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Abstract

Loebl, Komlós, and Sós conjectured that if at least half of the vertices
of a graph G have degree at least some k ∈ N, then every tree with at
most k edges is a subgraph of G. Our main result is an approximate
version of this conjecture for large enough n = |V (G)|, and k linear in n.

We extend our result to a slightly larger class of subgraphs. Namely,
we show that G contains as subgraphs all bipartite connected graphs of
order k + 1 with at most k + c edges, where c is some constant in n.

Also, we derive from our result an asymptotic bound for the Ramsey
number of trees. We prove that r(Tk, Tm) ≤ k + m + o(k + m), provided
that lim inf(k/m), lim inf(m/k) > 0.

1 Introduction

We explore how certain global assumptions on a graph G ensure the existence
of specific subgraphs. More precisely, we are interested in finding trees as (not
necessarily induced) subgraphs. The central conjecture in our investigations
makes, to this end, assumptions on the median degree of G.

Conjecture 1 (Loebl, Komlós, Sós [5]). Every graph on n ∈ N vertices of
which at least n/2 have degree at least some k ∈ N, contains as subgraphs all
trees with at most k edges.

The original version for k = n/2 was formulated by Loebl, the generalisation to
arbitrary k is due to Komlós and Sós (see [5]).
A generalisation of an example due to Zhao [13] shows that the bound for the
number of vertices with high degree in Conjecture 1 is close to best possible. It
cannot be replaced by n/2− n/

√
k − n/k (if k divides n).

Our main result is an approximate version of Conjecture 1 for k ∈ Θ(n).

Theorem 2. For every η, q > 0 there is an n0 ∈ N such that for each graph G
on n ≥ n0 vertices and each k ≥ qn the following is true.
If at least (1+η)n/2 vertices of G have degree at least (1+η)k, then G contains
as subgraphs all trees with at most k edges.
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For arbitrary k, this has been conjectured by Ajtai, Komlós and Szemerédi in [1].
There, also a proof for the special case k = n/2 is given.

The exact version, Conjecture 1, is trivial for stars, and for trees that consist
of two stars with adjacent centres. Bazgan, Li, and Woźniak [2] prove the
conjecture for paths, and for other special cases. In a forthcoming article [9],
the authors of this paper prove the Loebl–Komlós–Sós conjecture for trees of
diameter at most 5 and second special case.
In Loebl’s version with k = n/2, the conjecture has recently been proved by
Zhao [13] for large enough graphs.

Zhao’s result implies that the Ramsey number1 r(Tk+1) of a tree Tk+1 with k
edges is at most 2k, for large k. Bounds for Ramsey numbers of trees have been
studied so far only for special cases (e.g. see [6]).
In the same way as the bound for r(Tk+1) follows from the Loebl conjecture, one
can deduce from Conjecture 1, if true, a bound for the Ramsey number of trees
Tk+1, Tm+1 of different order k + 1 and m + 1. Namely, if the Loebl–Komlós–
Sós conjecture holds, then r(Tk+1, Tm+1) ≤ k + m. This upper bound has been
conjectured in [5].
Using Theorem 2, we prove this to be asymptotically true.

Proposition 3. Let Tk+1 and Tm+1 be trees of order k + 1, resp. m + 1. Then
r(Tk+1, Tm+1) ≤ k + m + o(k + m), provided that lim inf k/m, lim inf m/k > 0.

It is not difficult to see that the exact bound of r(Tk+1, Tm+1) ≤ k + m also
follows from a positive answer to the Erdős–Sós conjecture. This well-known
conjecture states that each graph with average degree greater than k−1 contains
all trees with at most k edges as subgraphs.
For partial results on the Erdős–Sós conjecture, see e.g. [3, 10, 12].

Our proof of Theorem 2 is inspired by Ajtai, Komlós and Szemerédi’s proof
of their approximate version of the Loebl conjecture [1]. We use the regular-
ity lemma followed by a Gallai-Edmonds decomposition of the reduced cluster
graph. This enables us to find a certain substructure in the cluster graph, which
contains a large matching, and captures the degree condition on G. The tree T
is then embedded mainly into the matching edges.
We shall see that in the case that k ≥ n/2, it is not difficult to obtain the same
structure as in [1]. Our proof then follows [1], providing all details.
In the case that k < n/2, however, the situation is more complex. We will have
to content ourselves with a less favorable structure in the cluster graph, which
complicates the embedding of T . For a brief outline of the crucial ideas we then
employ, see Section 3.1. The full proof is given in the remainder of Section 3.

Using similar ideas of proof, we extend Theorem 2 in a new direction. We
pursue the question which other subgraphs are contained in our graph G from
Theorem 2.
Our third result affirms that we can replace the trees with bipartite graphs that
have few more edges than trees.

1The Ramsey number r(H, H ′) of two graphs H, H ′ (or short r(H), if H = H ′) is defined
as the minimal integer n such for every graph G or order at least n either H is a subgraph
of G, or H′ is a subgraph of the complement Ḡ of G.
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Theorem 4. For every η, q > 0 and for every c ∈ N there is an n0 ∈ N so that
for each graph G on n ≥ n0 vertices and each k ≥ qn the following is true.
If at least (1 + η)n/2 vertices of G have degree at least (1 + η)k, then each
connected bipartite graph Q on k + 1 vertices with at most k + c edges is a
subgraph of G.

In particular, our graph G contains all even cycles of length at most k + 1 (see
Corollary 11).

An interesting observation due to A. Pór [personal communication] is the fol-
lowing. If Conjecture 1 holds for every k constant in n, then it is true for all k
and n. Moreover, if we could prove the conjecture for some specific function k,
tending to infinity, and all multiples ck with 0 < c ≤ 1, then it would also hold
for all k′ ≥ k (see Proposition 17).
The idea is to start with an assumed counterexample for the non-constant case
(resp. for k′), and then take a large number of disjoint copies of it, so that k
becomes constant in n. We thus reach a contradiction. For more details, see
Section 4.3.
The same argument applies to the Erdős–Sós conjecture, and to the approximate
version of the Loebl-Komlós-Sós conjecture. In the latter, the argument reflects
that the case k < n/2 of Theorem 2 is more difficult to prove that the case
k ≥ n/2, and why the sparse case of Theorem 2 appears to be even harder.
In fact, by Pór’s argument, a version for constant k would imply our Theorem 2,
and moreover, we would no longer need the bound n0 ∈ N. Even more is true: if
the version of Theorem 2 for constant k is true, then we get arbitrarily close to
the exact version. More precisely, in that case a variant of Conjecture 1 holds,
where the bound k on the degrees is replaced with the bound k + 1, and the
bound n/2 on the number of vertices of large degree is replaced with (n + 1)/2.
See Proposition 16.

Our paper is organised as follows. In Section 2.1, we introduce the regularity
lemma and discuss some basic properties of regularity. Our tool for finding the
desired structure of the cluster graph, Lemma 7, will be proved in Section 2.2.
All of Section 3 is dedicated to the proof of our main result, Theorem 2. A
detailed overview can be found in the first subsection.
In Section 4, we explore applications and generalisations of Theorem 2. Our
asymptotic bound for Ramsey numbers of trees will be derived in Section 4.1.
In Section 4.2, we extend Theorem 2, replacing trees with bipartite graphs that
have few cycles. We investigate the potential of a possible sparse version of our
result in Section 4.3.

2 Preliminaries

The purpose of this section is to introduce the two main tools used in the proofs
of Theorem 2 and Theorem 4. The first of these tools is the well-known regularity
lemma. The second is Lemma 7, which will give structural information on our
graph G from Theorem 2 (and Theorem 4). We derive it from the Gallai-
Edmonds matching theorem.
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2.1 Regularity

In this subsection, we introduce the notion of regularity, state Szemerédi’s reg-
ularity lemma, and review a few useful properties of regularity. All of this
is well-known, so the advanced reader is invited to skip this section. For an
instructive survey on the regularity lemma and its applications, consult [8].

Let us first go through some necessary notation. For a graph G = (V, E), with
W ⊆ E and S ⊆ V , we will write G−W for the subgraph (V, E \W ) of G, and
G − S the subgraph of G which is obtained by deleting all vertices of S and all
incident edges. If X and Y are disjoint subsets of the vertex set V (G), then let
e(X, Y ) denote the number of edges between X and Y . Write NY (X) for the
set of all neighbours in Y of vertices from X . For X , Y with X ∩ Y 6= ∅, define
NY (X) := NY \X(X).

A bipartite graph G with partition classes V1 and V2 is called (α, ε)-regular if
for all subsets V ′

1 ⊆ V1, V ′
2 ⊆ V2 with |V ′

1 | ≥ α|V1| and |V ′
2 | ≥ α|V2|, it is true

that |d(V1, V2) − d(V ′
1 , V ′

2)| < ε.
A partition V0 ∪ V1 ∪ · · · ∪ VN of V (G) is called (α, ε; N)-regular, if

• |V0| ≤ εn and |Vi| = |Vj | for i, j = 1, . . . , N ,

• all but at most εN2 pairs (Vi, Vj) with i 6= j are (α, ε)-regular.

