Connectivity of Matching graph of Hypercube

Jiří Fink^{*}

Department of Applied Mathematics Faculty of Mathematics and Physics Charles University Malostranské náměstí 25 118 00 Prague 1 E-mail: fink@atrey.karlin.mff.cuni.cz

Abstract

The matching graph $\mathcal{M}(G)$ of a graph G has a vertex set of all perfect matchings of G, with two vertices being adjacent whenever the union of the corresponding perfect matchings forms a Hamiltonian cycle.

We prove that the matching graph $\mathcal{M}(Q_d)$ of the *d*-dimensional hypercube is bipartite and connected for $d \geq 4$. This proves Kreweras' conjecture [2] that the graph M_d is connected, where M_d is obtained from $\mathcal{M}(Q_d)$ by contracting all vertices of $\mathcal{M}(Q_d)$ which correspond to isomorphic perfect matchings.

1 Introduction

A set of edges $P \subseteq E$ of a graph G = (V, E) is *matching* if every vertex of G is incident with at most one edge of P. If a vertex v of G is incident with an edge of P, then v is *covered* by P, otherwise v is *uncovered* by P. A matching P is *perfect* if every vertex of G is covered by P.

The *d*-dimensional hypercube (shortly *d*-cube) Q_d is a graph whose vertex set consists of all binary vectors of length *d*, with two vertices being adjacent whenever the corresponding vectors differ at exactly one coordinate. The binary vectors are labelled by the set $[d] := \{1, 2, \ldots, d\}$.

^{*}This work was partially supported by the Czech Science Foundation 201/05/H014.

It is well known that Q_d is Hamiltonian for every $d \ge 2$. This statement can be traced back to 1872 [4]. Since then the research on Hamiltonian cycles in *d*-cubes satisfying certain additional properties has received considerable attention. An interested reader can find more details about this topic in the survey of Savage [3]. Dvořák [5] showed that every set of at most 2d-3 edges of Q_d ($d \ge 2$) that induces vertex-disjoint paths is contained in a Hamiltonian cycle. Dimitrov et al. [6] proved that for every perfect matching P of Q_d ($d \ge 3$) there exists some Hamiltonian cycle that faults P, if and only if Pis not a set of all edges of one dimension of Q_d .

The matching graph $\mathcal{M}(G)$ of a graph G on even number of vertices has a vertex set of all perfect matchings of G, with two vertices being adjacent whenever the union of the corresponding perfect matchings forms a Hamiltonian cycle of G. There is a natural one-to-one correspondence between Hamiltonian cycles of G and edges of $\mathcal{M}(G)$. The problem of determining h(d), the number of Hamiltonian cycles of d-cube, is a well-known open problem. Douglas [7] presents upper and lower bounds

$$\left(\prod_{i=5}^{d-1} i^{2^{d-i-1}}\right) d(1344)^{2^{d-4}} 2^{2^{d-2}-1-d} \le h(d) \le \left(\frac{d(d-1)}{2}\right)^{2^{d-1}-2^{d-1-\log_2(d)}}$$

We are interested in structural properties of $\mathcal{M}(Q_d)$.

We say that two perfect matchings P and R are isomorphic if there exists an isomorphism $f: V(Q_d) \to V(Q_d)$ such that $f(u)f(v) \in R$ for every edge $uv \in P$. This relation of isomorphism is an equivalence and it factors the set of all perfect matchings. Kreweras [2] considered a graph M_d which is obtained from $\mathcal{M}(Q_d)$ by contracting all vertices of each class of this equivalence.

Kreweras [2] proved by inspection of all perfect matchings that the graphs M_3 and M_4 are connected and he conjectured that the graph M_d is connected for every $d \geq 3$. It is more general to also ask whether the graph $\mathcal{M}(Q_d)$ is connected since the connectivity of $\mathcal{M}(Q_d)$ implies the connectivity of M_d . The answer is negative for d = 3 (see Figure 1). However, we prove that this is the only counter-example.

We also prove that the matching graph $\mathcal{M}(K_{n,n})$ of the complete bipartite graph $K_{n,n}$ is bipartite for even n, which implies that $\mathcal{M}(Q_d)$ is bipartite. This is an interesting property which helps us to find a walk in $\mathcal{M}(Q_d)$ of even length.

Figure 1: The matching graph $\mathcal{M}(Q_3)$. The circles and bold lines are vertices and edges of $\mathcal{M}(Q_3)$.

