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Abstract

The matching graph M(G) of a graph G has a vertex set of all
perfect matchings of G, with two vertices being adjacent whenever
the union of the corresponding perfect matchings forms a Hamiltonian
cycle.

We prove that the matching graph M(Qd) of the d-dimensional
hypercube is bipartite and connected for d ≥ 4. This proves Kreweras’
conjecture [2] that the graph Md is connected, where Md is obtained
from M(Qd) by contracting all vertices of M(Qd) which correspond
to isomorphic perfect matchings.

1 Introduction

A set of edges P ⊆ E of a graph G = (V, E) is matching if every vertex of G

is incident with at most one edge of P . If a vertex v of G is incident with an
edge of P , then v is covered by P , otherwise v is uncovered by P . A matching
P is perfect if every vertex of G is covered by P .

The d-dimensional hypercube (shortly d-cube) Qd is a graph whose vertex
set consists of all binary vectors of length d, with two vertices being adjacent
whenever the corresponding vectors differ at exactly one coordinate. The
binary vectors are labelled by the set [d] := {1, 2, . . . , d}.
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It is well known that Qd is Hamiltonian for every d ≥ 2. This statement
can be traced back to 1872 [4]. Since then the research on Hamiltonian cycles
in d-cubes satisfying certain additional properties has received considerable
attention. An interested reader can find more details about this topic in the
survey of Savage [3]. Dvořák [5] showed that every set of at most 2d−3 edges
of Qd (d ≥ 2) that induces vertex-disjoint paths is contained in a Hamiltonian
cycle. Dimitrov et al. [6] proved that for every perfect matching P of Qd

(d ≥ 3) there exists some Hamiltonian cycle that faults P , if and only if P

is not a set of all edges of one dimension of Qd.
The matching graph M(G) of a graph G on even number of vertices has

a vertex set of all perfect matchings of G, with two vertices being adjacent
whenever the union of the corresponding perfect matchings forms a Hamil-
tonian cycle of G. There is a natural one-to-one correspondence between
Hamiltonian cycles of G and edges of M(G). The problem of determin-
ing h(d), the number of Hamiltonian cycles of d-cube, is a well-known open
problem. Douglas [7] presents upper and lower bounds

(

d−1
∏

i=5

i2
d−i−1

)

d(1344)2d−4

22d−2
−1−d ≤ h(d) ≤

(

d(d − 1)

2

)2d−1
−2d−1−log2(d)

.

We are interested in structural properties of M(Qd).
We say that two perfect matchings P and R are isomorphic if there ex-

ists an isomorphism f : V (Qd) → V (Qd) such that f(u)f(v) ∈ R for every
edge uv ∈ P . This relation of isomorphism is an equivalence and it fac-
tors the set of all perfect matchings. Kreweras [2] considered a graph Md

which is obtained from M(Qd) by contracting all vertices of each class of
this equivalence.

Kreweras [2] proved by inspection of all perfect matchings that the graphs
M3 and M4 are connected and he conjectured that the graph Md is connected
for every d ≥ 3. It is more general to also ask whether the graph M(Qd) is
connected since the connectivity of M(Qd) implies the connectivity of Md.
The answer is negative for d = 3 (see Figure 1). However, we prove that this
is the only counter-example.

We also prove that the matching graph M(Kn,n) of the complete bipartite
graph Kn,n is bipartite for even n, which implies that M(Qd) is bipartite.
This is an interesting property which helps us to find a walk in M(Qd) of
even length.
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Figure 1: The matching graph M(Q3). The circles and bold lines are vertices
and edges of M(Q3).

2 Perfect matchings extend to Hamiltonian

cycles

Let K(G) be the complete graph on the vertices of a graph G. If G is bipartite
and connected, then let B(G) be complete bipartite graph with same color
classes as G. Let P be a perfect matching of K(Qd). Let Γ(P ) be the set
of all perfect matchings R of Qd such that P ∪ R is a Hamiltonian cycle of
K(Qd). Note that if P is a perfect matching of Qd and R ∈ Γ(P ), then P ∪R

is a Hamiltonian cycle of Qd, so PR is an edge of M(Qd).
Kreweras conjectured [2] that every perfect matching in the d-cube with

d ≥ 2 extends to a Hamiltonian cycle. We [1] proved following stronger form
of this conjecture.