We are now able to state Szemerédi’s regularity lemma.

Theorem 5 (Regularity lemma, Szemerédi [11]). For every ε, α > 0 and
m0 ∈ N, there exist M0, N0 ∈ N so that every graph G of order n ≥ N0 admits
an (α, ε; N)-regular partition of its vertex set V (G) with m0 ≤ N ≤ M0.

Call the partition classes Vi of G clusters. Now, for each graph G, for each
(α, ε; N)-regular partition of V (G), and for any density p define the cluster
graph, or reduced graph, in the following standard way.
First, we construct an auxiliary graph Gp obtained from G by deleting all edges
inside the clusters Vi, all edges that are incident with V0, all edges between
irregular pairs, and all edges between regular pairs (Vi, Vj) of density

e(Vi, Vj)

|Vi||Vj |
< p.

Observe that

|E(G − Gp)| ≤ N
s2

2
+ εn2 + εN2s2 +

N2

2
ps2 ≤ (

1

2m
+ 2ε +

p

2
)n2, (1)

where s := |Vi|.
Now, the cluster graph H = Hp on the vertex set {Vi}1≤i≤N has an edge ViVj

for each pair (Vi, Vj) of clusters that has positive density in Gp. We shall prefer
to work with the weighted cluster graph H̄ = H̄p which we obtained from H by
assigning weights

w(ViVj) :=
e(Vi, Vj)

s

to the edges ViVj ∈ E(H).
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In the setting of weighted graphs, the (weighted) degree of vertex v is defined as

dēg(v) :=
∑

w∈N(v)

ω(vw),

and the degree into a subset W ⊆ V (H̄), where we only count the weights of v–
W edges, is denoted by dēgW (v). We shall adopt this notation for our weighted
cluster graph H̄. Similarly, for a subset X ⊆ Vj , we write

dēgX(Vi) :=
e(X, Vi)

s
.

For a set Y of subsets of distinct clusters from Gp − Vi, we shall write dēgY (Vi)
for

∑

Y ∈Y dēgY (Vi).

We shall often use edges of H̄ to represent the respective subgraph of Gp, or its
vertex set. For example, an edge e = CD ∈ E(H̄), might refer to the subgraph
of Gp induced by C ∪ D, or to C ∪ D itself, i.e. in dēge(Vi). And for a set
U ⊆ C ∪ D, we sometimes use the shorthand e ∩ U for (C ∪ D) ∩ U .

Let us review some basic properties of Gp and H̄. A simple calculation shows
that for X ∈ V (H̄) and for Y ⊆ V (H̄) with X /∈ Y we have that

degY (v) > dēgY(X) − ε|Y|s for all but at most αs vertices v of X, (2)

and if Y ′ is a set of subsets of the clusters in Y , each of size at least αs, then

degY′(v) > dēgY′(X) − 2ε|Y|s for all but at most αs vertices v of X. (3)

These vertices v will be called typical with respect to Y , or w.r.t. Y ′. If no
confusion is possible, we call v simply typical.

2.2 The matching

The main interest in this subsection is Lemma 7, which will give us important
structural information on the cluster graph H that corresponds to the graph G
from Theorem 2 (or Theorem 4). A weaker variant of this lemma, Lemma 8
below, appeared in [1].

For the proof of Lemma 7, we need a simplified version of the Gallai-Edmonds
matching theorem, a proof of which can be found for example in [4].
A 1-factor, or perfect matching, of a graph G is a 1-regular spanning subgraph
of G. We call G 1-factor-critical, if for each v ∈ V (G), there exists a perfect
matching of G − v.

Theorem 6 (Gallai, Edmonds). Every graph G contains a set S ⊆ V (G) so
that each component of G−S is 1-factor-critical, and so that there is a matching
in G that matches the vertices of S to vertices of different components of G−S.

We are now ready for one of the key tools in the proof of Theorem 2.

Lemma 7. Let H̄ be a weighted graph on N vertices, and let K ∈ Q. Let L be
the set of those vertices v ∈ V (H̄) with dēg(v) ≥ K. If |L| > N/2, then there
are two adjacent vertices A, B ∈ L, and a matching M in H̄ such that one of
the following holds.
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PSfrag replacements
L′ = L \ S

L̃

S

X

Y \ S

S′

M

Figure 1: The graph H̄ with the matching M , and sets L, S and Y .

(a) M covers N(A ∪ B),

(b) M covers N(A), and dēgL∪M (B) ≥ K/2. Moreover, each edge in M has at
most one endvertex in N(A).

Proof. Observe that we may assume that Y := V (H̄) − L is independent.
Now, Theorem 6 applied to the unweighted version of H̄ yields a set S ⊆ V (H̄)
and a matching M ′. Fix S and choose M ′ so that it contains a maximal number
of vertices of Y . Let M consist of the union of M ′ and some maximal matching
of H̄ − V (M ′).
Set L′ := L \ S. Clearly, if there is an edge AB with endvertices A, B ∈ L′,
then (a) holds. Therefore, we may assume that L′ is independent.
Then, each edge of H̄ that is not incident with S has one endvertex in L′, and
one in Y . Now, consider any component C of H̄−S. Since C is 1-factor-critical,
we have that |(C − x) ∩ Y | = |(C − x) ∩ L′|, for every x ∈ V (C). Hence, C
consists of only one vertex, and so must every component of H̄ − S.
Denote by X the subset of Y that is not covered by M . Set L̃ := N(L′)∩L ⊆ S
(see Figure 1). Now, if there is a vertex B ∈ L̃ whose weighted degree into H̄−X
is at least K/2, then B, together with any of its neighbours A in L′, satisfies (b).
So, we may assume that for each B ∈ L̃,

dēgH̄−X(B) < K/2, (4)

and hence dēgX(B) ≥ K/2.
On the other hand, dēgL̃(x) < K for each x ∈ X . Thus, by double (weighted)
edge-counting, it follows that

|X | ≥ |L̃|
2

. (5)

Set S′ := S ∩ Y . By (4), the weighted degree of L̃ ∪ S′ into L′ is less than
|L̃|K/2 + |S′|K, while each vertex of L′ has weighted degree at least K into
L̃ ∪ S′. Thus, again by double edge-counting, and by (5),

|X | + |S′| ≥ |L̃|
2

+ |S′| > |L′|. (6)

Furthermore, since Y is independent, M matches S ′ ⊆ Y to L′. Thus |L′| ≥
|S′| + |L \ M |, and so, by (6),

|X | > |L \ M |.
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Since |L| > N
2 , this implies that M contains a edge AB with both A, B ∈ L.

We may assume that A ∈ L′ and B ∈ L̃. By (4), B has a neighbour D in X .
Hence, the matching M ′ ∪BD \AB covers more vertices of Y than M ′ does, a
contradiction to the choice of M ′.

Note that in the case K ≥ N/2 the situation in Lemma 7 is less complicated.
Then, it suffices to observe that since clearly |S| ≤ |V (H̄ − S)|, not all compo-
nents of H̄ − S can be of order 1. (Indeed, otherwise there would be a vertex
v ∈ L with N(v) ⊆ S, a contradiction.) Thus, as each component of H̄ − S
is 1-factor-critical, there exists an L′–L′ edge, and conclusion (a) of Lemma 7
holds.
This proves the following lemma, which appeared in [1].

Lemma 8. If K ≥ N/2, then Lemma 7 always yields case (a).

In the case k ≥ n/2, this observation simplifies our proof of Theorem 2 consid-
erably. The reader only interested in this special case may skip Subsections 3.4,
the last third of Subsection 3.5 and Subsection 3.7.
We shall not make use of Lemma 8 in our proof of Theorem 2.

3 Proof of Theorem 2

The organisation of this section is as follows. The first subsection is devoted
to an outline of our proof, highlighting the main ideas, leaving out all details.
In Subsection 3.2, we shall apply the regularity lemma to our graph G and use
Lemma 7 to find a substructure of the corresponding weighted cluster graph H̄ ,
that will facilitate the embedding of the tree T ∗.
We shall prepare T ∗ for this by cutting it into small pieces in Subsections 3.3
and 3.4. Then, in Subsection 3.5, we partition the matching given by Lemma 7,
according to the decomposition of the tree T ∗. What remains is the actual
embedding procedure, which we divide into the two cases given by Lemma 7,
and treat separately in Subsections 3.6 and 3.7.

3.1 Overview

In this subsection, we shall give an outline of our proof of Theorem 2. All details
can be found in the subsequent subsections. The overview is meant to help in
understanding the general ideas we shall employ, but may also be skipped, as it
contains no necessary information needed to follow the proof of Theorem 2.