2 Perfect matchings extend to Hamiltonian cycles

Let K(G) be the complete graph on the vertices of a graph G. If G is bipartite and connected, then let B(G) be complete bipartite graph with same color classes as G. Let P be a perfect matching of $K(Q_d)$. Let $\Gamma(P)$ be the set of all perfect matchings R of Q_d such that $P \cup R$ is a Hamiltonian cycle of $K(Q_d)$. Note that if P is a perfect matching of Q_d and $R \in \Gamma(P)$, then $P \cup R$ is a Hamiltonian cycle of Q_d , so PR is an edge of $\mathcal{M}(Q_d)$.

Kreweras conjectured [2] that every perfect matching in the *d*-cube with $d \ge 2$ extends to a Hamiltonian cycle. We [1] proved following stronger form of this conjecture.

Theorem 1 ([1]). For every perfect matching P of $K(Q_d)$ the set $\Gamma(P)$ is non-empty where $d \geq 2$.

We say that an edge uv of $K(Q_d)$ crosses a dimension $\alpha \in [d]$ if vertices u and v differ in dimension α , otherwise uv avoids α . A perfect matching P of $K(Q_d)$ crosses α if P contains an edge crossing α , otherwise P avoids α . Let I_d^{α} be the perfect matching of Q_d that contains all edges in dimension $\alpha \in [d]$. Observe that a perfect matching P of Q_d crosses α if and only if $P \cap I_d^{\alpha} \neq \emptyset$.

Proposition 2. Let P be a perfect matching of $K(Q_d)$ avoiding $\beta \in [d]$ and $e \in I_d^{\beta}$. There exists $R \in \Gamma(P)$ containing e.

Proof. The proof proceeds by induction on d. The statement holds for d = 2. Let us assume that the statement is true for every k-cube Q_k with $2 \le k \le d-1$ and let us prove it for d.

Clearly, P crosses some $\alpha \in [d] \setminus \{\beta\}$. We divide the *d*-cube Q_d by dimension α into two (d-1)-subcubes Q^1 and Q^2 so that $e \in E(Q^1)$. Let $K^i := K(Q^i)$ and $P^i := P \cap E(K^i)$ for $i \in \{1, 2\}$.

The set of edges P^1 is a matching of K^1 which is not perfect since P crosses α . Let M be the set of vertices of K^1 that are uncovered by P^1 . The size of M is even. If we divide Q^1 by dimension β , then numbers of vertices of M on both subcubes of Q^1 are even because P^1 avoids β . We choose an arbitrary perfect matching S^1 on vertices of M such that S^1 avoids β . The perfect matching $P^1 \cup S^1$ of K^1 avoids β . By induction there exists a perfect matching $R^1 \in \Gamma(P^1 \cup S^1)$ of Q^1 containing e. Let

$$S^{2} := \left\{ xy \in E(K^{2}) \mid \exists x', y' \in V(Q^{1}) \text{ such that } xx', yy' \in P \text{ and} \\ \text{there exists a path between } x' \text{ and } y' \text{ of } P^{1} \cup R^{1} \right\}.$$
(1)

Observe that $P^1 \cup R^1$ is a partition of Q^1 into vertex-disjoint paths between vertices uncovered by P^1 . For every path between x' and y' of this partition there exist vertices x and y of Q^2 such that $xx', yy' \in P$. Thus, the set of edges S^2 is a matching of K^2 . Moreover, the set of edges $P^2 \cup S^2$ is a perfect matching of K^2 because S^2 covers each vertex covered by P but not by P^2 . Hence, there exists a perfect matching $R^2 \in \Gamma(P^2 \cup S^2)$ of Q^2 by Theorem 1. Clearly, $R := R^1 \cup R^2$ is a perfect matching of Q_d containing e. Finally, $R \in \Gamma(P)$ by Lemma 3.

Lemma 3. Let P be a perfect matching of $K(Q_d)$ crossing $\alpha \in D$. Let the d-cube Q_d be divided into two (d-1)-subcubes Q^1 and Q^2 by dimension α . Let $K^i := K(Q^i)$ and $P^i := P \cap E(K^i)$ for $i \in \{1,2\}$. Let S^1 be a perfect matching on vertices of $K(Q^1)$ uncovered by P^1 . Let $R^1 \in \Gamma(P^1 \cup S^1)$. Let S^2 be given by Equation (1). Let $R^2 \in \Gamma(P^2 \cup S^2)$ and $R := R^1 \cup R^2$. Then $R \in \Gamma(P)$.