Theorem 1 ([1]). For every perfect matching P of K(Qd) the set Γ(P ) is
non-empty where d ≥ 2.

We say that an edge uv of K(Qd) crosses a dimension α ∈ [d] if vertices
u and v differ in dimension α, otherwise uv avoids α. A perfect matching P

of K(Qd) crosses α if P contains an edge crossing α, otherwise P avoids α.
Let Iα

d be the perfect matching of Qd that contains all edges in dimension
α ∈ [d]. Observe that a perfect matching P of Qd crosses α if and only if
P ∩ Iα

d 6= ∅.
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Proposition 2. Let P be a perfect matching of K(Qd) avoiding β ∈ [d] and
e ∈ I

β
d . There exists R ∈ Γ(P ) containing e.

Proof. The proof proceeds by induction on d. The statement holds for d = 2.
Let us assume that the statement is true for every k-cube Qk with 2 ≤ k ≤
d − 1 and let us prove it for d.

Clearly, P crosses some α ∈ [d] \ {β}. We divide the d-cube Qd by
dimension α into two (d − 1)-subcubes Q1 and Q2 so that e ∈ E(Q1). Let
Ki := K(Qi) and P i := P ∩ E(Ki) for i ∈ {1, 2}.

The set of edges P 1 is a matching of K1 which is not perfect since P

crosses α. Let M be the set of vertices of K1 that are uncovered by P 1. The
size of M is even. If we divide Q1 by dimension β, then numbers of vertices
of M on both subcubes of Q1 are even because P 1 avoids β. We choose an
arbitrary perfect matching S1 on vertices of M such that S1 avoids β. The
perfect matching P 1∪S1 of K1 avoids β. By induction there exists a perfect
matching R1 ∈ Γ(P 1 ∪ S1) of Q1 containing e. Let

S2 :=

{

xy ∈ E(K2)

∣

∣

∣

∣

∃x′, y′ ∈ V (Q1) such that xx′, yy′ ∈ P and
there exists a path between x′ and y′ of P 1 ∪ R1

}

. (1)

Observe that P 1 ∪ R1 is a partition of Q1 into vertex-disjoint paths be-
tween vertices uncovered by P 1. For every path between x′ and y′ of this
partition there exist vertices x and y of Q2 such that xx′, yy′ ∈ P . Thus, the
set of edges S2 is a matching of K2. Moreover, the set of edges P 2 ∪ S2 is
a perfect matching of K2 because S2 covers each vertex covered by P but
not by P 2. Hence, there exists a perfect matching R2 ∈ Γ(P 2 ∪ S2) of Q2 by
Theorem 1. Clearly, R := R1 ∪ R2 is a perfect matching of Qd containing e.
Finally, R ∈ Γ(P ) by Lemma 3.

Lemma 3. Let P be a perfect matching of K(Qd) crossing α ∈ D. Let the
d-cube Qd be divided into two (d − 1)-subcubes Q1 and Q2 by dimension α.
Let Ki := K(Qi) and P i := P ∩ E(Ki) for i ∈ {1, 2}. Let S1 be a perfect
matching on vertices of K(Q1) uncovered by P 1. Let R1 ∈ Γ(P 1 ∪ S1). Let
S2 be given by Equation (1). Let R2 ∈ Γ(P 2 ∪ S2) and R := R1 ∪ R2. Then
R ∈ Γ(P ).

Proof. We prove that P ∪ R is a Hamiltonian cycle of K(Qd). Suppose on
the contrary that C is a cycle of P ∪ R which is not Hamiltonian. Since P

crosses α, both S1 and S2 are non-empty sets. Because P i ∪ Si ∪ Ri is a
Hamiltonian cycle of Ki, whole cycle C cannot belong to Ki, for i ∈ {1, 2}.
So C has edges in both K1 and K2. Now, we shorten every path xx′ · · · y′y

such that x, y ∈ V (Q2); x′, y′ ∈ V (Q1); xx′, yy′ ∈ P and x′ · · · y′ is a path of
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P 1 ∪R1 by the edge xy ∈ S2. Hence, we obtain a cycle C ′ of (P 2 ∪S2)∪R2.
We prove that C ′ does not contain a vertex of K2 which is a contradiction
because (P 2 ∪ S2) ∪ R2 is a Hamiltonian cycle of K2.

