today’s state-of-the-art SAT solvers.

A very valuable set of difficult problems was collected by Aloul [2]. Although these problems are
small in length of the input formula they are difficult to be answered. The detailed discussion about
hardness of these problems is provided in [3]. However one of the aspects is that these problems are

14 Pavel Surynek, Lukáš Chrpa, and Jiří Vyskočil

mostly unsatisfiable (and this fact is well hidden in the problem). The solver cannot guess a solution
using its advanced techniques and heuristics in such case and must really perform some search in
order to prove that there is no solution. In the case of positive answer the satisfying valuation of
variables serves a witness (of small size) certifying existence of at least one solution. If the solver
obtains a witness, its task is complete. In contrast to this, there is no such small witness in the case
of negative answer so the search must be performed.

Let 1 1
imn i

i j jB x= == ∧ ∨ be the input Boolean formula in CNF form, where i
jx is a literal (variable or

its negation) for all possible i and j . A sub-formula 1
im i

j jx=∨ of the input formula B for every pos-
sible i is called a clause. The thi clause of the formula B will be denoted as iCL in the following
paragraphs. As it was mentioned in the introduction, the basic idea of the SAT problem reformula-
tion consists in viewing the input formula as an undirected graph with vertices and edges in which
the internal structure of the formula is captured in some way. To be concrete the graph will capture
pairs of conflicting literals and will be constructed in several stages.

5.1 Inference of Conflicting Literals

We construct an instance of the contribution problem from the input formula. The instance is con-
structed in stages. We start by the construction of an undirected graph 1 1 1(,)B B BG V E= which will
represent trivially conflicting literals. The graph will be called a trivial contribution graph. The
graph 1

BG then undergoes further inference process by which additional conflicts will be inferred.
Construction of the trivial contribution graph is simple. A vertex is introduced into the graph 1

BG
for each literal occurring in the formula B , that is 1

1 1
in m i

B ji jV x= == ∪ ∪ . The construction of the set of
edges 1

BE is also straightforward. An edge { , }i k
j lx x is introduced into the graph 1

BG if the literals i
jx

are k
lx are trivially conflicting, that is if () ()i k i k

j l j lx b x b x b x b= ∧ = ¬ ∨ = ¬ ∧ = for some Boolean
variable b .

The resulting graph is evidently sparse, since there are edges only between literals of the same
variable. As it is not a good starting point for our method, further inference mechanism for discov-
ering more conflicting pairs of literals (more edges for the graph) must be applied. This further in-
ference mechanism takes the already constructed graph 1

BG and augments it by adding new edges,
the result of this stage is a final contribution graph 2 2 2(,)B B BG V E= .

The process of construction of the graph 2
BG exploits techniques known from standard SAT reso-

lution approaches and from constraint programming [12] - unit propagation [13], arc-consistency
(AC) [24] and singleton arc-consistency (SAC) [7]. Before proceeding with the construction of the
graph 2

BG let us recall these notions. While doing this we will adapt notations of these concepts
slightly for the SAT domain to prepare them for our purposes. The following definitions assume the
input formula B in the CNF form and a corresponding contribution graph BG (for example the
graph 1

BG expressing trivial conflicts).

Definition 15 (Arc-consistency in SAT instance with respect to the contribution graph). Con-
sider two clauses 1

im i
i j jCL x== ∨ and 1

km k
k l lCL x== ∨ for , {1,2, , }i k n∈ … of the formula B . A literal i

jx
({1,2, , }ij m∈ …) from the clause iCL is supported by the clause kCL with respect to the given con-
tribution BG if there exists a literal k

lx ({1,2, , }kl m∈ …) from the clause kCL , such that the literals
i
jx and k

lx are not in a conflict with respect to the graph BG . An ordered pair of clauses (,)i kCL CL

Solving Difficult Problems by Viewing them as Structured Dense Graphs 15

of the formula B is called an arc in this context. An arc (,)i kCL CL for some , {1,2, , }i k n∈ … is
consistent (or arc-consistent) with respect to the contribution graph BG if all the literals of the
clause iCL are supported by the clause kCL with respect to the contribution graph BG . The formula
B is called arc-consistent with respect to the contribution graph BG if all the arcs (,)i kCL CL for all
, 1,2, ,i k n= … are arc-consistent with respect to the contribution graph BG .