Proof. We prove that $P \cup R$ is a Hamiltonian cycle of $K(Q_d)$. Suppose on the contrary that C is a cycle of $P \cup R$ which is not Hamiltonian. Since Pcrosses α , both S^1 and S^2 are non-empty sets. Because $P^i \cup S^i \cup R^i$ is a Hamiltonian cycle of K^i , whole cycle C cannot belong to K^i , for $i \in \{1, 2\}$. So C has edges in both K^1 and K^2 . Now, we shorten every path $xx' \cdots y'y$ such that $x, y \in V(Q^2)$; $x', y' \in V(Q^1)$; $xx', yy' \in P$ and $x' \cdots y'$ is a path of $P^1 \cup R^1$ by the edge $xy \in S^2$. Hence, we obtain a cycle C' of $(P^2 \cup S^2) \cup R^2$. We prove that C' does not contain a vertex of K^2 which is a contradiction because $(P^2 \cup S^2) \cup R^2$ is a Hamiltonian cycle of K^2 .

If C does not contain a vertex u of K^2 , then C' also does not contain u. Suppose that C does not contain a vertex v of K^1 . Let x' and y' be the end vertices of the path of $P^1 \cup R^1$ that contains v. Let $xx', yy' \in P$. Observe that $x, y \in V(K^2)$ and $xy \in S^2$. Hence, C' does not contain x and y.

Observe that the perfect matching R obtained in Lemma 3 avoids dimension α . Interested reader may ask whether there exists a perfect matching Rin Theorem 1 that avoids given set of dimension $A \subset [d]$. Clearly, the graph on edges of P and allowed edges of Q_d (i.e. edges of Q_d that avoid every dimension of A) must be connected. Gregor [8] proved that this is also a sufficient condition which implies following lemma.

Lemma 4. For every perfect matching P of $K(Q_d)$ and $\alpha \in [d]$ there exists $R \in \Gamma(P)$ avoiding α if and only if P crosses α where $d \geq 2$.

3 Bipartitness of $\mathcal{M}(K_{n,n})$

There is a natural one-to-one correspondence between perfect matchings of the complete bipartite graph $K_{n,n}$ and permutations on a set of size n. A permutation π is *even* if n - k is even where k is a number of cycles of π , otherwise π is *odd*. It is well-known that $\pi_1 \circ \pi_2$ is even if and only if permutations π_1 and π_2 have same parity. Hence, the inverse permutation π_2^{-1} has same parity as π_2 .

Let c(P) be the number of components of the graph on a set of edges P. Recall that B(G) is the complete bipartite graph with same color classes as a bipartite and connected graph G.

Let P_1 and P_2 be perfect matchings of $K_{n,n}$ and π_1 and π_2 be their corresponding permutations. Observe that $c(P_1 \cup P_2)$ is equal to the number of cycles of $\pi_1 \circ \pi_2^{-1}$. If n is even and $P_1 \cup P_2$ is a Hamiltonian cycle of $K_{n,n}$, then π_1 and π_2 have different parity. Hence, $\mathcal{M}(K_{n,n})$ is bipartite for n even. The matching graph $\mathcal{M}(Q_d)$ is also bipartite because $\mathcal{M}(Q_d)$ is a subgraph of $\mathcal{M}(B(Q_d))$ which is isomorphic to $\mathcal{M}(K_{2^{d-1},2^{d-1}})$.

Above discussion proves following theorem.

Theorem 5. The matching graphs $\mathcal{M}(Q_d)$ and $\mathcal{M}(B(Q_d))$ are bipartite.

We did not define which perfect matchings of $B(Q_d)$ are even and odd. But we know that perfect matchings P_1 and P_2 of $B(Q_d)$ belong to same color class of $\mathcal{M}(B(Q_d))$ if and only if $c(P_1 \cup P_2)$ is even. Hence, we fix one perfect matching of $B(Q_d)$ to be even.

Let us recall that I_d^{α} is the perfect matching of Q_d that contains all edges in dimension $\alpha \in [d]$. We simply count that $c(I_d^{\alpha} \cup I_d^{\beta}) = 2^{d-2}$ for every two different dimensions $\alpha, \beta \in [d]$ because the graph on edges $I_d^{\alpha} \cup I_d^{\beta}$ consists of 2^{d-2} independent cycles of size 4. Hence, perfect matchings I_d^{α} and I_d^{β} belong to same color class of $\mathcal{M}(B(Q_d))$ for $d \geq 3$. We call a perfect matching P of $B(Q_d)$ even if $c(P \cup I_d^1)$ is even, otherwise odd where $d \geq 3$.