If C does not contain a vertex u of K2, then C ′ also does not contain u.
Suppose that C does not contain a vertex v of K1. Let x′ and y′ be the end
vertices of the path of P 1 ∪ R1 that contains v. Let xx′, yy′ ∈ P . Observe
that x, y ∈ V (K2) and xy ∈ S2. Hence, C ′ does not contain x and y.

Observe that the perfect matching R obtained in Lemma 3 avoids dimen-
sion α. Interested reader may ask whether there exists a perfect matching R

in Theorem 1 that avoids given set of dimension A ⊂ [d]. Clearly, the graph
on edges of P and allowed edges of Qd (i.e. edges of Qd that avoid every
dimension of A) must be connected. Gregor [8] proved that this is also a
sufficient condition which implies following lemma.

Lemma 4. For every perfect matching P of K(Qd) and α ∈ [d] there exists
R ∈ Γ(P ) avoiding α if and only if P crosses α where d ≥ 2.

3 Bipartitness of M(Kn,n)

There is a natural one-to-one correspondence between perfect matchings of
the complete bipartite graph Kn,n and permutations on a set of size n. A
permutation π is even if n − k is even where k is a number of cycles of
π, otherwise π is odd. It is well-known that π1 ◦ π2 is even if and only if
permutations π1 and π2 have same parity. Hence, the inverse permutation
π−1

2 has same parity as π2.
Let c(P ) be the number of components of the graph on a set of edges P .

Recall that B(G) is the complete bipartite graph with same color classes as
a bipartite and connected graph G.

Let P1 and P2 be perfect matchings of Kn,n and π1 and π2 be their cor-
responding permutations. Observe that c(P1 ∪ P2) is equal to the number of
cycles of π1 ◦ π−1

2 . If n is even and P1 ∪ P2 is a Hamiltonian cycle of Kn,n,
then π1 and π2 have different parity. Hence, M(Kn,n) is bipartite for n even.
The matching graph M(Qd) is also bipartite because M(Qd) is a subgraph
of M(B(Qd)) which is isomorphic to M(K2d−1,2d−1).

Above discussion proves following theorem.

Theorem 5. The matching graphs M(Qd) and M(B(Qd)) are bipartite.

We did not define which perfect matchings of B(Qd) are even and odd.
But we know that perfect matchings P1 and P2 of B(Qd) belong to same
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color class of M(B(Qd)) if and only if c(P1 ∪ P2) is even. Hence, we fix one
perfect matching of B(Qd) to be even.

Let us recall that Iα
d is the perfect matching of Qd that contains all edges

in dimension α ∈ [d]. We simply count that c(Iα
d ∪ I

β
d ) = 2d−2 for every two

different dimensions α, β ∈ [d] because the graph on edges Iα
d ∪ I

β
d consists of

2d−2 independent cycles of size 4. Hence, perfect matchings Iα
d and I

β
d belong

to same color class of M(B(Qd)) for d ≥ 3. We call a perfect matching P of
B(Qd) even if c(P ∪ I1

d) is even, otherwise odd where d ≥ 3.

4 Walks in M(Qd)

We will prove that M(Qd) is connected by induction on d. Therefore, we
need to know how we can make a walk in M(Qd) from a walk in M(Qd−1).
In this section we present two lemmas which help us.

Let P 0 and P 1 be perfect matchings of Qd−1. We denote by 〈P 0|P 1〉
the perfect matching of Qd containing P i in the (d − 1)-subcube of vertices
having i in coordinate d for i ∈ {0, 1}.

Lemma 6. Let P1, P2, P3, R1, R2, and R3 be perfect matchings of Qd−1 such
that P1∪P2, P2∪P3, R1∪R2, and R2∪R3 are Hamiltonian cycles of Qd−1. If
P2∩R2 6= ∅, then there exists a perfect matching S of Qd such that 〈P1|R1〉∪S

and S ∪ 〈P3|R3〉 are Hamiltonian cycles of Qd. Moreover, S crosses the
dimension d and every dimension that is crossed by P2 or R2.