In order to facilitate reading, let us restate our result before we sketch its proof.

Theorem 3. For every η, q > 0 there is an n0 = n0(η, q) ∈ N such that for
each graph G on n ≥ n0 vertices and each k ≥ qn the following is true.
If at least (1+η)n/2 vertices of G have degree at least (1+η)k, then G contains
as subgraphs all trees with at most k edges.

So, assume that we are given η > 0 and q > 0. The regularity lemma applied
to parameters depending on η and q yields an n0 ∈ N. Now, let n ≥ n0, let
k ≥ qn, let G be a graph of order n that satisfies the condition of Theorem 2,
and let T ∗ be a tree with k edges. We wish to find a subgraph of G that is
isomorphic to T ∗, i.e. we would like to embed T ∗ in G.
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In order to do so, consider the weighted cluster graph H̄ corresponding to G
that is given by the regularity lemma. Denote by L ⊆ V (H̄) the set of those
clusters that have degree at least (1+π′)k in H̄ , where π′ = π′(η, q) > 0. Apply
Lemma 7 to H̄ and K := (1+π′)k. The rest of our proof will be divided into two
cases, corresponding to the two possible conclusions (a) and (b) of Lemma 7.
As the technical details for these two cases overlap, we chose not to separate
the two cases completely from each other later on. In this outline, however, we
think it is more instructive to present first the easier proof for case (a), and then
turn our attention to case (b).

In case (a) of Lemma 7, we shall decompose T ∗ into small subtrees (of order
much below ηk) and a small set SD of vertices (of constant order in n), so that
between any two of our subtrees lies a vertex from SD (the name SD stands
for ‘seeds’). In fact, SD is the disjoint union of two sets SDA and SDB , and
each tree of T ∗ − SD is adjacent to only one of these two sets. Denote the set
of trees adjacent to SDA by TA, and the set of trees adjacent to SDB by TB.
The formal definition of SD, TA and TB can be found in Section 3.3.
Next, in Section 3.5, we partition the matching M from Lemma 7 into MA

and MB . This is done in a way so that degMA
(A) is large enough so that

⋃

TA

fits into MA, and degMB
(B) is large enough so that

⋃

TB fits into MB.
Finally, in Section 3.6, we embed SDA in A and SDB in B and use the regularity
of the edges in H to embed the small trees of TA ∪ TB , one after the other,
levelwise, into MA ∪ MB . The order of this embedding procedure will be such
that the already embedded part of T ∗ is always connected.
Moreover, the structure of our decomposition of T ∗, and the fact that we embed
the trees from TA ∪ TB in the matching edges, ensures that the predecessor of
any vertex r ∈ SDA ∪ SDB is embedded in a cluster that is adjacent to A,
respectively to B (in which we wish embed r). This enables us to embed all
of SD in A ∪ B, as planned.
An important detail of our embedding technique is that we shall always try to
balance the embedding in the matching edges, in the sense that the used part
of either side should have about the same size (cf. conditions (iv) and (v) of
Section 3.6). We only allow for an unbalanced embedding if the degree of A
resp. B into one of the endclusters of the concerned edge is already ‘exhausted’
(cf. condition (a) in Section 3.6). In practice, this means that whenever we have
the choice into which endcluster of an edge e ∈ M we embed the root of some
tree of TA ∪ TB, we shall choose the side carefully.
In this manner, we can ensure that all of T ∗ will fit into M (or more precisely
into the corresponding subgraph of G). This finishes the embedding of T ∗ in
case (a) of Lemma 7.

In case (b) of Lemma 7, it is not possible to partition the matching M into MA

and MB so that
⋃

TA fits into MA and
⋃

TB fits into MB , as in case (a). More
precisely, for any partition of M into MA and MB , if degMA

(A) allows for the
embedding of a forest with vertex set of size tA in MA, then degMB∪L(B) only
guarantees for the embedding of a forest with vertex set of size at most (k−tA)/2
in the subgraph of Gp induced by MB and the edges incident with L′, where
L′ := L \M .
Hence, we will embed only part of T ∗ in a first phase, and deal with the rest
of T ∗ in a second phase. In the first phase, we shall exclude from the embedding
only trees that are (each) adjacent to only one vertex from SD. This has the
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advantage that the part of the tree embedded in the first phase is connected (in
this way, we avoid the difficulty of having to connect already embedded parts
of T ∗ in the second phase).
This idea suggests a natural modification of our sets TA ∪ TB, in the following
way. Denote by T̄A the set of those trees from TA that are adjacent to only one
vertex from SDA, and similarly define T̄B . Assume that

|V (
⋃

T̄A)| ≥ |V (
⋃

T̄B)|,

and set T ′ := (TA ∪ TB) \ (T̄A ∪ T̄B).

Our plan now is to first embed the trees from T ′ ∪ TB and to postpone the
embedding of

⋃

T̄A to later. Observe that as we explained above, even leaving
out T̄A, we might be unable to find a partition of M so that we can embed the
trees from TA \ T̄A in one side, and

⋃

TB in the other. In fact, if we wish to
embed all of T ∗− T̄A in M , we cannot hope to fit more than

⋃

T̄B into MB and
edges incident with L′.
So, we shall partition M into MF and M̄B so that degMF

(A) allows for the
embedding of

⋃

T ′, and degM̄B∪L(B) allows for the embedding of
⋃

T̄B . This
actually means that the place we reserved for the embedding of

⋃

(TB \ T̄B) lies
in MF . Therefore, we shall ‘switch’ this forest to TA.
Let us explain what we mean by switching. For each tree t ∈ TB \ T̄B, delete
all vertices from t that are adjacent to SDB in T ∗ and add them to SDA. Put
the components of what remains of t into TA.
After switching all trees t ∈ TB \ T̄B, denote by TF the (enlarged) set TA \ T̄A.
That is, TF consists of all trees from the original TA \ T̄A, together with all trees
we generated by switching. Note that we have thus at most tripled the size
of SD. Also, each tree from TF and T̄A is adjacent only to the enlarged SDA,

which we denote by S̄D
A
, and each tree from T̄B is still adjacent only to SDB .

For details on the switching procedure, consult Section 3.4.
It remains to embed T ∗ in G, which is done in Section 3.7. We first embed the

vertices from S̄D
A∪SDB in A∪B, embed

⋃

TF in MF , and embed
⋃

T̄B in M̄B

and edges incident with L′, in the same way as in case (a). Note that we have
to use not only edges from M as before, but also edges of H that are incident
with L′. But this is not a problem: for each tree, we are able to find a suitable
edge because of the high degree of the clusters from L′. This completes the first
phase of our embedding in case (b), which for better readability we shall split
into two subphases later on.

In the remaining third phase we wish to embed
⋃

T̄A. We shall now use all of M ,

forgetting about the partition. The neighbours of the trees from T̄A in S̄D
A

have already been embedded in the first phase. Having chosen their images
carefully then, ensures that now they have still large enough degree into what
is not yet used of M . This ensures that there is enough place for

⋃

T̄A in M .
Also, it is essential here that each edge of M meets N(A) in at most one cluster.
The reason is that parts of these clusters might have been used in the first phase
of the embedding. So, some of the edges involved might be unbalanced, in the
sense above, because e. g. the degree of B was such that we were not able to
choose the endcluster in which we embedded the roots of the trees from T ′

B.
This could be a problem, if we now count on using the neighbours of A in both
endclusters for our embedding. However, if each edge of M has at most one
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endcluster in N(A), then it is irrelevant whether the embedding is balanced or
not in these edges.
The embedding itself of

⋃

T̄A is done as before. This finishes the sketch of our
proof in case (b).

3.2 Preparations

We shall now prove Theorem 2. First of all, we fix a few constants depending
on η and q. Set

π := min{η, q}, ε :=
π4q

5 · 105
, α :=

π5q

25 · 107
and m0 :=

500

qπ2
.

The regularity lemma (Theorem 5) applied to ε, α and m0 yields natural num-
bers M0 and N0.
Fix

β :=
ε

M0
, p :=

π2q

250
and n0 := max{N0,

9ε

p/2− 7α
}.

Thus our constants satisfy the following relations

1

n0
� β � α � ε � 1

m0
< p � π ≤ q,

where a � b stands for the fact that a < π
100b.

In particular, p satisfies

4ε +
1

m0
< p <

π2

250
. (7)

Let n ≥ n0, let k ≥ qn, and let G be a graph of order n which has at least
(1+η)n

2 vertices of degree at least (1+η)k. Suppose T ∗ is a tree of order k +1.
Our aim is to find an embedding ϕ : V (T ∗) → V (G) that preserves adjacency.
Now, by Theorem 5 there exists an (α, ε; N)-regular partition of V (G), with
m0 ≤ N ≤ M0. As in Section 2.1, let Gp be the subgraph of G that preserves
exactly the edges between regular pairs of density at least p.
By (1) and by (7),

|E(G − Gp)| < pn2 <
π2

8
kn.