4 Walks in $\mathcal{M}(Q_d)$

We will prove that $\mathcal{M}(Q_d)$ is connected by induction on d. Therefore, we need to know how we can make a walk in $\mathcal{M}(Q_d)$ from a walk in $\mathcal{M}(Q_{d-1})$. In this section we present two lemmas which help us.

Let P^0 and P^1 be perfect matchings of Q_{d-1} . We denote by $\langle P^0 | P^1 \rangle$ the perfect matching of Q_d containing P^i in the (d-1)-subcube of vertices having *i* in coordinate *d* for $i \in \{0, 1\}$.

Lemma 6. Let P_1, P_2, P_3, R_1, R_2 , and R_3 be perfect matchings of Q_{d-1} such that $P_1 \cup P_2, P_2 \cup P_3, R_1 \cup R_2$, and $R_2 \cup R_3$ are Hamiltonian cycles of Q_{d-1} . If $P_2 \cap R_2 \neq \emptyset$, then there exists a perfect matching S of Q_d such that $\langle P_1 | R_1 \rangle \cup S$ and $S \cup \langle P_3 | R_3 \rangle$ are Hamiltonian cycles of Q_d . Moreover, S crosses the dimension d and every dimension that is crossed by P_2 or R_2 .

Proof. Let $uv \in P_2 \cap R_2$. Let u_i be the vertex of Q_d obtained from u by appending i into dimension d where $i \in \{0, 1\}$. Vertices v_0 and v_1 are defined similarly.

Let $S := (\langle P_2 | R_2 \rangle \setminus \{u_0 v_0, u_1 v_1\}) \cup \{u_0 u_1, v_0 v_1\}$. The graph on edges $\langle P_1 | R_1 \rangle \cup \langle P_2 | R_2 \rangle$ consists of two cycles covering all vertices of Q_d . These cycles are joined together in $\langle P_1 | R_1 \rangle \cup S$. Hence, $\langle P_1 | R_1 \rangle \cup S$ is a Hamiltonian cycle of Q_d . Similarly, $S \cup \langle P_3 | R_3 \rangle$ is a Hamiltonian cycle of Q_d .

The edge u_0u_1 crosses dimension d so S also crosses d. Let us consider $\beta \in [d-1]$ which is crossed by P_2 or R_2 . Without lost of generality we suppose that P_2 crosses β . There exist at least 2 edges crossing β in P_2 . It can happen that the edge u_0v_0 is one of them so at least one edge crossing β remains in S.

Let P be a perfect matching of $K(Q_d)$ and $A \subseteq [d]$. We say that P crosses A if P crosses α for every $\alpha \in A$.

Lemma 7. Let P_1, P_2, P_3 , and R_1 be perfect matchings of Q_{d-1} such that $P_1 \cup P_2$ and $P_2 \cup P_3$ are Hamiltonian cycles of Q_{d-1} . Let $\alpha, \beta \in [d-1]$,

 $\alpha \neq \beta$. If P_2 crosses $[d-1] \setminus \{\alpha\}$ and R_1 avoids β , then there exists a perfect matching S of Q_d such that $\langle P_1 | R_1 \rangle \cup S$ and $S \cup \langle P_3 | R_1 \rangle$ are Hamiltonian cycles of Q_d and S crosses $[d] \setminus \{\alpha\}$.

Proof. Let $e \in P_2 \cap I_{d-1}^{\beta}$. There exists $R_2 \in \Gamma(R_1)$ containing e by Proposition 2. If we apply Lemma 6 on P_1, P_2, P_3, R_1, R_2 , and R_1 , then we obtain a perfect matching S which satisfies the requirements of this lemma.

5 Base of induction

Let us recall that M_d is obtained from $\mathcal{M}(Q_d)$ by contracting all vertices of $\mathcal{M}(Q_d)$ whose corresponding perfect matchings are isomorphic. Let Pand R be perfect matchings of Q_d . If there exists a walk between vertices representing P and R in $\mathcal{M}(Q_d)$, then the length of the shortest one is d(P, R), otherwise d(P, R) is infinity. Hence, $d(P, R) < \infty$ means that P and R belong to same component of $\mathcal{M}(Q_d)$.

