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Abstract

Beck introduced the concept of Ramsey games by studying the game ver-
sions of Ramsey and van der Waerden theorems. We contribute to this topic
by investigating games corresponding to structural extensions of Ramsey and
van der Waerden theorems—the theorem of Brauer, structural and restricted
Ramsey theorems.

1 Introduction

Ramsey theory deals with the statements of the following type: For every partition
A1 ∪ · · · ∪ Ak of the set

(

C
A

)

of all substructures of C which are isomorphic to A,

there exists a substructure B of C such that the set
(

B
A

)

belongs to one class of the
partition. This definition of course assumes that we make precise notions of the
structure and of the substructure. The validity of the previous statement is denoted
by C → (B)A

k . Every B′ ∈
(

C
B

)

is called a copy of B in C.
The classical Ramsey theorem in this setting claims that for all integers k, n, p

there exists an integer N such that

KN → (Kn)
Kp

k .

The previous statement is shortly denoted by N → (n)p
k, which is the original Erdős-

Rado partition arrow.
In Ramsey theory one tries to prove the validity of statement C → (B)A

k for
various combinatorial, number theoretical and geometrical structures. For a good
survey on this topic, see eg. [9] or [11].

Another question, which is intensively studied, is motivated by efforts to find,
for a given A, B and k, the minimal size of the structure C satisfying C → (B)A

k .
Denote by C-Ramsey number rC(A, B, k) the minimal size of C ∈ C which satisfies
C → (B)A

k in a fixed class C of structures where all the objects A, B, C are considered
(we tacitly assume C ∈ C exists; otherwise we put rC(A, B, k) = ∞).
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These questions seem to be very difficult even in the simplest instances, such as
Ramsey theorem. In this case

2n/2 ≤ rK(K2, Kn, 2) ≤ 22n,

where K is the class of all complete graphs. This leads to tower function growth for
numbers rK(Kp, Kn, k).

For other structures, such as other classes of graphs, hypergraphs (with induced
subgraphs and subhypergraphs), arithmetics progressions (Van der Waerden theo-
rem), combinatorial cubes (Hales-Jewett theorem), the situation is much less sat-
isfactory and in most instances one is satisfied with the existence of an object C,
without trying to optimise its size, which seems to be extremely large.

Let ∆ = (δi; i ∈ I) be an integer sequence called type. An ordered relational
structure S of type ∆ is a tuple S = (X, (Ri; i ∈ I)) where X is an ordered set
and Ri ⊆ Xδi (i.e. Ri is a δi-ary relation); we denote V (S) = X. A structure
S ′ = (X ′, Y ′) is a substructure of structure S = (X, Y ) if X ′ ⊆ X, Y ′ ⊆ Y , Y ′ ⊆ 2X′

and X ′ preserves the ordering of X. A class C of structures is called Ramsey class
if for every A, B ∈ C and every k there exists C ∈ C such that C → (B)A

k . Let us
list few examples of Ramsey classes.

For a fixed ∆, we shall consider the class Rel(∆) of all finite ordered relational
structures of type ∆. A structure A = (X, (Ri; i ∈ I)) of type ∆ is called irreducible,
if for every pair x, y ∈ X there exist i ∈ I and R ∈ Ri such that x, y ∈ R. Let F
be a (possibly infinite) set of structures of type ∆. Denote by Forb∆(F) the class
of all ordered structures A of type ∆ which do not contain any member of F as a
substructure (not necessarily induced).

Theorem 1.1. (Nešetřil, Rödl [13, 15]) Let ∆ be a type and let F be a (possibly in-
finite) set of irreducible structures of type ∆. Then the classes Rel(∆) and Forb∆(F)
are Ramsey.

Jószef Beck initiated a systematic study of Ramsey numbers in a setting of
combinatorial games. He showed that the game versions of Ramsey number are
much more easier to estimate. Particularly, for the case of Ramsey theorem and
Van der Waerden theorem, he obtained asymptotically optimal results ([2], [3], see
also [4]).

Let us now turn a general Ramsey-type theorem into a game. (This transforma-
tion is contained already in one of the earliest paper of Ramsey theory [10] by Hales
and Jewett where the authors interpreted Hales-Jewett theorem.) We consider a
structure C as a board. There are two players, I and II. I is called maker , II is
called breaker . The players alternately pick substructures A′ ∈

(

C
A

)

. I wins if and

only if he succeeds to find B ′ ∈
(

C
B

)

such that the whole set
(

B′

A

)

is claimed by him.
Otherwise II wins. We call this game Ramsey (A, B)-game on C and we denote the
fact that I wins by

C
g→(B)A.