Thus, for all but at most π
4 n vertices v, we have that degGp

(v) ≥ degG(v)− π
2 k.

Hence,

Gp has at least (1 +
π

2
)
n

2
vertices of degree at least (1 +

π

2
)k.

Let H̄ = H̄p be the weighted cluster graph corresponding to Gp. A simple
calculation shows that there are more than (1+ π

10 )N
2 clusters that (each) contain

more than αs vertices of degree at least (1 + π
2 )k in Gp.

By (2), each such cluster X must itself have degree

dēg(X) > (1 +
π

2
)k − εn > (1 +

π

5
)k.

Then Lemma 7 applied to H̄ and K := (1 + π
5 )k yields an edge AB ∈ E(H̄)

with A, B ∈ L, together with a matching M ′ of H̄ , which satisfy (a) or (b) of

10



Lemma 7. Obtain M from M ′ by deleting all edges that are incident with A or
with B. In case (a) of Lemma 7, we calculate that

dēgM (A), dēgM (B) ≥ (1 +
π

5
)k − 3n

N
≥ (1 +

π

5
− 3

qm0
)k ≥ (1 +

π

10
)k,

and similarly in case (b), it follows that

dēgM (A) ≥ (1 +
π

10
)k and dēgM∪L(B) ≥ (1 +

π

10
)
k

2
.

Thus, for the remainder of our proof of Theorem 2 we shall work with the
assumption that there is a matching M of H̄ and vertices A, B /∈ V (M) so that

1. dēgM (A), dēgM (B) ≥ (1 + π
10 )k, or

2. dēgM (A) ≥ (1 + π
10 )k, dēgM∪L(B) ≥ (1 + π

10 )k
2 , and each cluster in N(A)

meets a different edge of M .

3.3 Partitioning the tree

In this section, we shall cut our tree into small pieces. More precisely, we shall
define a set SD ⊆ V (T ∗), and sets TA and TB of disjoint small subtrees of T ∗

which are connected through the vertices from SD. Moreover, SD together
with the union of all trees from TA ∪ TB will span T ∗.

Fix a root R of T ∗. For a vertex x of a subtree T ⊆ T ∗, denote by T (x) the
subtree of T induced by x and all vertices v greater than x in the tree-order
of T ∗, i. e. all vertices v such that the path between the root R and v contains
the vertex x. If R /∈ V (T ), then define the seed sd(T ) of T as the maximal
vertex of T ∗ which is smaller than every vertex of T .
Our sets SD = SDA ∪ SDB , TA and TB will satisfy:

(I) SDA ∩ SDB = ∅,

(II) R ∈ SDA, and any other vertex x ∈ SD lies at even distance to R if and
only if x ∈ SDA,

(III) TA ∪ TB consists of the components of T ∗ − SD,

(IV) |V (T )| ≤ βk, and sd(T ) ∈ SD, for each T ∈ TA ∪ TB ,

(V) max{|SDA|, |SDB|} < 2
β
, and

(VI) e(V (
⋃

TA), SDB) = ∅, and e(V (
⋃

TB), SDA) = ∅.

Let us first define SD. To this end, we shall inductively find vertices xi, and
define auxiliary trees T i ⊆ T ∗. Set T 0 := T ∗.
In step i ≥ 1, let xi ∈ V (T ∗) be maximal in the tree-order of V (T i−1) with

|V (T i−1(xi))| > βk, (8)

and define
T i := T i−1 − (T i−1(xi) − xi),

11



as illustrated in Figure 2(a). If there is no vertex satisfying (8), then set xi := R,
and stop the definition process. Say our process stops in some step j. Let A′

be the set of all xi, i ≤ j, with even distance to the root R, and let B′ be the
set of all other xi.
Since for each x ∈ A′ ∪ B′ we have deleted at least βk − 1 vertices from T ∗, it
follows that

|A′ ∪ B′| ≤ k

βk − 1
<

2

β
.

For the sake of condition (VI), we shall add a few more vertices to our sets A′

and B′, which will result in the desired SD.
Let C be the set of the components of T ∗−(A′∪B′). For each T ∈ C with sd(T ) ∈
A′, denote by A(T ) the set of vertices adjacent to B′. Similarly, if sd(T ) ∈ B′,
then denote by B(T ) the set of vertices adjacent to A′ (cf. Figure 2(b)). Set

SDA := A′ ∪
⋃

T∈C

A(T ), and SDB := B′ ∪
⋃

T∈C

B(T )

and set SD := SDA ∪ SDB.
Finally, we shall define TA and TB . Let C′ be the set of the components of
T ∗ − SD. Set

TA := {T ∈ C′ : sd(T ) ∈ SDA} and TB := {T ∈ C′ : sd(T ) ∈ SDB},

as shown in Figure 2(c), and set VA :=
⋃

T∈TA
V (T ) and VB :=

⋃

T∈TA
V (T ).

xi

T
i−1(xi)

x1

x5

x9

x7

x4

(a) In step i, we find
vertex xi.

T i−1(xi)
xi ∈ A′

x5

x9

y

z
x1 ∈ B′

x7 ∈ B′

x4 ∈ B′

(b) Say xi ∈ A′. We
add y and z to A(T ).

T i−1(xi)
xi ∈ SDA

x5

x9z

y

x1 ∈ B′

x7 ∈ B′

x4 ∈ B′

(c) T i−1(xi) − SD ⊆
TA.

Figure 2: Phases of the partition of T ∗.

Observe that our six conditions are clearly met. This finishes our manipulation
of the tree T ∗ in Case 1.

3.4 The switching

In Case 2 from Section 3.2, we shall not only cut our tree to small pieces (cf.
Section 3.3), but also switch some of our small subtrees from one of the two sets
TA, TB to the other. We achieve this by adding some more vertices to SD, thus
naturally refining our partition of T ∗.

12



Set

T̄A :={T ∈ TA : e(V (T ), SD − sd(T )) = ∅}, and

T̄B :={T ∈ TB : e(V (T ), SD − sd(T )) = ∅}.
We may assume that

|V (
⋃

T∈T̄A

T ) | ≥ |V (
⋃

T∈T̄B

T ) |. (9)

Now, consider a tree T ∈ TB \ T̄B as in Figure 3(a). Denote by S(T ) the set
of all vertices in V (T ) that in T ∗ are adjacent to some vertex of SDB . For
illustration see Figure 3(b).
Set

S̄D
A

:= SDA ∪
⋃

T∈TB\T̄B

S(T ) and S̄D := S̄D
A ∪ SDB .

Finally, define

T ′
A :=

⋃

T∈TB\T̄B

{C : C is a component of T − S(T )}, TF := (TA \ T̄A) ∪ T ′
A,

and set
VF :=

⋃

T∈TF

V (T ) and V̄B :=
⋃

T∈T̄ B

V (T ).

T

sd(T )

v1 v2 v3

v4

(a) A tree T ∈ TB \T̄B , with
sd(T ), v1, v2, v3, v4 ∈ SDB .

T

sd(T )

v1 v2 v3

v4

u2 u3

u4

u1

(b) The set S(T ) =
{u1, . . . , u4}, and the sub-
trees of T generated by the
switching.

Figure 3: The switching procedure.

Observe that our sets S̄D, TF , and T̄B still satisfy conditions (I)-(IV) and (VI)
from Section 3.3. Instead of (V), we now have the similar

(V)’ |S̄D| ≤ 8
β
,

since by the definition of S̄D
A

we know that |S̄D
A| ≤ |SDA| + 2|SDB| ≤ 6

β
.
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3.5 Partitioning the matching

In this subsection, we shall divide the matching M into two, into which we will
later embed the two parts

⋃

TA,
⋃

TB , respectively
⋃

TF ,
⋃

T̄B, of T ∗ that we
defined in Subsection 3.3, resp. in Subsection 3.4.

For this, we will need the following number-theoretic lemma, which appeared
also in [1]. We give a short proof.

Lemma 9. Let I be a finite set, and let a, b, ∆ > 0. For i ∈ I, let αi, βi ∈ (0, ∆].
Suppose that

a
∑

i∈I αi

+
b

∑

i∈I βi

≤ 1. (10)

Then there is a partition of I into Ia and Ib such that
∑

i∈Ia
αi > a − ∆ and

∑

i∈Ib
βi ≥ b.

Proof. Define a total order � on I in a way that i � j implies αi

βi
≤ αj

βj
for all

i, j ∈ I . Let ` ∈ I be minimal in this order with a ≥ ∑

i�` αi.
Set Ia := {i ∈ I : i � `} and set Ib := I\Ia. It is clear that

∑

i∈Ia
αi > a−∆, by

the definition of ` and as α` ≤ ∆. So, all we have to show is that
∑

i∈Ib
βi ≥ b.