The proof, that $\mathcal{M}(Q_d)$ is connected, proceeds by induction on d. We present a base of this induction in this section. We showed that $\mathcal{M}(Q_3)$ has 3 components (see Figure 1) so the induction starts from d = 4. Kreweras [2] proved that M_4 is connected (see Figure 3). We prove that if M_d is connected and $d \ge 4$, then $\mathcal{M}(Q_d)$ is connected. Hence, $\mathcal{M}(Q_4)$ is connected.

First, we present a simple lemma.

Figure 2: The walk between perfect matchings I_4^{α} and I_4^{β} in $\mathcal{M}(Q_4)$.

Lemma 8. If $d \ge 4$, then $d(I_d^{\alpha}, I_d^{\beta}) \le 6$ for every $\alpha, \beta \in [d], \alpha \neq \beta$.

Proof. The proof proceeds by induction on d. The walk between I_4^{α} and I_4^{β} is drawn on Figure 2.

Let $I_{d-1}^{\alpha} = S_{d-1}^{0}, S_{d-1}^{1}, S_{d-1}^{2}, S_{d-1}^{3}, S_{d-1}^{4}, S_{d-1}^{5}, S_{d-1}^{6} = I_{d-1}^{\beta}$ be a walk in $\mathcal{M}(Q_{d-1})$. Let $S_{d}^{i} := \langle S_{d-1}^{i} | S_{d-1}^{i} \rangle$ for even *i*. For odd *i* let S_{d}^{i} be given by Lemma 6 where $P_{1} = R_{1} := S_{d-1}^{i-1}, P_{2} = R_{2} := S_{d-1}^{i}$, and $P_{3} = R_{3} := S_{d-1}^{i+1}$. Then $I_{d}^{\alpha} = S_{d}^{0}, S_{d}^{1}, S_{d}^{2}, S_{d}^{3}, S_{d}^{4}, S_{d}^{5}, S_{d}^{6} = I_{d}^{\beta}$ is a walk in $\mathcal{M}(Q_{d})$.

Let us recall that perfect matchings P and R are isomorphic if there exists an isomorphism $f: V(Q_d) \to V(Q_d)$ such that $f(u)f(v) \in R$ for edge $uv \in P$. This relation of isomorphism is an equivalence on the set of all perfect matching. Let [P] be the equivalence class containing P. Observe that $[I_d] := \{I_d^{\alpha} \mid \alpha \in [d]\}$ is an equivalence class. If there exists a walk between [P] and [R] of M_d , then the length of the shortest one is d([P], [R]), otherwise d([P], [R]) is infinity.

Proposition 9. If $d \ge 4$ and M_d is connected, then $\mathcal{M}(Q_d)$ is connected.

Proof. We prove that vertices $\{P \in V(\mathcal{M}(Q_d)) \mid d([P], [I_d]) \leq k\}$ belong into one component of $\mathcal{M}(Q_d)$ by induction on k. This claim holds for k = 0 by Lemma 8.

Let P be a perfect matching of Q_d such that $d([P], [I_d]) = k$. There exists a perfect matching R of Q_d such that $d([R], [I_d]) = k - 1$ and d([P], [R]) = 1. Hence, there exists $R' \in \Gamma(P)$ isomorphic to R. By induction $d(I_d, R') < \infty$. Therefore, $d(I_d, R) < \infty$.

6 Induction step

We define a set of perfect matchings $\mathcal{Z}(d, k, \alpha)$ of Q_d by following induction on d, where $d \ge k \ge 3$ and $\alpha \in [d]$.

Definition 10. Let $\mathcal{Z}(d, d, \alpha)$ contains only I_d^{α} . The set $\mathcal{Z}(d, k, \alpha)$, where $d > k \geq 3$ and $\alpha \in [d]$, is the set of all perfect matchings of Q_d in the form $\langle P_1 | P_2 \rangle$, where $P_1 \in \mathcal{Z}(d-1, k, \alpha)$ and P_2 is an even perfect matching of Q_{d-1} avoiding some $\beta \in [d-1] \setminus \{\alpha\}$.