Definition 16 (Singleton arc-consistency in SAT instance with respect to the contribution
graph). A literal k

lx ({1,2, , }kl m∈ …) from a clause kCL for {1,2, , }k n∈ … of the formula B is
singleton arc-consistent with respect to the given contribution graph BG if the formula obtained
from B by replacing the clause kCL by the literal k

lx (the resulting formula is
1
1 1 1 1() ()i im mk i k n i

i j j l i k j jx x x−
= = = + =∧ ∨ ∧ ∧ ∧ ∨) is arc-consistent with respect to the contribution graph BG .

Unsupported literals in the formula modified by replacing the clause kCL by the literal k

lx are in
conflict with the literal k

lx . This is quite intuitive, the selection of the literal k
lx to be assigned the

value true rules out some other literals. Hence these literals are in conflict with the selected literal
k
lx . Having singleton arc-consistency we are ready to infer new edges for the contribution graph.
The final contribution graph 2

BG is constructed from the trivial contribution graph 1
BG in the fol-

lowing way. Initially the graph 2
BG is same as the graph 1

BG , that is we start with the initialization
2 1

B BV V← and 2 1
B BE E← . Then for every literal corresponding to the vertex 2

Bv V∈ singleton arc-
consistency with respect to the trivial contribution graph 1

BG is enforced. If the consistency discov-
ers some unsupported literals, say literals 1 2, , , mz z z… , edges connecting vertices of y and iz are
added into the set of edges 2

BE for all 1,2, ,i m= … .
Finally, if a literal corresponding to the vertex 1

Bv V∈ occur in the clause 1
im i

j jx=∨ , the symbol i is
added to the set of contributions ()c v . The objective in the constructed contribution problem is rep-
resented by the set of integers {1,2, , }n… .

Having the contribution problem for the input Boolean formula we are ready to apply projection
consistency to reason about the problem.

5.2 Experimental Results for SAT Problems

We chose three state-of-the-art SAT solvers for comparison with our reformulation method. The
SAT solvers of our choice were zChaff [16], HaifaSAT [17] and MiniSAT [14] (we used the latest
available versions to the time of writing this paper). Our choice was guided by the results of several
last SAT competitions [22, 27] in which these solvers numbered among winners. The secondary
guidance was that complete source code (in C/C++) for all these solvers is available on web pages
of their authors. As we implemented our method in C++ too, this fact allowed us to compile all
source codes by the same compiler with the same optimization options which guarantees more equi-
table conditions for comparison (complete source code implementing our method in C++ can be
found at the web page: http://ktiml.mff.cuni.cz/~surynek/ software/ssat/ssat.html).

16 Pavel Surynek, Lukáš Chrpa, and Jiří Vyskočil

Table 2. Experimental comparison of three SAT solvers over selected difficult benchmark SAT instances.
We used the timeout of 10.0 minutes (600.00 seconds) for all the tests.

Instance Satisfiable
Number of
variables /
number of

clauses

MiniSAT
(seconds)

zChaff
(seconds)

HaifaSAT
(second)

chnl10_11 unsat 220/1122 34.30 7.54 > 600.00
chnl10_12 unsat 240/1344 101.81 9.11 > 600.00
chnl10_13 unsat 260/1586 200.30 11.47 > 600.00
chnl11_12 unsat 264/1476 > 600.00 33.49 > 600.00
chnl11_13 unsat 286/1472 > 600.00 187.08 > 600.00
chnl11_20 unsat 440/4220 > 600.00 329.57 > 600.00
hole6 unsat 42/133 0.01 0.01 0.01
hole7 unsat 56/204 0.09 0.04 0.02
hole8 unsat 72/297 0.49 0.23 0.94
hole9 unsat 90/415 3.64 1.46 478.16
hole10 unsat 110/561 39.24 7.53 > 600.00
hole11 unsat 132/738 > 600.00 32.36 > 600.00
hole12 unsat 156/949 > 600.00 372.18 > 600.00
fpga10_11 unsat 220/1122 44.77 12.58 > 600.00
fpga10_12 unsat 240/1344 119.26 33.82 > 600.00
fpga10_13 unsat 260/1586 362.24 76.15 > 600.00
fpga10_15 unsat 300/2130 > 600.00 274.84 > 600.00
fpga10_20 unsat 400/3840 > 600.00 546.00 > 600.00
fpga11_12 unsat 264/1476 > 600.00 55.70 > 600.00
fpga11_13 unsat 286/1742 > 600.00 237.54 > 600.00
fpga11_14 unsat 308/2030 > 600.00 > 600.00 > 600.00
fpga11_15 unsat 330/2340 > 600.00 > 600.00 > 600.00
fpga11_20 unsat 440/4220 > 600.00 > 600.00 > 600.00