It follows by a general Strategy Stealing argument (Theorem 2.1) that I wins
providing C → (B)A

2 . However, this is far from necessary. To clarify this, let us
denote by rg

C(A, B) the minimal size of C ∈ C measured by |V (C)| satisfying that
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I wins Ramsey (A, B)-game on C (providing such a C exists). It appears that in
most cases we can claim that rg

C(A, B) has a moderate size. This phenomenon was
already exhibited in 1981 by Beck in a landmark paper [2] and in 2002 in [3]:

Theorem 1.2. Consider the game version of Van der Waerden theorem and let
rg(AP (n)) denote the minimum size N such that the player I wins the game of
building a arithmetic progression of length n on the set {1, . . . , N}. Then

lim
n→∞

n
√

rg(AP (n)) = 2.

Theorem 1.3. Let us consider the Ramsey (Ep, Kn)-game in the class Kp of all
p-uniform complete hypergraphs, where Ep is a hypergraph edge, and let the board be
the hypergraph KN ∈ Kp. In case p = 2 (graphs), if

n ≥ 2 log2 N − 2 log2 log2 N + 2 log2 e − 1 + o(1),

then breaker has an explicit winning strategy. On the other hand, if

n ≤ 2 log2 N − 2 log2 log2 N + 2 log2 e − 10

3
+ o(1),

then maker has an explicit winning strategy. In case p ≥ 3, breaker wins if

n ≥ (p! log2 N)
1

p−1 + o(1),

and maker wins if

n ≤ (p! log2 N)
1

p−1 − O(1).

This should be compared with the bound for Ramsey function mentioned earlier.
For Theorem 1.2, let us just recall that the Van der Waerden function is known to
be primitive recursive (as shown first by Shelah [17]) and the two tower function
bound was obtained more recently by Gowers [8]. Nevertheless, the lower bound is
exponential only. Thus the game Ramsey function may be drastically smaller than
the Ramsey version.

In this paper we generalise the results of Beck to C-Ramsey numbers for relational
structures. The main message of these results is that the game version of C-Ramsey
numbers may be essentially smaller than the extremely large C-Ramsey numbers.
And sometimes game Ramsey numbers exist even in situation when Ramsey-type
results are not true.

Let S(X, (Ri; i ∈ I)) be a structure of type ∆. The inflation of x ∈ X by a
factor k is the structure S ′ = (X ′, (R′

i; i ∈ I)) of type ∆ defined as follows:

X ′ = {y ∈ X; y 6= x} ∪ Vx, Vx = {yx
1 , y

x
2 , . . . , y

x
k},

R′
i = {{yx, y1, . . . , yδi−1}; yx ∈ Vx, {y, y1, . . . , yδi−1} ∈ Ri}, i ∈ I.

The set Vx is called multivertex . The inflation of S by a factor k is the structure Sk

such that every x ∈ X was inflated by k.
We show the following.
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G G3

Figure 1: Example of inflating the graph G by factor 3.

Theorem 1.4. Let C be a class of structures which is closed on vertex inflation.
Then for every B ∈ C and every A ⊂ B, |V (A)| < |V (B)|, there exists C ∈ C such

that C
g→(B)A. Moreover, |V (C)| ≤ 2u · u · |V (B)| where u =

∣

∣

(

B
A

)
∣

∣. Particularly,
rg
C(A, B) ≤ 2u · u · |V (B)|.

The condition of inflation holds for any class C of structures which is determined
by a finite set of forbidden homomorphisms:

C = {G; Fi 6→ G, i = 1, . . . , t}

This covers for example class of Kk-free graphs, which is known to be a Ramsey
class, and thus C satisfying C → (B)A

k can be applied in Theorem 1.4.
As mentioned before, Theorem 1.4 covers also cases which are known to be not

Ramsey. Denote by G the class of all undirected graphs. For example there is no
(unordered) graph G satisfying

G → (C5)
K1,2

2 ,

and thus rG(K1,2, C5, 2) = ∞. On the other hand, rg
G(K1,2, C5) exists and it is

rg
G(K1,2, C5) ≤ 800.

Analogously with the definition of Ramsey classes, we can define game Ramsey
classes. A class C of structures is called game Ramsey class if for every A, B ∈ C
there exists C ∈ C such that C

g→(B)A
k .

Corollary 1.5. Let C be a class of structures which is closed on vertex inflation.
Then C is game Ramsey class.