Indeed, suppose otherwise. Then by (10), and by the definition of `, we have
that
∑

i∈Ib
βi

∑

i∈I βi

<
b

∑

i∈I βi

≤
a − ∑

i∈Ia
αi

∑

i∈I αi

+
b

∑

i∈I βi

≤ 1 −
∑

i∈Ia
αi

∑

i∈I αi

=

∑

i∈Ib
αi

∑

i∈I αi

.

Multiply the two sides of this inequality with
∑

i∈I αi·
∑

i∈I βi, subtract
∑

i∈Ib
αi·

∑

i∈Ib
βi, and divide by

∑

i∈Ia
βi

∑

i∈Ib
βi to obtain

α`

β`

≤
∑

i∈Ia
αi

∑

i∈Ia
βi

<

∑

i∈Ib
αi

∑

i∈Ib
βi

≤ α`

β`

,

(where the first and last inequality follow from the definition of �). This yields
the desired contradiction.

We shall now apply Lemma 9 to partition our matching M = {ei}i≤|M |. We do
this separately for the two cases from Section 3.2.
In Case 1, we set

a := |VA| +
πk

20
, b := |VB | + πk

20
, and ∆ := 2s.

For i ≤ |M |, set αi := dēgei
(A) ≤ ∆, and βi := dēgei

(B) ≤ ∆. Observe that

a
∑|M |

i=1 αi

+
b

∑|M |
i=1 βi

≤ |VA| + |VB | + πk
10

(1 + π
10 )k

≤ 1.

Hence, Lemma 9 yields a partition of M into MA and MB such that

dēgMA
(A) > |VA| +

πk

40
and dēgMB

(B) > |VB | + πk

40
. (11)
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In Case 2, set

a := |VF | +
πk

20
, b := |V̄B | + πk

40
, and ∆ := 2s.

For i = 1, . . . |M |, again set αi := dēgei
(A), and βi := dēgei

(B). For i =
|M |+ 1, . . . , |M |+ |L′|, set αi := 0, and set βi := dēgCi

(B), where Ci is the ith
cluster in L′, where L′ := L \ M . Observe that by (9),

|V̄B | ≤ (1 − |VF |)
2

k.

Now, it is easy to verify that the condition of Lemma 9 holds. We thus obtain
a partition of M into MF and M̄B such that

dēgMF
(A) > |VF | +

πk

40
and dēgM̄B∪L′(B) ≥ |V̄B | + πk

40
. (12)

3.6 The embedding in Case 1

In this subsection, we shall complete the proof of Theorem 2 under the as-
sumption that Case 1 of Section 3.2 holds. So, we assume that there are
an edge AB ∈ E(H̄) and disjoint matchings MA = {e1, e2, . . . , emA

} and
MB = {emA+1, emA+2, . . . , e|M |} in H̄ −{A, B} as in Section 3.5. These match-
ings together with the sets SD, TA and TB from Section 3.3 satisfy (11).

We wish to embed T ∗ in Gp. Our embedding ϕ will be defined in |SD| steps.
In each step i ≥ 1, we choose a suitable vertex ri ∈ SD and embed it together
with all trees from

Ti := {T ∈ TA ∪ TB : sd(T ) = ri}.

Set V0 := ∅ and for i ≥ 1 let

Vi := Vi−1 ∪ {rj} ∪
⋃

T∈Tj

V (T ).

We start with r1 := R, and in each step i > 1, we shall choose a vertex ri ∈ SD
that is adjacent to some Vj with j < i. The seed ri will be embedded in a vertex
vi ∈ A ∪ B, while Ti will be mapped to an edge from M (or more precisely, to
the corresponding subgraph of Gp).
Set U0 := ∅, and once ϕ is defined on Vi, set Ui := ϕ(Vi). Furthermore, we shall
define indices ai ≥ ai−1 and bi ≥ bi−1, starting with a0 := 1 and b0 := mA + 1.
These indices will mark the edges we are currently embedding in.
For each i ≥ 0, the following conditions will hold.

(i) |(A ∪ B) ∩ Ui| ≤ i,

(ii) if v ∈ Vi ∩ N(SDA), resp. v ∈ Vi ∩ N(SDB), then ϕ(v) has at least p
2s

neighbours in A, resp. in B,

(iii) Ui ∩ ej = ∅ for each j ∈ (ai, mA] ∪ (bi, m],

(iv) for CD = eai
, if ||C ∩ Ui| − |D ∩ Ui|| > βk, then

min{dēgC(A), dēgD(A)} ≤ min{|C ∩ Ui|, |D ∩ Ui|} + (2α + ε)s + βk,
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(v) for CD = ebi
, if ||C ∩ Ui| − |D ∩ Ui|| > βk, then

min{dēgC(B), dēgD(B)} ≤ min{|C ∩ Ui|, |D ∩ Ui|} + (2α + ε)s + βk,

(vi) ΣmA

i (A) ≥ |VA \ Vi| and Σm
i (B) ≥ |VB \ Vi|,

where for ` ∈ N we define

Σ`
i(A) :=

∑̀

j=ai

(

dēgej
(A) − |ej ∩ Ui| − µA

)

, with µA :=
πk

40|MA|
,

and

Σ`
i(B) :=

∑̀

j=bi

(

dēgej
(B) − |ej ∩ Ui| − µB

)

, with µB :=
πk

40|MB|
.

Observe that properties (i)–(v) trivially hold for i = 0. Property (vi) holds
for i = 0 because of (11).

So, suppose now that we are in some step i ≥ 1 of our embedding process.
Choose ri ∈ SD as detailed above.
Let us assume that ri ∈ SDA, the case when ri ∈ SDB is analogous. Set bi :=
bi−1, and let ai ∈ {ai−1, . . . , mA} be minimal with

Σai

i−1(A) ≥ |Vi \ Vi−1|. (13)

We embed ri in a vertex ϕ(ri) ∈ A that is typical with respect to B, typical
w. r. t.

⋃

ai−1<j<ai
ej , and typical w. r. t. each endcluster of eai−1

and of eai
.

properties (i) and (ii) for i − 1 ensure that if v is the predecessor of ri in T ∗,
then ϕ(v) has at least ps

2 − i neighbours in A \ Ui−1. By (2), at most 6αs of
these vertices do not have the required properties. Hence, there are at least
(p
2 − 6α)s − i ≥ 1 suitable vertices we may choose vi := ϕ(ri) from.

Next, we embed the trees from Ti. This is done inductively, in |Ti| substeps
of step i. In each substep j ≥ 1, we shall embed one tree tj ∈ Ti. Denote by
V <j ⊆ V (Ti) the set

⋃

`<j V (t`) of vertices we have already embedded before

substep j and set U<j := Ui−1 ∪ϕ(V <j). Note that in particular, U<1
i−1 = Ui−1.

For each j ≥ 0, and for every edge CD ∈ {eai−1
, . . . , eai

} with

||C ∩ Ui−1| − |D ∩ Ui−1|| ≤ βk

the following will hold.

(a) If ||C ∩ U<j+1| − |D ∩ U<j+1|| > βk, then
min{degC(vi), degD(vi)} ≤ min{|C ∩ U<j+1|, |D ∩ U<j+1|} + 2αs + βk.

For j = 0, assertion (a) is void, and there is nothing to show.
So, assume now that we are in substep j ≥ 1. That is, ϕ(v) has been defined
for all v ∈ V <j , and we are about to embed tj . We claim that there is an edge
e ∈ {eai−1

, . . . , eai
} which satisfies

dege(vi) − |e ∩ U<j | ≥ 8

p
(αs + βk). (14)
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Indeed, suppose there is no such edge. Then, by (2), by (13), and by the choice
of vi, we have that

8

p
(αs + βk)(ai − ai−1 + 1) >

ai
∑

`=ai−1

(dēge`
(A) − 2εs − |e` ∩ Ui−1|) − |U<j \ Ui−1|

≥ Σai

i−1(A) + (ai − ai−1 + 1)(µA − 2εs) − |V <j |
≥ (ai − ai−1 + 1)(µA − 2εs),

implying that 8
p
(α + εq) + 2ε > πq

20 , a contradiction. This proves the existence

of an edge e that satisfies (14).
Moreover, a calculation similar to the one above shows that,

as long as |V <j | < Σai−1
i−1 (A), we can choose e 6= eai

. (15)

We shall do so whenever we can.

So, assume now that we have chosen an edge e for which (14), and if possible,
different from eai

. Clearly, we can write e = CD such that

degC(vi) − |C ∩ U<j | ≥ 4

p
(αs + βk). (16)

We claim that furthermore

|D \ U<j | ≥ 2

p
(2αs + βk). (17)

Indeed, suppose for contradiction that (17) does not hold. Then (16) implies
that

|C ∩ U<j | ≤ s − 4

p
(αs + βk) < |D ∩ U<j | − 2

p
βk

(recall that s = |C| = |D|). Hence, by (a) for j − 1, and by (iv) for i − 1,

min{degC(vi), degD(vi)} ≤ |C ∩ U<j | + 2αs + βk.