Table 3. Experimental comparison of three SAT solvers with the method using projection-consistency over
selected difficult benchmark SAT instances. Again timeout of 10.0 minutes (600.00 seconds) for all the tests
was used.

Instance
Decided by
projection

consistency

Cliques
(count x

size)

Decision
(seconds)

Speedup
ratio w.r.t.
MiniSAT

Speedup
ratio w.r.t

zChaff

Speedup
ratio w.r.t
HaifaSAT

chnl10_11 yes 20 x 11 0.43 79.76 17.53 > 1395.34
chnl10_12 yes 20 x 12 0.60 169.68 8.51 > 1000.00
chnl10_13 yes 20 x 13 0.78 256.79 14.70 > 769.23
chnl11_12 yes 22 x 12 0.70 > 857.14 47.84 > 857.14
chnl11_13 yes 22 x 13 0.92 > 652.17 203.34 > 652.17
chnl11_20 yes 22 x 20 5.74 > 104.42 57.41 > 104.42
hole6 yes 6 x 7 0.01 1.0 1.0 1.0
hole7 yes 7 x 8 0.02 4.5 2.0 1.0
hole8 yes 8 x 9 0.04 12.25 5.75 23.5
hole9 yes 9 x 10 0.08 45.5 18.25 5977.00
hole10 yes 10 x 11 0.13 301.84 57.92 > 4615.38
hole11 yes 11 x 12 0.20 > 3000.00 161.8 > 3000.00
hole12 yes 12 x 13 0.30 > 2000.00 1240.6 > 2000.00
fpga10_11 yes 20 x 11 0.46 97.32 27.34 > 1304.34
fpga10_12 yes 20 x 12 0.64 186.34 52.84 > 937.50
fpga10_13 yes 20 x 13 0.84 431.23 90.65 > 714.28
fpga10_15 yes 20 x 15 1.39 > 431.65 197.72 > 431.65
fpga10_20 yes 20 x 20 4.72 > 127.11 115.67 > 127.11
fpga11_12 yes 22 x 12 0.76 > 789.47 73.28 > 789.47
fpga11_13 yes 22 x 13 1.01 > 594.05 235.18 > 594.05
fpga11_14 yes 22 x 14 1.30 > 461.53 > 461.53 > 461.53
fpga11_15 yes 22 x 15 1.67 > 359.28 > 359.28 > 359.28
fpga11_20 yes 22 x 20 5.96 > 100.67 > 100.67 > 100.67

Solving Difficult Problems by Viewing them as Structured Dense Graphs 17

Again, all the tests were run on a machine with two AMD Opteron 242 processors (1600 MHz)
with 1GB of memory under Mandriva Linux 10.2. Our method as well as the listed SAT solvers
were compiled by the gcc compiler version 3.4.3 with options provided maximum optimization for
the target testing machine (-O3 -mtune=opteron). As well as in the planning tests, no parallel proc-
essing was used.

The testing set consisted of several difficult unsatisfiable SAT instances. This set of benchmark
problems was collected by Aloul [2] and is provided at his research web page. Let us briefly say
that hard SAT instances often encodes so called pigeon hole principle. That is, the problem asks
whether it is possible to place 1n + pigeons in n holes without two pigeons being in the same hole.