Observe that every $P \in \mathcal{Z}(d, k, \alpha)$ contains I_k^{α} in some k-subcube Q_k . We prove that the graph $\mathcal{M}(Q_d)$ is connected so we need to show that there exists a perfect matching I of Q_d such that for every perfect matching P of Q_d there exists a walk between P and I in $\mathcal{M}(Q_d)$. Lemma 8 says that perfect matchings $[I_d]$ belong to common component of $\mathcal{M}(Q_d)$ so it is sufficient to find a walk from P to an arbitrary one of $[I_d]$. Without lost of generality

Figure 3: The graph M_4 . For every equivalence class [P] of isomorphism there is a frame which contains P. Four numbers of a type above frame are numbers of edges crossing each dimension. Above each frame there is also number of perfect matchings which are contracted to the equivalence class.

we assume that P is odd by Theorems 1 and 5. We find this walk in two steps: First, we find a walk from P to a perfect matching of $\mathcal{Z}(d, k, \alpha)$ for some $\alpha \in [d]$ and $k, d \geq k \geq 3$. Next, we find walks from $\mathcal{Z}(d, k, \alpha)$ to $\mathcal{Z}(d, k + 1, \alpha)$ so by induction on k we obtain walks to $\mathcal{Z}(d, d, \alpha)$ which contains only I_d^{α} by definition.

Since Q_d is bipartite we call vertices of one color class *black* and the other *white*.

Lemma 11. For every odd perfect matching P of $B(Q_d)$ there exists $Y \in \mathcal{Z}(d, k, \alpha)$ for some $\alpha \in [d]$ and $k, d \geq k \geq 3$, such that $d(P, Y) \leq 3$.

Proof. We prove by induction on d that for every perfect matching P of $B(Q_d)$ there exist perfect matchings R, X and Y of Q_d such that $P \cup R, R \cup X$ and $X \cup Y$ are Hamiltonian cycles and X crosses $[d] \setminus \{\alpha\}$ and $Y \in \mathcal{Z}(d, k, \alpha)$.

First, we prove the statement for d = 3. Let P be an odd perfect matching of $B(Q_3)$. Therefore, $c(P \cup I_3^{\alpha})$ is 1 or 3 for every $\alpha \in [3]$. If there exists $\alpha \in [3]$ such that $c(P \cup I_3^{\alpha}) = 1$, then we choose $R := Y := I_3^{\alpha}$ and $X \in \Gamma(R)$. We prove that there exists $\alpha \in [3]$ such that $c(P \cup I_3^{\alpha}) = 1$. Suppose on the contrary that $c(P \cup I_3^{\alpha}) = 3$ for every $\alpha \in [3]$. The graph on edges $P \cup I_3^{\alpha}$ consists of two common edges and one cycle of size 4. Perfect matchings of $[I_3]$ are pairwise disjoint and P has two common edges with each of them. It is a contradiction because P has only 4 edges.

In the induction step we need to have at least 4 edges of P that cross a common dimension. Such dimension exists for every perfect matching P of $B(Q_d)$ if $d \ge 5$ by the Pigeonhole principle. Every perfect matching P of $B(Q_4)$ has 8 edges. If P contains an edge crossing at least two dimensions, then we use the Pigeonhole principle again.

A perfect matching P of Q_4 is *balanced* if it has 2 edges in every dimension. Luckily, Kreweras [2] proved that there are 8 perfect matchings of Q_4 up-to isomorphism and only two of them are balanced; see Figure 3. Check that the balanced perfect matchings S_4^3 drawn on Figure 2 and R^1 drawn of Figure 4 satisfy the requirements of this statement.

Now, we present the induction step. Let $\beta \in [d]$ such that P has at least 4 edges crossing β . Without lost of generality we assume that $\beta = d$. We divide Q_d into two (d-1)-subcubes Q^1 and Q^2 by dimension β . Let $B^i := B(Q^i)$ and $P^i := P \cap E(B^i)$ for $i \in \{1, 2\}$. Let M be the set of vertices of B^1 that are uncovered by P^1 . We know that $|M| \ge 4$. Moreover, M has same number of black vertices as white ones.

Let b_1 and b_2 be two different black vertices of M and w_1 and w_2 be two different white vertices of M. Let S' be a matching of B^1 covering $M \setminus \{b_1, b_2, w_1, w_2\}$. We have two ways how to extend S' to be matching S^1 of B^1 covering M: We can insert edges $\{b_1w_1, b_2w_2\}$ or $\{b_1w_2, b_2w_1\}$. Those two ways give us two perfect matchings $P^1 \cup S^1$ of B^1 having different parity. Of course, we choose the way that gives us odd perfect matching $P^1 \cup S^1$.