Proof. Given A, B ∈ C, let B ′ be an large enough inflation of B such that |V (A)| <
|V (B′)|. Then we can apply Theorem 1.4 on A, B ′ and since B ⊂ B′, the corollary
follows. �

In fact, rG(G, H) exists for any graphs G, H and thus G is game Ramsey class.
This should serve as a warm up to Theorem 1.4 and further examples of struc-

tural Ramsey theorem whose game versions we shall consider. Our examples include
restricted Ramsey theorems for set systems and extended versions of Van der Waer-
den’s theorem (Brauer’s theorem).

This also leads to challenging problems. Perhaps the most interesting is the
question whether these results can be modified to obtain results for strong Ramsey
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theory games. A strong game is defined by a change of the winning criterion: the
first player wins who achieves a monochromatic copy of structure B. This game
may result in a draw.

The strong game is much harder to analyse and presently there is no analogy of
Theorem 1.4 for strong games. Nevertheless, we show a peculiar result:

Theorem 1.6. There exists a graph G with the following properties:

1. G does not contain K4,

2. the first player wins strong (K2, K3)-game on G,

3. G has 8 vertices.

This result is more interesting in its context than its proof (a case analysis, which
seems to be typical for the analysis of strong games). The question of existence of
K4-free graph G satisfying G → (K3)

K2

2 was fully solved by Nešetřil and Rödl [12].
Erdős asked whether there is such a G of size less than 1010. Spencer [18] has shown
the currently best known upper bound on size of G, which is less than 3.108.

2 Game theory facts

We define in general two kinds of positional games, weak games and strong games,
on a finite hypergraph H = (V, F ), F ⊆ 2V . We call the set V the board of the
game. The edges F we prefer to call the winning sets.

A strong game on H is the following game. Players I and II alternately occupy
previously unoccupied points of the board V , one point per move. That player wins
who occupies all points of some edge A ∈ F first; otherwise the play ends in a draw.

A weak game on H is similar to strong game, with the exception of the winning
criterion: The player I wins if he occupies all points of some edge A ∈ F ; otherwise
player II wins. Note that II can completely occupy some winning set, but this is
not considered as victory. Also note that draw is impossible in a weak game. The
player I is usually called maker and II is called breaker, weak games are thus also
called maker-breaker games.

A strategy for the player I (II) formally means a function S such that the domain
of S is a set of even (odd) length subsequences of different elements of the board V ,
and the range is V . A winning (or drawing) strategy S for I (II) means that in all
possible plays where I (II) follows S to find his next move is a win for him (a win
or a draw).

There are only three possible outcomes of a strong game: either the player I has
a winning strategy, or the player II has a winning strategy, or both of them have a
drawing strategy. For the class of weak games, there are only two outcomes: either
I (maker) has a winning strategy or II (breaker) has a winning strategy.

The following important theorem is quite surprising; it states that in the class
of strong games the first player cannot lose.

Theorem 2.1. (Strategy Stealing [1]) Let H = (V, F ) be an arbitrary finite hyper-
graph. Then playing the strong game on H, first player can force at least a draw,
i.e. a draw or possibly a win.
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Strategy Stealing implies the following.

Proposition 2.2. Assume H is a hypergraph such that χ(H) > 2 and assume two
players play strong or weak game on H. Then the first player wins.

The following two results are our basic tool in analysis of Ramsey games.

Theorem 2.3. ([6]) If H = (V, F ) is an k-uniform hypergraph and |F | < 2k−3, then
the player II can force a draw in the strong game on H.

For a hypergraph H, let

∆2(H) = max
u,v∈V (H)

{F ∈ E(H); {u, v} ⊆ F} .

Theorem 2.4. (Weak Win Criterion [1]) Assume that we are playing the weak
game on a k-uniform hypergraph H = (V, F ). If |F | > 2k−3 · ∆2(F) · |V |, then the
maker has a weak win in H.

We mention that the proofs of Theorem 2.3 and Theorem 2.4 are constructive,
that means they provide an explicit strategy description. We shall also need the
following lemma.

Lemma 2.5. Let H = (V, F ) be an arbitrary finite hypergraph. Assume there exists
a hypergraph H ′ = (V ′, F ′), V ′ ⊆ V , F ′ ⊆ F such that the weak game on H ′ is win
for the first player. Then the first player has a winning strategy also in the weak
game on H.