For each benchmark SAT instance we measured the overall time necessary to decide its satisfi-
ability. The results are shown in table 2 and table 3. The speedup obtained by using our method
compared to a selected SAT solver is also shown.

5.3 Analysis of Experimental Results

As it is evident from our experimentation the proposed method brings significant improvement in
term of time necessary for decision of the selected difficult benchmark problems. The improve-
ments are in orders of magnitudes with respect to all tested state-of-the-art SAT solvers. It seems
that the improvement on selected benchmarks is exponential with respect to the best tested SAT
solver. The conclusion is that there is still room to improve SAT solvers. However the domain of
the improvement is more likely over difficult instances of SAT problems which are typically unsat-
isfiable.

We also tested our approach on SAT instances which are easy for the tested SAT solvers. These
instances are mostly satisfiable and our method based on projection consistency does not decide the
instance itself without search. In such situations our method does not provide competitive results.
So the question may be now what to do when we have a new problem of unknown difficulty. That
is shall we use our method or the SAT solver of our choice directly? It is an open question now.
One possible solution is to run both the method based on projection consistency and the SAT solver
in parallel (on a machine with more than one processor we may obtain an exponential speedup; on a
machine with only one processor we may obtain an exponential speedup at the expense of constant
slowdown). The second and more promising solution is to integrate projection consistency into the
SAT solver directly.

6 Related Works

Our work is a generalization of approaches proposed by Surynek in [29, 30]. Here we provide a
unified formalization of proposed method and show the method in a more general perspective.

The idea of exploiting structural information for solving problems is not new. There is lot of
works concerning this topic. Many of these works are dealing with methods for breaking symme-
tries [3, 5, 11]. We share the goal with these methods, which is to reduce the search space. However
we differ in the way how we are doing this. We are rather trying to infer what would happen if the

18 Pavel Surynek, Lukáš Chrpa, and Jiří Vyskočil

search over the problem proceeds in some way. And if that direction seems to be unpromising the
corresponding part of the search space is skipped. Symmetry breaking methods are rather trying no
to do the same work twice (or more times) by clever a transformation of the original problem.

Next, let us note that even the detection of cliques in the structure of the problem is not new. A
work dealing with a consistency based on cliques of inequalities was published by Sqalli and Freu-
der [28]. They use information about cliques to reach more global reasoning about the problem.
Another work dealing with the similar ideas is [15] in which the authors use graph structure of the
problem to transform it into another formulation based on global constraints which provide stronger
propagation than the original formulation.

GraphPlan algorithm and planning graphs were intensively studied after their first introduction in
[8]. Although GraphPlan algorithm is no longer considered to be state-of-the-art, the planning
graphs still provides a good structure for reasoning about step-optimal planning.

Kambhampati’s successful idea to formulate plan extraction from planning graph as CSP is pre-
sented in [19]. He evaluates the use of various constraint programming techniques and its impact on
the effectiveness of plan extraction. Several extensions of expressivity of planning graphs are de-
scribed in [20]. From our point of view the most interesting idea is to generalize mutex relations and
its propagation in planning graph. Another approach is presented in [23] by Lopez and Bacchus.
Again they model the planning problem in planning graph representation as CSP. The originality of
their technique consists in making transformations of the obtained CSP which uncovers additional
structural information about the problem.

7 Conclusions and Future Work

We proposed a novel consistency technique which we called projection consistency. The technique
is designed to prune the search space by early determining unpromising decisions. The idea behind
projection consistency is to disentangle the structural information hidden in the problem formula-
tion. This is done by viewing the problem as a graph in which complete sub-graphs are found by the
greedy algorithm.

We show two areas of application of our method in artificial intelligence - solving planning prob-
lems and Boolean formula satisfaction. Namely we use projection consistency as technique to prune
the search space during extraction of plans from planning graphs by the GraphPlan-style algorithm
and as a technique which helps to decide difficult SAT instances. In both areas of applications we
empirically showed the usefulness of the method. To be concrete, the improvement in terms of
overall solving time is in order of magnitudes when projection consistency is used in some way.
Although the demonstrated applications cover only a limited part of problem solving field in artifi-
cial intelligence, we hope that it may be useful in general.