Thus, by (14),

8

p
(αs + βk) ≤ degC(vi) + degD(vi) − |e ∩ U<j |

< s + 2αs + βk − |D ∩ U<j |
< |D \ U<j | + 2(αs + βk).

So, |D \ U<j | > 6
p
(αs + βk), a contradiction to our assumption that (17) does

not hold. We have thus shown (17).

Finally, we shall embed tj into the endclusters of e. Write V (tj) = r∪L1∪L2∪. . .,
where r is the root of tj and L` is the `th level of tj (i. e. the set of vertices at
distance ` to r).
First, suppose that degD\U<j (vi) ≤ 2αs. In this case, choose ϕ(r) ∈ NC\U<j (vi),
avoiding the (by (3)) at most 2αs vertices that are not typical w. r. t. one of the
sets A and D \ U<j . This is possible because of (16).
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Embed the rest of V (tj) levelwise, choosing for ϕ(L`) unused vertices of D\U<j

that are typical with respect to C \ U<j , if ` is odd; and choosing vertices of
C \ U<j that are typical with respect to A and w. r. t. D \ U<j , if ` is even.
Observe that hence the image of any vertex v ∈ V (tj)∩N(SDA) has at least p

2s
neighbours in A, as required for (ii).
Now, suppose that degD\U<j (vi) > 2αs. In this case, we may alternatively wish
to embed r in D. We do so in either of the following cases

1. |⋃`∈N
L2`−1| > |⋃`∈N

L2`| and |C \ U<j | ≥ |D \ U<j |, or

2. |⋃`∈N
L2`−1| < |⋃`∈N

L2`| and |C \ U<j | ≤ |D \ U<j |,
and otherwise embed r in C, as before. After having thus chosen a place for the
root r, the rest of tj is embedded analogously as above (possibly swapping the
roles of C and D). This completes the embedding of tj .

Let us prove property (a) for j. To this end, assume that there is an edge
CD ∈ {eai−1

, . . . eai
} such that ||C ∩Ui−1|− |D∩Ui−1|| ≤ βk and ||C ∩U j

i−1|−
|D ∩ U j

i−1|| > βk. Now, if ||C ∩ U<j | − |D ∩ U<j || > βk, then (a) for j follows
from (a) for j − 1.
So suppose otherwise, that is

||C ∩ U<j | − |D ∩ U<j || ≤ βk. (18)

This is only possible if in step j, we could not choose into which of C and D we
would embed the root of tj . This implies that

min{degC\U<j (vi), degD\U<j (vi)} ≤ 2αs.

Using (18), this gives

min{degC(vi), degD(vi)} ≤ max{|C ∩ U<j |, |D ∩ U<j |} + 2αs

≤ min{|C ∩ U<j |, |D ∩ U<j |} + 2αs + βk

≤ min{|C ∩ U<j+1|, |D ∩ U<j+1|} + 2αs + βk,

as desired for (a). This completes substep j.

Once all tj ∈ Ti are embedded, step i terminates. Conditions (i), (ii), (iii), (v),
and the second part of (vi) hold for i, as they hold for i − 1, and by our choice
of ϕ(Vi \Vi−1). Property (iv) for i follows either from (iv) for i− 1, or from (a)
for j = |Ti|.
In order to see the first part of (vi) for i, recall that we chose ϕ(

⋃

Ti) in edges
e 6= eai

whenever possible. So, by (15), it follows that

|eai
∩ (Ui \ Ui−1)| ≤ |Vi \ Vi−1| − Σai−1

i−1 (A).

Hence, by (vi) for i − 1, and by (iii) for i, we have that

ΣmA

i (A) = ΣmA

i−1(A) − Σai−1
i−1 (A) −

mA
∑

j=ai

|ej ∩ (Ui \ Ui−1)|

≥ |VA \ Vi−1| + |eai
∩ (Ui \ Ui−1)| − |Vi \ Vi−1| − |eai

∩ (Ui \ Ui−1)|
= |VA \ Vi,

as desired.
This completes the embedding of the tree T ∗ in Gp for Case 1. It remains to
prove Theorem 2 for Case 2, which we shall do in the next subsection.
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3.7 The embedding in Case 2

We shall now complete the proof of Theorem 2 under the assumption that
Case 2 of Section 3.2 holds. That is, there are an edge AB ∈ E(H̄) and disjoint
matchings MF := {e1, . . . , emF

} and M̄B := {emF +1, . . . , e|M |} in H̄ − {A, B}
together with sets S̄D, TF and T̄B from Sections 3.3 and 3.4 satisfying (12)
from Section 3.5. Set mB := |M̄B|.
First, we determine which trees of T̄B are going to be embedded in M̄B and
which in edges incident with L′. So, let T M

B ⊆ T̄B be maximal with

dēgM̄B
(B) ≥ |

⋃

T∈T M
B

V (T )| + πkmB

40(mB + |L′|) . (19)

Set T L
B := T̄B \ T M

B . Let V M
B :=

⋃

T∈T M
B

V (T ) and let V L
B := V̄B \ V M

B .

Observe that if T M
B 6= T̄B , then the maximality of T M

B ensures that

dēgM̄B
(B) < |V M

B | + πkmB

40(mB + |L′|) + βk.

Hence, by (12), either T L
B = ∅, or

dēgL′(B) ≥ |V L
B | + πk|L′|

80(mB + |L′|) . (20)

Our embedding will be defined in three phases. In the first phase, we shall
embed all vertices from S̄D in A∪B, embed the trees from TF in edges of MF ,
and embed

⋃

T M
B in edges of M̄B . In the second phase, we shall embed

⋃

T L
B

in edges incident with L′ ∩N(B), and in the third phase, we shall embed
⋃

T̄A

in the remaining space inside edges from both MF and M̄B .

The first phase is defined in |S̄D| steps, and will be similar to the embedding
from Section 3.6. In each step i ≥ 1, we shall embed a vertex ri ∈ S̄D together
with all trees from

Ti := {T ∈ TF ∪ T M
B : sd(T ) = ri}.

Set V0 := ∅, and for i ≥ 1, set

Vi := Vi−1 ∪ {rj} ∪
⋃

T∈Tj

V (T ).

Start with r1 := R. In each subsequent step, we choose an ri ∈ S̄D that is
adjacent to some Vj with j < i.
Let Ui := ϕ(Vi).Furthermore, for i ≥ 0, set

V F
i := Vi ∩ VF , and V B

i := Vi ∩ V M
B .

We again define an index bi, which plays the same role as bi from Section 3.6,
starting with b0 := mF + 1.

For i ≥ 0, our embedding ϕ satisfies the following conditions.

(i) |(A ∪ B) ∩ Ui| ≤ i,
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(ii) if v ∈ Vi ∩ N(S̄D
A
), resp. v ∈ Vi ∩ SDB , then ϕ(v) has at least p

2s
neighbours in A, resp. in B,

(iii) e` ∩ Ui = ∅ for each ` with bi < ` ≤ m,

(iv) for ebi
= CD, if ||C ∩ Ui| − |D ∩ Ui|| > βk, then

min{dēgC(B), dēgD(B)} ≤ min{|C ∩ Ui|, |D ∩ Ui|} + (2α + ε)s + βk,

(v) ΣM
i (B) ≥ |V M

B \ V B
i |,

where

Σ`
i(B) :=

∑̀

j=bi

(

dēgej
(B) − |ej ∩ Ui| − µB ,

)

with µB :=
πk

40(|MB| + |L′|) .

These properties reflect those from Case 1. Observe that we no longer need to
define an index ai, nor do we require properties (iii)–(v) for the A-side. This is
due to the fact that each edge from M has only one endvertex in N(A), which
will simplify our embedding technique.
Observe that for i = 0, conditions (i)–(iv) trivially hold, and (v) holds because
of (19). In addition to conditions (i)-(v), we shall require for i ≥ 1 and for
vi := ϕ(ri) that

(vi) degM (vi) ≥ (1 + π
20 )k, if ri ∈ S̄D

A
,

(vii) degL′(vi) ≥ |V L
B | + |L′| πk

100N
or V L

B = ∅, if ri ∈ SDB .

These latter two conditions will be needed in the second and the third phase to
embed the trees from

⋃

T L
B and

⋃

T̄A.

Suppose now that we are in some step i ≥ 1, and wish to embed a seed ri

together with the trees from Ti.