Let R^1, X^1 and Y^1 be perfect matchings of Q^1 given by induction $-(P^1 \cup S^1) \cup R^1, R^1 \cup X^1$ and $X^1 \cup Y^1$ are Hamiltonian cycles of B^1 and X^1 crosses $[d-1] \setminus \{\alpha\}$ and $Y^1 \in \mathcal{Z}(d-1, k, \alpha)$. Hence, R^1 is even by Theorem 5. Let S^2 be given by Equation (1).

We prove that $P^2 \cup S^2$ is odd. Let $\bar{R}^2 \in \Gamma(P^2 \cup S^2)$ by Theorem 1. Let $\bar{R} := R^1 \cup \bar{R}^2$. By Lemma 3 holds $\bar{R} \in \Gamma(P)$ so \bar{R} is even by Theorem 5. Also \bar{R}^2 is even because R^1 and \bar{R} are even. Hence, $P^2 \cup S^2$ is odd by Theorem 5. Moreover, $P^2 \cup S^2 \neq I_{d-1}^{\alpha}$.

Hence, the perfect matching $P^2 \cup S^2$ crosses some $\gamma \in [d-1] \setminus \{\alpha\}$ and there exists $R^2 \in \Gamma(P^2 \cup S^2)$ avoiding γ by Lemma 4. Let $R := R^1 \cup R^2$. Therefore, $R \in \Gamma(P)$ by Lemma 3 and R is even by Theorem 5. Because R^1 is even so R^2 is even. We apply Lemma 7 on R^1, X^1, Y^1 and R^2 to obtain a perfect matching X such that $\langle R^1 | R^2 \rangle \cup X$ and $X \cup \langle Y^1 | R^2 \rangle$ are Hamiltonian cycles of Q_d and X crosses $[d] \setminus \{\alpha\}$. Finally, $Y := \langle Y^1 | R^2 \rangle \in \mathcal{Z}(d, k, \alpha)$ by definition.

Figure 4: A walk between $P \in \mathcal{Z}(4,3,\alpha)$ and I_4^{α} .

Lemma 12. Let $P \in \mathcal{Z}(d, k, \alpha)$ where $3 \leq k < d$ and $\alpha \in [d]$. If $\mathcal{M}(Q_k)$ is connected or k = 3, then there exists $S \in \mathcal{Z}(d, k + 1, \alpha)$ such that $d(P, S) < \infty$.

Proof. We prove by induction on d that for every $P \in \mathcal{Z}(d, k, \alpha)$ there exists a walk $P = R_0, R_1, \ldots, R_n = S$ in $\mathcal{M}(Q_d)$ of even length such that R_l crosses $[d] \setminus \{\alpha\}$ for every odd l and $S \in \mathcal{Z}(d, k + 1, \alpha)$. The base of this induction is for d = k + 1.

By definition of $\mathcal{Z}(d, k, \alpha)$ we divide P into perfect matchings P^1 and P^2 such that $P = \langle P^1 | P^2 \rangle$ and $P^1 \in \mathcal{Z}(d-1, k, \alpha)$ and P^2 is an even perfect matching of Q_{d-1} avoiding some $\beta \in [d-1] \setminus \{\alpha\}$.

First, we present the base of induction for d = 4, so k = 3. By definition $P^1 = I_3^{\alpha}$ and P^2 is even. There are two perfect matchings of Q_3 up-to isomorphism with different parity; see Figure 1. Hence, $P^2 = I_3^{\gamma}$ for some $\gamma \in [3]$. If $P^2 = I_3^{\alpha}$, then $P = I_4^{\alpha}$ which belongs to $\mathcal{Z}(4, 4, \alpha)$ by definition. Otherwise, the walk on Figure 4 satisfies requirements of this lemma.

Now, we present the base of the induction for $k \geq 4$ and k + 1 = d. In that case $P^1 = I_k^{\alpha}$. There exists a walk $P^2 = R_0, R_1, \ldots, R_n = I_k^{\alpha}$ on $\mathcal{M}(Q_k)$ of even length because $\mathcal{M}(Q_k)$ is connected and bipartite and P^2 is even. Let $R'_l := \langle P^1 | R_l \rangle$ for even l. Clearly, $R'_n \in \mathcal{Z}(d, k+1, \alpha)$ because $R'_n = I_{k+1}^{\alpha}$.