Proof. Let uv ∈ P2 ∩ R2. Let ui be the vertex of Qd obtained from u by
appending i into dimension d where i ∈ {0, 1}. Vertices v0 and v1 are defined
similarly.

Let S := (〈P2|R2〉 \ {u0v0, u1v1}) ∪ {u0u1, v0v1}. The graph on edges
〈P1|R1〉 ∪ 〈P2|R2〉 consists of two cycles covering all vertices of Qd. These
cycles are joined together in 〈P1|R1〉∪S. Hence, 〈P1|R1〉∪S is a Hamiltonian
cycle of Qd. Similarly, S ∪ 〈P3|R3〉 is a Hamiltonian cycle of Qd.

The edge u0u1 crosses dimension d so S also crosses d. Let us consider
β ∈ [d − 1] which is crossed by P2 or R2. Without lost of generality we
suppose that P2 crosses β. There exist at least 2 edges crossing β in P2. It
can happen that the edge u0v0 is one of them so at least one edge crossing β

remains in S.

Let P be a perfect matching of K(Qd) and A ⊆ [d]. We say that P

crosses A if P crosses α for every α ∈ A.

Lemma 7. Let P1, P2, P3, and R1 be perfect matchings of Qd−1 such that
P1 ∪ P2 and P2 ∪ P3 are Hamiltonian cycles of Qd−1. Let α, β ∈ [d − 1],
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α 6= β. If P2 crosses [d−1]\{α} and R1 avoids β, then there exists a perfect
matching S of Qd such that 〈P1|R1〉 ∪ S and S ∪ 〈P3|R1〉 are Hamiltonian
cycles of Qd and S crosses [d] \ {α}.

Proof. Let e ∈ P2∩I
β
d−1

. There exists R2 ∈ Γ(R1) containing e by Proposition
2. If we apply Lemma 6 on P1, P2, P3, R1, R2, and R1, then we obtain a perfect
matching S which satisfies the requirements of this lemma.

5 Base of induction

Let us recall that Md is obtained from M(Qd) by contracting all vertices
of M(Qd) whose corresponding perfect matchings are isomorphic. Let P

and R be perfect matchings of Qd. If there exists a walk between vertices
representing P and R in M(Qd), then the length of the shortest one is
d(P, R), otherwise d(P, R) is infinity. Hence, d(P, R) < ∞ means that P and
R belong to same component of M(Qd).

The proof, that M(Qd) is connected, proceeds by induction on d. We
present a base of this induction in this section. We showed that M(Q3) has
3 components (see Figure 1) so the induction starts from d = 4. Kreweras [2]
proved that M4 is connected (see Figure 3). We prove that if Md is connected
and d ≥ 4, then M(Qd) is connected. Hence, M(Q4) is connected.

First, we present a simple lemma.

Perfect matching S0

4
= Iα

4

Perfect matching S6

4
= I

β
4

Perfect matching S1

4
Perfect matching S2

4

Perfect matching S3

4

Perfect matching S4

4
Perfect matching S5

4

Figure 2: The walk between perfect matchings Iα
4 and I

β
4 in M(Q4).

Lemma 8. If d ≥ 4, then d(Iα
d , I

β
d ) ≤ 6 for every α, β ∈ [d], α 6= β.
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Proof. The proof proceeds by induction on d. The walk between Iα
4 and I

β
4

is drawn on Figure 2.
Let Iα

d−1
= S0

d−1
, S1

d−1
, S2

d−1
, S3

d−1
, S4

d−1
, S5

d−1
, S6

d−1
= I

β
d−1

be a walk in
M(Qd−1). Let Si

d :=
〈

Si
d−1

|Si
d−1

〉

for even i. For odd i let Si
d be given by

Lemma 6 where P1 = R1 := Si−1

d−1
, P2 = R2 := Si

d−1
, and P3 = R3 := Si+1

d−1
.