Proof. Consider the weak game on the hypergraph H ′ and the appropriate winning
strategy S of the first player. Then apply S in the weak game on H. Clearly, if we
restrict the winning lines on F ′ and the first player still wins, the second player is
unable to block him on the set F . �

Note that Lemma 2.5 does not hold for the class of strong games.

3 Structural Ramsey games

Here we present the proof of Theorem 1.4.

Proof. Let C = Bk ∈ C be the inflation of the structure B ∈ C by a factor of
k = 2u−3 · u + 1. The game takes place on C. Let us define the hypergraph G as
follows: The set of vertices V (G) contains all copies of A in C with the exception of
copies having two or more vertices in a single multivertex of Bk. The set of edges
E(G) contains all sets S of vertices V (G) such that every S contains all copies of
A in some B-substructure of C having at most one vertex in a single multivertex of
Bk. Formally this means

V (G) = {A′ ∈
(

C

A

)

; |A′ ∩ Vi| ≤ 1 for all i},

E(G) =

{

S ⊆ V (G); S =

(

B′

A

)

, B′ ∈
(

C

B

)

, |B′ ∩ Vi| ≤ 1 for all i

}

.
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Note that the number of copies of A in C may be higher than |V (G)|, and
similarly the number of copies of B in C may be higher than |E(G)|. However, due
to Lemma 2.5, if player I wins the weak game on G, then he wins also the original
Ramsey (A, B)-game on C.

The uniformity u of G equals to number of copies of A in B. Using the fact every
substructure of B gets inflated by the same factor k, we have |V (G)| = u · k|V (A)|

and |E(G)| = k|V (B)|. In order to compute ∆2(G), we choose two arbitrary vertices
A1, A2 ∈ V (G) (i.e. copies of A in C). They intersect with at least |V (A)| + 1
multivertices of C. To extend A1 ∪A2 to a copy of B, one can choose the remaining
vertices from at most |V (B)| − |V (A)| − 1 multivertices of C, so this can be done
by at most k|V (B)|−|V (A)|−1 ways. Therefore, as long as

|E(G)| = k|V (B)| > 2u−3 · |V (G)| · ∆2(G) = 2u−3 · u · k|V (B)|−1

k > 2u−3 · u,

due to Theorem 2.4 (Weak Win Criterion) player I wins. Furthermore, |V (C)| =
2u−3 · u · |V (B)| + |V (B)|, consequently rg

C(A, B) ≤ 2u · u · |V (B)|. �

3.1 Colouring vertices

We can easily adapt Theorem 1.4 for the vertex colouring, i.e. (K1, B)-game. How-
ever, in this case we can easily analyse even strong vertex game:

Theorem 3.1. Let C be a class of structures which is closed on inflation. Let B ∈ C
and p = |V (B)|. Then there exists C ∈ C on 2p− 1 vertices such that player I wins
the strong Ramsey (K1, B)-game on C. Moreover, the size 2p−1 cannot be improved.

Proof. For B = ({w1, . . . , wp}, E), let us define the structure C = ({w1}∪V2 ∪ · · · ∪
Vp, E(C)) as the inflated B where each vertex w ∈ V (B), w 6= w1, gets inflated by
factor 2. Observe that C ∈ C.

The strategy of player I is following. In the first move occupy w1. When player
II takes one point from Vi, take the remaining point from Vi. Observe that after p
moves I wins. Clearly, to colour a copy of B, C has to have at least 2p−1 vertices.�

By a cycle Cs we mean every hypergraph satisfying the following condition: there
exists a sequence (v1, E1, v2, E2, . . . , vs, Es) such that all vi and all Ei are distinct
and vi ∈ V (Cs), Ei ∈ E(Cs), and vi, vi+1 ∈ Ei for i = 1, . . . , s − 1 and vs, v1 ∈ Es.
For a hypergraph G, by girth(G) we mean the minimum s such that G contains a
cycle Cs.

In the case when the class C contains only cycle-free structures, we have to
use different technique. Our basic tool is the following lemma, which shows that
there exist “dense” hypergraphs without short cycles. Its proof is application of
probabilistic method and it follows Erdős and Spencer [7] where the original proof
can be found. We use the approach presented by Nešetřil and Rödl [14].

Lemma 3.2. For all positive integers k and s there exists a k-uniform hypergraph
G = (V, E), |V | = n, without cycles of length less than s and with |E| > n1+1/s

edges for all n sufficiently large.
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We mention that the proof of Lemma 3.2 is not constructive, i.e. it gives the
desired hypergraph G by purely existential argument.