There is a lot of future work. The first interesting issue is how to make projection consistency
stronger. This may be done by other types of projection goals. But it is also possible to do it by
slight modification of the definition of the supported vertex. Instead of the expression

1, (,) ()n
j j i jc C p p c v= ≠ ≥ −∑ in the definition 5 one can use 1, (, ()) ()n

j j i jc C p c v p c v= ≠ − < −∑ . Unfortunately
this change causes that monotonicity (proposition 2) no longer holds. Hence the complexity of
propagation algorithm increases. The solution may be a better propagation algorithm.

Solving Difficult Problems by Viewing them as Structured Dense Graphs 19

For future we plan to further tune the method to be able to cope better with the problems having
few edges in their contribution graphs. This is the case of certain difficult SAT instances. This may
be done by some alternative consistency technique instead of singleton arc-consistency.

Finally, the interesting research direction is some kind of a combination of existing symmetry
breaking methods and the proposed projection consistency. Since our method is a preprocessor for
SAT instance in fact, integration with existing SAT preprocessors (such as that used by MiniSAT
[14]) would be also interesting.

References

1. Ai-Chang, M., et al.: MAPGEN: Mixed-Initiative Planning and Scheduling for the Mars Exploration
Rover Mission. IEEE Intelligent Systems 19(1), 8-12, IEEE Press, 2004.

2. Aloul, F. A.: Fadi Aloul's Home Page - SAT Benchmarks. Personal Web Page.

http://www.eecs.umich.edu/~faloul/benchmarks.html, University of Michigan, USA, (March 2007).

3. Aloul, F. A., Ramani, A., Markov, I. L., Sakallah, K. A.: Solving Difficult SAT Instances in the Pres-

ence of Symmetry. Proceedings of the 39th Design Automation Conference (DAC-2002), 731-736,
USA, ACM Press, 2002.

4. Allen, J., Hendler, J., Tate, A. (editors): Readings in Planning. Morgan Kaufmann Publishers, 1990.

5. Benhamou, B., Sais, L.: Tractability through Symmetries in Propositional Calculus. Journal of Auto-

mated Reasoning, volume 12-1, 89-102, Springer-Verlag, 1994.

6. Bernard, D. et al.: Remote Agent Experiment. Deep Space 1 Technology Validation Report. NASA

Ames and JPL report, 1998.

7. Bessière, C., Debruyne, R.: Optimal and Suboptimal Singleton Arc Consistency Algorithms. Proceed-

ings of the 19th International Joint Conference on Artificial Intelligence (IJCAI-2005), 54-59, Canada,
Professional Book Center, 2005.

8. Blum, A. L., Furst, M. L.: Fast Planning through planning graph analysis. Artificial Intelligence 90, 281-

300, AAAI Press, 1997.

9. Boeing Co.: Integrated Defense Systems - X-45 J-UCAS. http://www.boeing.com/defense-

space/military/x-45/index.html, Boeing Co., USA, October 2006.

10. Cook, S. A.: The Complexity of Theorem Proving Procedures. Proceedings of the 3rd Annual ACM

Symposium on Theory of Computing, 151-158, USA, ACM Press, 1971.

11. Crawford, J. M., Ginsberg, M. L., Luks, E. M., Roy, A.: Symmetry-Breaking Predicates for Search

Problems. Proceedings of the 5th International Conference on Principles of Knowledge Representation
and Reasoning (KR-96), 148-159, Morgan Kaufmann, 1996.

12. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, 2003.

20 Pavel Surynek, Lukáš Chrpa, and Jiří Vyskočil

13. Dowling, W., Gallier, J.: Linear-time algorithms for testing the satisfiability of propositional Horn for-

mulae. Journal of Logic Programming, 1(3), 267-284, Elsevier, 1984.

14. Eén, N., Sörensson, N.: The MiniSat Page. Research Web Page. http://www.cs.chalmers.se/

Cs/Research/FormalMethods/MiniSat/Main.html, Chalmers University, Sweden, (March 2007).