Then Iα
d = S0

d , S
1
d , S

2
d , S

3
d , S

4
d , S

5
d , S

6
d = I

β
d is a walk in M(Qd).

Let us recall that perfect matchings P and R are isomorphic if there
exists an isomorphism f : V (Qd) → V (Qd) such that f(u)f(v) ∈ R for edge
uv ∈ P . This relation of isomorphism is an equivalence on the set of all
perfect matching. Let [P ] be the equivalence class containing P . Observe
that [Id] := {Iα

d | α ∈ [d]} is an equivalence class. If there exists a walk
between [P ] and [R] of Md, then the length of the shortest one is d([P ], [R]),
otherwise d([P ], [R]) is infinity.

Proposition 9. If d ≥ 4 and Md is connected, then M(Qd) is connected.

Proof. We prove that vertices {P ∈ V (M(Qd)) | d([P ], [Id]) ≤ k} belong into
one component of M(Qd) by induction on k. This claim holds for k = 0 by
Lemma 8.

Let P be a perfect matching of Qd such that d([P ], [Id]) = k. There exists
a perfect matching R of Qd such that d([R], [Id]) = k−1 and d([P ], [R]) = 1.
Hence, there exists R′ ∈ Γ(P ) isomorphic to R. By induction d(Id, R

′) < ∞.
Therefore, d(Id, R) < ∞.

6 Induction step

We define a set of perfect matchings Z(d, k, α) of Qd by following induction
on d, where d ≥ k ≥ 3 and α ∈ [d].

Definition 10. Let Z(d, d, α) contains only Iα
d . The set Z(d, k, α), where

d > k ≥ 3 and α ∈ [d], is the set of all perfect matchings of Qd in the form
〈P1|P2〉, where P1 ∈ Z(d − 1, k, α) and P2 is an even perfect matching of
Qd−1 avoiding some β ∈ [d − 1] \ {α}.

Observe that every P ∈ Z(d, k, α) contains Iα
k in some k-subcube Qk.

We prove that the graph M(Qd) is connected so we need to show that there
exists a perfect matching I of Qd such that for every perfect matching P of Qd

there exists a walk between P and I in M(Qd). Lemma 8 says that perfect
matchings [Id] belong to common component of M(Qd) so it is sufficient to
find a walk from P to an arbitrary one of [Id]. Without lost of generality
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Type 4400, number 12 Type 6200, number 48 Type 4400, number 24

Type 2222, number 48 Type 4220, number 96 Type 2222, number 32

Type 4220, number 48

Type 8000, number 4

Figure 3: The graph M4. For every equivalence class [P ] of isomorphism
there is a frame which contains P . Four numbers of a type above frame are
numbers of edges crossing each dimension. Above each frame there is also
number of perfect matchings which are contracted to the equivalence class.

we assume that P is odd by Theorems 1 and 5. We find this walk in two
steps: First, we find a walk from P to a perfect matching of Z(d, k, α) for
some α ∈ [d] and k, d ≥ k ≥ 3. Next, we find walks from Z(d, k, α) to
Z(d, k + 1, α) so by induction on k we obtain walks to Z(d, d, α) which
contains only Iα

d by definition.
Since Qd is bipartite we call vertices of one color class black and the other

white.

Lemma 11. For every odd perfect matching P of B(Qd) there exists Y ∈
Z(d, k, α) for some α ∈ [d] and k, d ≥ k ≥ 3, such that d(P, Y ) ≤ 3.

Proof. We prove by induction on d that for every perfect matching P of
B(Qd) there exist perfect matchings R, X and Y of Qd such that P ∪R, R∪X

and X∪Y are Hamiltonian cycles and X crosses [d]\{α} and Y ∈ Z(d, k, α).
First, we prove the statement for d = 3. Let P be an odd perfect matching

of B(Q3). Therefore, c(P ∪ Iα
3 ) is 1 or 3 for every α ∈ [3]. If there exists

α ∈ [3] such that c(P ∪Iα
3 ) = 1, then we choose R := Y := Iα

3 and X ∈ Γ(R).
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We prove that there exists α ∈ [3] such that c(P ∪ Iα
3 ) = 1. Suppose on

the contrary that c(P ∪ Iα
3 ) = 3 for every α ∈ [3]. The graph on edges P ∪ Iα

3

consists of two common edges and one cycle of size 4. Perfect matchings of
[I3] are pairwise disjoint and P has two common edges with each of them. It
is a contradiction because P has only 4 edges.