Let l be odd. Since R_l is odd, it holds $R_l \neq I_k^{\alpha}$. We choose an edge $e_l \in R_l \setminus I_k^{\alpha}$. By Proposition 2 there exists $Z_l \in \Gamma(I_k^{\alpha})$ containing e_l . The perfect matching Z_l crosses $[k] \setminus \{\alpha\}$ by Lemma 4. We apply Lemma 6 on $R_{l-1}, R_l, R_{l+1}, I_k^{\alpha}, Z_l$, and I_k^{α} to obtain a perfect matching R'_l . The walk $P = R'_0, R'_1, \ldots, R'_n = I_{k+1}^{\alpha}$ satisfies the requirements.

Finally, we present the induction step for $k \geq 3$ and k + 1 < d. By induction there exists a walk $P^1 = R_0, R_1, \ldots, R_n = S^1$ in $\mathcal{M}(Q_{d-1})$ of even length such that $S^1 \in \mathcal{Z}(d-1, k+1, \alpha)$ and R_l crosses $[d-1] \setminus \{\alpha\}$ for every odd l. Let $R'_l := \langle R_l | P^2 \rangle$ for even l. For odd l we apply Lemma 7 on R_{l-1}, R_l, R_{l+1} and P^2 to obtain a perfect matching R'_l of Q_d . Now, the walk $P = R'_0, R'_1, \ldots, R'_n = S$ satisfies the requirements and $S \in \mathcal{Z}(d, k+1, \alpha)$. \Box

Corollary 13. Let $P \in \mathcal{Z}(d, k, \alpha)$ where $3 \leq k \leq d$ and $\alpha \in [d]$. If $\mathcal{M}(Q_l)$ is connected for every $l \in \{4, 5, \ldots, d-1\}$, then $d(P, I_d^{\alpha}) < \infty$.

Proof. The proof proceeds by induction on d - k. If d = k, then $P = I_d^{\alpha}$ by definition of $\mathcal{Z}(d, k, \alpha)$. Let $3 \leq k < d$. By Lemma 12 there exists $S \in \mathcal{Z}(d, k + 1, \alpha)$ such that $d(P, S) < \infty$. By induction $d(S, I_d^{\alpha}) < \infty$. Hence, $d(P, I_d^{\alpha}) < \infty$.

Theorem 14. The matching graph $\mathcal{M}(Q_d)$ is connected for $d \geq 4$.

Proof. The proof proceeds by induction on d. Kreweras [2] proved that the graph M_4 is connected; see Figure 3. Hence, the graph $\mathcal{M}(Q_4)$ is connected by Proposition 9 and the statement holds for d = 4. Let us assume that the graph $\mathcal{M}(Q_l)$ is connected for every l with $4 \leq l \leq d-1$. Let us prove that for some $\beta \in [d]$ and for every perfect matching P of Q_d holds $d(P, I_d^\beta) < \infty$.

If P is even, then we choose $R \in \Gamma(P)$ by Theorem 1 which is odd by Theorem 5. Otherwise, we simply consider R := P. By Lemma 11 there exists $S \in \mathcal{Z}(d, k, \alpha)$ such that $d(R, S) \leq 3$. By Corollary 13 it holds $d(R, I_d^{\alpha}) < \infty$ and $d(I_d^{\alpha}, I_d^{\beta}) \leq 6$ by Lemma 8.

Corollary 15. The graph M_d is connected for $d \geq 3$.

Acknowledgement. I am very grateful to Petr Gregor and Václav Koubek and Tomáš Dvořák for fruitful discussions on this topic.

References

- [1] J. Fink: Perfect Matchings Extend to Hamilton Cycles in Hypercubes, Submitted.
- G. Kreweras: Matchings and Hamiltonian cycles on hypercubes, Bull. Inst. Combin. Appl. 16 (1996), 87–91.
- [3] C. Savage: A survey of combinatorial Gray codes, SIAM Rev. 39 (1997), 605–629.

- [4] L. Gros: Théorie du Baguenodier, Aimé Vingtrinier, Lyon, 1872.
- [5] T. Dvořák: Hamiltonian cycles with prescribed edges in hypercubes, SIAM J. Discrete Math. 19(2005), 135–144.
- [6] D. Dimitrov, T. Dvořák, P. Gregor, R. Škrekovski: Gray Codes Faulting Matchings, submitted.
- [7] R. J. Douglas: Bounds on the number of Hamiltonian circuits in the *n*-cube, Discrete Math. 17(1977), 143–146.
- [8] P. Gregor: Perfect matchings extending on subcubes to Hamiltonian cycles of hypercubes, manuscript.