15. Frisch, A. M., Miguel, I., Walsh, T.: CGRASS: A System for Transforming Constraint Satisfaction

Problems. Barry O'Sullivan (Editor): Recent Advances in Constraints, 15-30, LNCS 2627, Springer-
Verlag, 2003.

16. Fu, Z., Marhajan, Y., Malik, S.: zChaff. Research Web Page. http://www.princeton.edu/ ~chaff/

zchaff.html, Princeton University, USA, (March 2007).

17. Gershman, R., Strichman, O.: HaifaSat – a new robust SAT solver. Research Web Page.

http://www.cs.technion.ac.il/~gershman/HaifaSat.htm, Technion Haifa, Israel, (March 2007).

18. Ghallab, M., Nau, D. S., Traverso, P.: Automated Planning: theory and practice. Morgan Kaufmann

Publishers, 2004.

19. Kambhampati, S.: Planning Graph as a (Dynamic) CSP: Exploiting EBL, DDB and other CSP Search

Techniques in GraphPlan. Journal of Artificial Intelligence Research 12 (JAIR-12), 1-34, AAAI Press,
2000.

20. Kambhampati, S., Parker, E., Lambrecht, E.: Understanding and Extending GraphPlan. In Proceedings

of 4th European Conference on Planning (ECP-97), 260-272, LNCS 1348, Springer-Verlag, 1997.

21. Kautz, H. A., Selman, B.: Planning as Satisfiability. Proceedings of the 10th European Conference on

Artificial Intelligence (ECAI-92), 359-363, Austria, John Wiley and Sons, 1992.

22. Le Berre, D., Simon, L.: SAT Competition 2005. Competition Web Page,

http://www.satcompetition.org/2005/, Scotland, (March 2007).

23. Lopez, A., Bacchus, F.: Generalizing GraphPlan by Formulating Planning as a CSP. In Proceedings of

the 18th International Joint Conference on Artificial Intelligence (IJCAI-2003), 954-960, Morgan Kauf-
mann Publishers, 2003.

24. Mackworth, A. K.: Consistency in Networks of Relations. Artificial Intelligence 8, 99-118, AAAI Press,

1977.

25. Nam, G. J., Sakallah, K. A., Rutenbar, R.: A New FPGA Detailed Routing Approach via Search-Based

Boolean Satisfiability. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, volume 21-6, 674-684, IEEE Press, 2002.

26. Régin, J. C.: A Filtering Algorithm for Constraints of Difference. In Proceedings of the 12th National

Conference on Artificial Intelligence (AAAI-94), 362-367, AAAI Press, 1994.

27. Sinz, C.: SAT-Race 2006. Competition Web Page, http://fmv.jku.at/sat-race-2006/, USA, (March 2007).

Solving Difficult Problems by Viewing them as Structured Dense Graphs 21

28. Sqalli, M. H., Freuder, E. C.: Inference-Based Constraint Satisfaction Supports Explanation. Proceed-
ings of the 13th National Conference on Artificial Intelligence and 8th Innovative Applications of Arti-
ficial Intelligence Conference (AAAI-96 / IAAI-96), 318-325, AAAI Press / The MIT Press, 1996.

29. Surynek, P.: Projection Global Consistency: An Application in AI Planning. Technical report, ITI Se-

ries, 2007-333, http://iti.mff.cuni.cz/series, Charles University, Prague, Czech Republic, 2007.

30. Surynek, P.: Solving Difficult SAT Instances Using Greedy Clique Decomposition. Accepted to 7th

Symposium on Abstraction, Reformulation, and Approximation (SARA-2007), Canada, 2007.

31. Surynek, P.: Maintaining Arc-consistency over Mutex Relations in Planning Graphs during Search. Ac-

cepted to the 20th FLAIRS conference, Key West, Florida, USA, 2007. Also available as technical re-
port in ITI Series, http://iti.mff.cuni.cz/series/index.html, Charles University , Prague, Czech Republic,
2007.

32. Velev, M. N., Bryant, R. E.: Effective Use of Boolean Satisfiability Procedures in the For-mal

Verification of Superscalar and VLIW Microprocessors. Journal of Symbolic Computation (JSC),
volume 35-2, 73-106, Elsevier, 2003.