In the induction step we need to have at least 4 edges of P that cross a
common dimension. Such dimension exists for every perfect matching P of
B(Qd) if d ≥ 5 by the Pigeonhole principle. Every perfect matching P of
B(Q4) has 8 edges. If P contains an edge crossing at least two dimensions,
then we use the Pigeonhole principle again.

A perfect matching P of Q4 is balanced if it has 2 edges in every dimension.
Luckily, Kreweras [2] proved that there are 8 perfect matchings of Q4 up-to
isomorphism and only two of them are balanced; see Figure 3. Check that
the balanced perfect matchings S3

4 drawn on Figure 2 and R1 drawn of Figure
4 satisfy the requirements of this statement.

Now, we present the induction step. Let β ∈ [d] such that P has at
least 4 edges crossing β. Without lost of generality we assume that β = d.
We divide Qd into two (d − 1)-subcubes Q1 and Q2 by dimension β. Let
Bi := B(Qi) and P i := P ∩E(Bi) for i ∈ {1, 2}. Let M be the set of vertices
of B1 that are uncovered by P 1. We know that |M | ≥ 4. Moreover, M has
same number of black vertices as white ones.

Let b1 and b2 be two different black vertices of M and w1 and w2 be
two different white vertices of M . Let S ′ be a matching of B1 covering
M \ {b1, b2, w1, w2}. We have two ways how to extend S ′ to be matching S1

of B1 covering M : We can insert edges {b1w1, b2w2} or {b1w2, b2w1}. Those
two ways give us two perfect matchings P 1∪S1 of B1 having different parity.
Of course, we choose the way that gives us odd perfect matching P 1 ∪ S1.

Let R1, X1 and Y 1 be perfect matchings of Q1 given by induction – (P 1∪
S1)∪R1, R1 ∪X1 and X1 ∪ Y 1 are Hamiltonian cycles of B1 and X1 crosses
[d − 1] \ {α} and Y 1 ∈ Z(d − 1, k, α). Hence, R1 is even by Theorem 5. Let
S2 be given by Equation (1).

We prove that P 2 ∪ S2 is odd. Let R̄2 ∈ Γ(P 2 ∪ S2) by Theorem 1. Let
R̄ := R1∪R̄2. By Lemma 3 holds R̄ ∈ Γ(P ) so R̄ is even by Theorem 5. Also
R̄2 is even because R1 and R̄ are even. Hence, P 2 ∪ S2 is odd by Theorem
5. Moreover, P 2 ∪ S2 6= Iα

d−1
.

Hence, the perfect matching P 2 ∪ S2 crosses some γ ∈ [d − 1] \ {α} and
there exists R2 ∈ Γ(P 2 ∪ S2) avoiding γ by Lemma 4. Let R := R1 ∪ R2.
Therefore, R ∈ Γ(P ) by Lemma 3 and R is even by Theorem 5. Because R1

is even so R2 is even. We apply Lemma 7 on R1, X1, Y 1 and R2 to obtain a
perfect matching X such that 〈R1|R2〉∪X and X ∪〈Y 1|R2〉 are Hamiltonian
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cycles of Qd and X crosses [d] \ {α}. Finally, Y := 〈Y 1|R2〉 ∈ Z(d, k, α) by
definition.

Perfect matching R1

Perfect matching R3

Perfect matching R2

Perfect matching R4 = Iα
4

= S

Perfect matching R0 = P = [Iα
3
|Iγ

3
]

Figure 4: A walk between P ∈ Z(4, 3, α) and Iα
4 .

Lemma 12. Let P ∈ Z(d, k, α) where 3 ≤ k < d and α ∈ [d]. If M(Qk) is
connected or k = 3, then there exists S ∈ Z(d, k + 1, α) such that d(P, S) <

∞.