First, assume that ri ∈ S̄D
B

. Then the embedding process is very similar to the
one in Case 1. The only difference is that we shall have a few more conditions
on the typicality of ϕ(vi). As before, choose bi ≥ bi−1 minimal with

Σbi

i−1(B) ≥ |Vi \ Vi−1|. (21)

Then, we choose ϕ(ri) = vi ∈ B not only typical with respect to A, w. r. t.
⋃bi−1

`=bi−1+1 e`, and w. r. t. each endcluster of ebi−1
and of ebi

, but also typical

with respect to L′. We can thus ensure that vi satisfies (vii). Indeed, by (2)
and by (20), we have that

degL′(vi) ≥ dēgL′(B) − |L′|εs ≥ |V L
B | + |L′| πk

100N
,

unless V L
B = ∅.

The rest of the embedding is analogous to Case 1. Conditions (i)–(v) are shown
in the same way, employing an analogue of property (a) from Case 1. Prop-
erty (vi) holds trivially.

Now, suppose that ri ∈ S̄D
A
. This case is even simpler, as each edge from M

meets N(A) in at most one cluster. We choose ϕ(ri) = vi ∈ A typical w. r. t. B,
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w. r. t.
⋃

e∈MF
e, and also typical with respect to

⋃

C∈N(A) C, thus ensuring

property (vi). With the help of (2) and (12) we find suitable edges into which
we embed the trees from Ti. The verification of conditions (i)–(v) is identical.
Property (vii) holds trivially.
This ends the first phase of our embedding process.

The second phase of our embedding process is again defined in |S̄D| steps.
Assume that V L

B 6= ∅ (otherwise we skip the second phase). In each step i ≥ 1,
we embed the trees from

T B
i := {T ∈ T L

B : sd(T ) = ri}
in edges incident with L′. Suppose that we are at substep j of this procedure,
i. e. that we have already embedded the trees t1, . . . , tj−1 of T B

i . Denote by U<j

the set of vertices used so far for the embedding. By (vii), we have that

∑

C∈L′

degC\U<j (vi) ≥ |V L
B | + |L′| π

100

k

N
− |

⋃

C∈L′

C ∩ U<j | > |L′| π

100

k

N
.

It is not difficult to calculate that hence there is a cluster C ∈ L′ with

degC\U<j (vi) ≥
2

p
(αs + βk).

Embed the root r of tj in a vertex v ∈ C which is typical with respect to
⋃

X∈V (H̄) X . Then, by (2), and by the definition of L, we have that

degV (Gp)\U<j (v) ≥ (1 +
π

5
)k − εn − |U<j | ≥ π

10
k. (22)

Next, we wish to find a suitable neighbour D of C in V (H̄) so that we can
embed tj into the edge CD. Using (22), one can show that there is a D ∈ V (H)
such that

degD\U<j (v) ≥ 2

p
(αs + βk).

We can now embed tj levelwise in the edge CD, in the same way as before,
when we embedded in edges from M .
This ends the definition of the embedding of

⋃

T̄B , and thus the second phase.

Also the third phase of our embedding process takes place in |S̄D| steps, where
in each step i ≥ 1, we embed the trees from

T F
i := {T ∈ T̄A : sd(T ) = ri}.

The embedding process is identical to the one from the first phase when ri ∈
S̄D

A
, with the difference that now we use edges from both MF and MB. That is,

at substep j, when we have embedded the trees t1, . . . , tj−1 of T F
i , property (vi)

enables us to find an edge CD ∈ M with

min{degC\U<j (vi), |D \ U<j |} ≥ 2

p
(αs + βk).

Then, embed tj levelwise in the edges CD as before.
We thus embed all of

⋃

T̄A, which terminates the third phase of our embedding
process. This completes the proof of Theorem 2.

21



4 Extensions and applications

In this last section, we explore applications and generalisations of Theorem 2.
In Section 4.1 we show how our theorem implies an asymptotic upper bound
on the Ramsey number of trees. We extend Theorem 2 so that it allows for
embedding subgraphs other than trees in Section 4.2, and in Section 4.3, we
turn our attention to the yet unresolved sparse case.

4.1 A bound on the Ramsey number of trees

Based on ideas from [5] and using Theorem 2, we prove the following.

Lemma 10. For all 0 < ε < 1/4, and for each r ∈ (0, 1], there exists an n0 ∈ N

such that the following holds for each n ≥ n0.
If G is a graph on d(1 + ε)ne vertices, and Tk+1 and Tm+1 are trees of order
k + 1, m + 1 ∈ N, such that k/m = r and k + m = n, then either Tk+1 is a
subgraph of G, or Tm+1 is a subgraph of the complement Ḡ of G.

Recall that r(Tk+1, Tm+1) denotes the Ramsey number of the trees Tk+1 and
Tm+1. So, Lemma 10 implies an asymptotic upper bound on the Ramsey number
of trees.

Proposition 3. The Ramsey number r(Tk+1, Tm+1) of Tk+1 and Tm+1 is at
most k + m + o(k + m), provided that lim inf(k/m), lim inf(m/k) > 0.

The sharp bound k + m has been conjectured in [5].

Proof of Lemma 10. Apply Theorem 2 to ε/8 and r/4 to obtain an n0 ∈ N.
Now, assume that k, m and n are as in Lemma 10. Let G be a graph on
d(1 + ε)ne vertices.
For simplicity, let us assume that the order of G is (1 + ε)n. Clearly, either at
least half of the vertices of G have degree at least k + ε

2n or in the complement
Ḡ of G, at least half of the vertices have degree at least m + ε

2n.
First, suppose that the former of these assertions is true. We show that then
Tk+1 ⊆ G.
Choose a set L of size d 1

2 (1 + ε)ne which contains only vertices of degree at
least k + ε

2n. Delete b ε
4nc vertices from V (G) \ L. This yields a graph G′ on

n′ = d(1 + 3
4ε)ne ≥ n0 vertices with at least |L| ≥ 1

2 (1 + ε
8 )n′ vertices of degree

at least

k +
ε

4
n ≥ (1 +

ε

4
)k.

So, since k ≥ r
4n′, and by Theorem 2, Tk+1 is a subgraph of G′. Hence, Tk+1 ⊆

G, as desired.
Now, assume that the second assertion above holds, that is, in the complement
Ḡ of G, at least 1

2 (1+ ε)n vertices have degree at least m+ ε
2n. We then embed

Tm+1 in Ḡ. This is done analogously. It suffices to observe that

m ≥ rm ≥ r

2
n ≥ r

4
n′.
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4.2 Graphs with few cycles

The question we pursue in this subsection is whether the condition of Theorem 2
allows for embedding other graphs on k +1 vertices, apart from trees. J. Foniok
[personal communication] asked if we may add an edge to our tree T ∗ and still
embed it in G. Inspired by this question, we show that, if we add only constantly
many edges to a tree of order k + 1, forming only even cycles, then the thus
obtained graph embeds in G.

Theorem 4. For every η, q > 0 and for every c ∈ N, there exists an n0 ∈ N

such that for each graph G on n ≥ n0 vertices and each k ≥ qn, the following
holds.
If G has at least (1+η)n/2 vertices of degree at least (1+η)k, then each connected
bipartite graph Q on k + 1 vertices with at most k + c edges is a subgraph of G.

In particular, the condition of Theorem 2 allows for embedding even cycles in G:

Corollary 11. For every η, q > 0 there is an n0 ∈ N so that for all graphs G
on n ≥ n0 vertices and each k ≥ qn the following is true.
If at least (1+η)n/2 vertices of G have degree at least (1+η)k, then G contains
all even cycles of length at most k + 1.

Note that the graph Q from Theorem 4 need not even be connected (since we
may simply add some edges to make it connected and then apply Theorem 4).

Corollary 12. For every η, q > 0 and for every c ∈ N, there exists an n0 ∈ N

such that for each graph G on n ≥ n0 vertices and each k ≥ qn, the following
holds.
If G has at least (1+η)n/2 vertices of degree at least (1+η)k, then each bipartite
graph Q on k + 1 vertices, with ` ∈ N components and at most k + c − ` edges,
is a subgraph of G.

Observe that our argument for the bound on Ramsey number from Subsec-
tion 4.1 also applies here. With an identical proof, we obtain the following.

Corollary 13. Let Q1 and Q2 be any two bipartite graphs of order k + 1, and
m + 1 respectively, as in Theorem 4 or in Corollary 12. Then, r(Q1, Q2) ≤
k + m + o(k + m), as long as lim inf k/m, lim inf m/k > 0.

Our proof of Theorem 4 follows closely the lines of the proof of Theorem 2. We
embed a rooted spanning tree (T ∗, R) of Q, and choosing ϕ carefully, we ensure
the adjacencies for the edges from E(Q) \ E(T ∗).

Proof of Theorem 4. Set π := min{η, q} and set

α′ :=
1

c
αc+1, ε :=

π4q

5 · 105
, and m0 :=

500

π2q
,

where α is the constant from the proof of Theorem 2. As in the proof of Theo-
rem 2, the regularity lemma applied to α′, ε, and m0, yields natural numbers N0

and M ′
0. Set M0 := max{M ′

0, c}, and define β, n0 and p accordingly.
Now, let G be a graph on n ≥ n0 vertices which satisfies the condition of
Theorem 4, let k ≥ qn, and let Q be a connected bipartite graph of order k + 1
with at most k + c edges, with a spanning tree T ∗. Fix a root R in T ∗. Denote
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by M∗ the subgraph of Q induced by the edges in E(Q) \E(T ∗) and let N∗ be
the set of predecessors of V (M∗) in the tree order of T ∗.
We decompose T ∗ as in Section 3.3, with the difference that we now add the
vertices from V (M∗) ∪ N∗ to the sets A′ and B′ (from the definition of SD),
depending on the parity of their distance in T ∗ to R. In this way, and since Q is

bipartite, we obtain, after the switching, two independent sets S̄D
A

and SDB

so that

|S̄D
A| + |SDB | ≤ 8

β
+ 8c <

9

β
,

which is constant in n.
The definition of our the embedding ϕ is similar as in the proof of Theorem 2,
except for some extra precautions we take for vertices from V (M ∗) ∪ N∗. At

step i, for each vertex v ∈ S̄D
A
, define

N i
v :=

j
⋂

`=1

N(ϕ(u`)) ∩ A,

where u1, . . . uj are the already embedded neighbours of v in SDB . If none of
the neighbours of v in SDB has been embedded before step i, then set N i

v := A.
Analogously define N i

v for v ∈ SDB .
In each step i of our embedding process, we shall ensure the following.

(i) If v ∈ V (M∗) is not yet embedded, then |N i
v | ≥

(

p
2

)j
s,

where j = j(v, i) is the number of neighbours of v in S̄D
A

resp. SDB that have
already been embedded before step i.
Observe that in step i = 0, either N 0

v = A or N0
v = B, and therefore condition (i)

is met.
Suppose that at step i ≥ 1 of our embedding process, we are about to embed a

vertex v = ri ∈ V (M∗) ∪ N∗. Assume that v ∈ S̄D
A

(the case when v ∈ SDB

is analogous). Denote by w1, . . . , w` the neighbours of v in V (M∗) that have
not been embedded yet.
Now, embed v in a vertex from N i−1

v that satisfies the at most six conditions of
typicality from the proof of Theorem 2, except the typicality w. r. t. B, which
we replace by typicality w. r. t. each N i−1

wj
, for 1 ≤ j ≤ `. This is possible, since

our embedding scheme and the condition on the number of edges of Q ensure
that v has at most c + 1 neighbours in Q that are already embedded. Thus, it
follows from (i) for i − 1 and for v that

|N i−1
v | ≥

(p

2

)c+1

s > α′s.

So, there are at least

(

(p

2

)c+1

− (6 + c)α′

)

s − |S̄D| ≥
(

π2q

250

)c+1

s − 9

β
> 1

unused typical vertices we can choose ϕ(v) from.
Finally, observe that since we chose v typical w. r. t. each N i−1

wj
, we have ensured

property (i) for i and for every v′ ∈ V (M∗) that is not yet embedded.
This completes the proof of Theorem 4.

24



4.3 The sparse case

In this final section we shall discuss the sparse version of our main result, The-
orem 2. Recall that we had to restrict k to be linear in n in our result. So, a
question naturally arising is whether Theorem 2 remains true for arbitrary k.
Such a version would make at the same time the trees we look for tiny, and the
host graph sparse.

Question 14. Does Theorem 2 remain true for k ∈ o(n)?

In other words, we would like to know whether for every η > 0 and every k(n),
possibly sublinear, there exists an n0 such that the following is true. If at least
(1+η)n/2 vertices of a graph G of order n ≥ n0 have degree at least (1+η)k(n),
then every tree with k(n) edges is a subgraph of G.

A. Pór [personal communication] observed that we actually only need to resolve
the problem for all cases when k is constant in n.
Indeed, suppose that for every k ∈ N and every η > 0 there is an n0(k, η) such
that the assertion of Theorem 2 is true for k, η, and all n ≥ n0(k, η). In order to
reach a contradiction, suppose that the assertion is false for some specific choice
of k′(n), and η′. Then, there exist a graph G on of order say n′, and a tree T
with k′(n′) edges, so that at least (1+ η′)n′/2 vertices of G have degree at least
(1 + η′)k′(n′), but T 6⊆ G.
Now, consider the graph G′ which consists of n0(k

′(n′), η′) disjoint copies of G.
Still, at least (1 + η′)|G′| vertices of G′ have degree at least (1 + η′)k′(n′), and
still, T 6⊆ G′. Thus, the approximate version of Conjecture 1 is false for (the
constant) k = k′(n′), for η′, and for |G′| ≥ n0(k

′(n′), η′), a contradiction to our
assumption above.

In order to prove the approximate version of Conjecture 1 for all k, it would
thus be enough to prove it for all k constant in n. Hence, a positive answer to
the following question would imply a positive answer to Question 14.

Question 15. Does Theorem 2 remain true for all k ∈ O(1)?

Actually, a positive answer to Question 15 implies even more. As first observed
by O. Pangrác [personal communication], the argument above in fact proves the
approximate version of Conjecture 1 for all n (without any bound n0).
So, if the answer to Question 15 is positive, then for every η > 0, and all k, n ∈ N

it holds that each graph G of order n with at least (1 + η)n/2 vertices of degree
at least (1 + η)k contains as subgraphs all trees with at most k edges.
As we may choose η = 1/n, we can restate the conclusion of these observations
more dramatically as follows.

Proposition 16. If the answer to Question 15 is positive, then also the follow-
ing is true for all k, n ∈ N.
Each graph G of order n with at least (n + 1)/2 vertices of degree at least k + 1
contains as subgraphs all trees with at most k edges.

A variation of Pór’s argument shows that if there is a function k = k(n), tending
to infinity, so that the approximate version of Conjecture 1 holds for all ck(n)
with 0 < c ≤ 1, then it holds for for all choices of k′ = k′(n) ≥ k(n).
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Proposition 17. Suppose there is a k = k(n), with limn→∞ k(n) = ∞, so that
for every η > 0 there exists an n0 = n0(η) so that the conclusion of Theorem 2
holds for all graphs of order some n ≥ n0, for ck(n) with 0 < c ≤ 1, and
for η > 0.
Then for all choices of k′(n) > k(n) and η′ > 0 there exists an n′

0 = n′
0(k

′, η′)
so that the conclusion of Theorem 2 holds for all graphs of order n ≥ n′

0, for
k′(n) and for η′.

Proof. Suppose otherwise. Then there exists a k = k(n), so that for each η > 0
there is an n0 = n0(η) as above. Furthermore, there are k′(n) > k(n) and η′

for which the assertion does not hold. This means that for every n′
0 = n′

0(k
′, η′)

there exist a graph G on n′
1 ≥ n′

0 vertices, and a tree T with k′(n′
1) edges, so

that at least (1 + η′)n′
1/2 vertices of G have degree at least (1 + η′)k′(n′

1), but
T 6⊆ G. Fix such an n′

0 ≥ n0(η
′), and an n′

1 ≥ n′
0.

Let m ∈ N be such that k′(n′
1) ≤ k(mn′

1). Set

c := k′(n′
1)/k(mn′

1).

Observe that by our choice of n′
0, we can assume that

m ≥ 1 ≥ n0(η
′)/n′

1.

Now, consider the graph G′ that consists of m disjoint copies of G. Still, at
least (1 + η′)|G′|/2 vertices of G′ have degree (1 + η′)k′(n′

1), and still, T 6⊆ G′.
Thus, Conjecture 1 is false for k′(n′

1) = ck(|G′|), for η′, and for |G′| ≥ n0(η
′), a

contradiction to our assumption.

Observe that we can use the same arguments also for Conjecture 1 (in the exact
version), or for the Erdős–Sós conjecture. In particular, if these conjectures can
be solved for constant k, then they hold in general.

While at first glance Question 15 might seem easier to solve than Theorem 2,
since we are only looking for tiny trees, one has to keep in mind that also the
host graph is very sparse.
For this reason, Szemerédi’s original regularity lemma is of little use in the
sparse setting. However, one may circumvent this problem by using instead the
regularity lemma for sparse graphs that was recently developed by Kohayakawa
and Rödl (see [7]).
But, more obstacles arise in the sparse case, if we try to follow our approach
from Theorem 2. One of these is the following. When embedding the tree, we
have to avoid in each step the atypical vertices in the neighbourhood of the
already embedded vertices. But, in the sparse case, the expected size of the
neighbourhood of a vertex is o(n), while the size of the set of atypical vertices
might be Θ(n).
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pages 399–401, 1976.
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