Proof. We prove by induction on d that for every P ∈ Z(d, k, α) there exists
a walk P = R0, R1, . . . , Rn = S in M(Qd) of even length such that Rl crosses
[d] \ {α} for every odd l and S ∈ Z(d, k + 1, α). The base of this induction
is for d = k + 1.

By definition of Z(d, k, α) we divide P into perfect matchings P 1 and P 2

such that P = 〈P 1|P 2〉 and P 1 ∈ Z(d − 1, k, α) and P 2 is an even perfect
matching of Qd−1 avoiding some β ∈ [d − 1] \ {α}.

First, we present the base of induction for d = 4, so k = 3. By definition
P 1 = Iα

3 and P 2 is even. There are two perfect matchings of Q3 up-to
isomorphism with different parity; see Figure 1. Hence, P 2 = I

γ
3 for some

γ ∈ [3]. If P 2 = Iα
3 , then P = Iα

4 which belongs to Z(4, 4, α) by definition.
Otherwise, the walk on Figure 4 satisfies requirements of this lemma.

Now, we present the base of the induction for k ≥ 4 and k + 1 = d. In
that case P 1 = Iα

k . There exists a walk P 2 = R0, R1, . . . , Rn = Iα
k on M(Qk)

of even length because M(Qk) is connected and bipartite and P 2 is even.
Let R′

l := 〈P 1|Rl〉 for even l. Clearly, R′

n ∈ Z(d, k+1, α) because R′

n = Iα
k+1

.
Let l be odd. Since Rl is odd, it holds Rl 6= Iα

k . We choose an edge
el ∈ Rl \ Iα

k . By Proposition 2 there exists Zl ∈ Γ(Iα
k ) containing el. The

perfect matching Zl crosses [k] \ {α} by Lemma 4. We apply Lemma 6
on Rl−1, Rl, Rl+1, I

α
k , Zl, and Iα

k to obtain a perfect matching R′

l. The walk
P = R′

0, R
′

1, . . . , R
′

n = Iα
k+1

satisfies the requirements.
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Finally, we present the induction step for k ≥ 3 and k + 1 < d. By
induction there exists a walk P 1 = R0, R1, . . . , Rn = S1 in M(Qd−1) of even
length such that S1 ∈ Z(d − 1, k + 1, α) and Rl crosses [d − 1] \ {α} for
every odd l. Let R′

l := 〈Rl|P
2〉 for even l. For odd l we apply Lemma 7 on

Rl−1, Rl, Rl+1 and P 2 to obtain a perfect matching R′

l of Qd. Now, the walk
P = R′

0, R
′

1, . . . , R
′

n = S satisfies the requirements and S ∈ Z(d, k+1, α).

Corollary 13. Let P ∈ Z(d, k, α) where 3 ≤ k ≤ d and α ∈ [d]. If M(Ql)
is connected for every l ∈ {4, 5, . . . , d − 1}, then d(P, Iα

d ) < ∞.

Proof. The proof proceeds by induction on d − k. If d = k, then P = Iα
d

by definition of Z(d, k, α). Let 3 ≤ k < d. By Lemma 12 there exists
S ∈ Z(d, k + 1, α) such that d(P, S) < ∞. By induction d(S, Iα

d ) < ∞.
Hence, d(P, Iα

d ) < ∞.

Theorem 14. The matching graph M(Qd) is connected for d ≥ 4.

Proof. The proof proceeds by induction on d. Kreweras [2] proved that the
graph M4 is connected; see Figure 3. Hence, the graph M(Q4) is connected
by Proposition 9 and the statement holds for d = 4. Let us assume that the
graph M(Ql) is connected for every l with 4 ≤ l ≤ d − 1. Let us prove that
for some β ∈ [d] and for every perfect matching P of Qd holds d(P, I

β
d ) < ∞.

If P is even, then we choose R ∈ Γ(P ) by Theorem 1 which is odd
by Theorem 5. Otherwise, we simply consider R := P . By Lemma 11
there exists S ∈ Z(d, k, α) such that d(R, S) ≤ 3. By Corollary 13 it holds
d(R, Iα

d ) < ∞ and d(Iα
d , I

β
d ) ≤ 6 by Lemma 8.

Corollary 15. The graph Md is connected for d ≥ 3.
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