Theorem 3.3. Let F be a set of 2-connected hypergraphs and let C = Forb(F). Let
B ∈ C, p = |V (B)| and

` = max
i=1,...,t

girth(Fi).

Then there exists C ∈ C on O(2p`) vertices such that C
g→(B)K1 .

Proof. Let |V | = n = 2(p−3)(`+1) + 1. By Lemma 3.2 there exists a p-uniform
hypergraph C ′ = (V, E ′) such that C ′ does not contain a cycle of length less than
` + 1 and |E ′| > n1+1/(`+1). Let ∆ be the type of B. Let us define the structure
C = (V,M) of type ∆ by taking C ′ and arbitrarily replacing each edge by a copy
of B. That is, C =

⋃

S∈E′(S,MS) where (S,MS) ' B for each S ∈ E ′.

B C ′ C

Figure 2: “Stuffing” the p-uniform hypergraph C ′ by copies of the graph B.

Let us show that C is Fi-free for i = 1, . . . , t, i.e. that C ∈ C. For the sake of
contradiction, assume there is an Fi-substructure in C. Clearly, since Fi 6⊆ B, the
vertices of Fi cannot be entirely contained in a single hyperedge of C ′. Thus, let the
vertices of Fi be incident with more than one hyperedge of C ′. Then Fi must lie on
a cycle in C ′ of length less or equal `; otherwise Fi could not be 2-connected, since
|S ∩ T | ≤ 1 for any two distinct S, T ∈ E(C ′) and the single common vertex would
be a cut vertex of Fi. Due to the construction of C ′, there are no cycles shorter than
`, therefore C cannot contain a copy of Fi.

Let us construct a hypergraph G such that playing weak game on G is equivalent
with the original game on C. That is, V (G) = V (C) and

E(G) = {S ⊆ V (C); C[S] ' B},

where C[S] is the substructure induced by S. That means each edge in E(G)
corresponds to a set of vertices on which there is a copy of B in C. Observe that
C ′ ⊆ G; by the “stuffing” procedure, there are at least the edges of C ′ in G and
maybe some more. Due to Lemma 2.5, we can restrict ourselves only to the weak
game on C ′; if we show I wins on C ′, then he wins on G and therefore also on C.

The hypergraph G has n vertices, at least n1+1/(`+1) edges, and ∆2(G) = 1 since
it does not contain a 2-cycle. Provided the size n of C satisfies

n1+ 1

`+1 > 2p−3 · n,

by Theorem 2.4 (Weak Win Criterion) there exists a winning strategy of I. �

8



3.2 Strong Ramsey games

Here we prove Theorem 1.6.

Proof. We give an example of small K4-free graph, where two players alternately
colour the edges, trying to colour their own K3 subgraph first. We show the winning
strategy of player I.

vb1va1

c

va2

vb2

vb4

va4

va3vb3

Figure 3: The K4-free board.

The graph on Figure 3 does not contain K4 (easy observation) and there exists
an explicit winning strategy of I in the strong game. As the first move, I takes the
edge {c, va

1}. Then II responds. Let us distinguish two cases:

1. II’s move was one of {c, va
i } or {va

i , v
a
j }. Then I in the following four moves

takes the edges {c, vb
1}, {c, vb

2}, {c, vb
3}, {c, vb

4}, respectively. II is forced to take
the edges {va

1 , v
b
1}, {vb

1, v
b
2}, {vb

2, v
b
3}, {vb

3, v
b
4}, respectively, otherwise I takes

them and wins. After the fourth move, the edge {vb
4, v

b
1} is left unoccupied,

allowing I to win.

2. II’s move was one of {c, vb
i} or {vb

i , v
b
j} or {va

1 , v
b
1}. Then I in the following

three moves takes the edges {c, va
2}, {c, va

3}, {c, va
4}, respectively. II is forced

to take the edges {va
1 , v

a
2}, {va

2 , v
a
3}, {va

3 , v
a
4}, respectively, otherwise I takes

them and wins. After the third move, the edge {va
4 , v

a
1} is left unoccupied,

allowing I to win.

�

4 Arithmetic progression games

The following theorem, conjectured by Schur and proved by Brauer [5], is an exten-
sion of van der Waerden theorem.

Theorem 4.1. (Brauer, 1928) For a positive integer n, there exists a positive integer
N such that in an arbitrary colouring of the set [N ] by r colours, we can find in one
of the colour classes the arithmetic progression a0, a0 + d, . . . , a0 + nd together with
the difference d.
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For two integers k ≥ 3 and n, we define the arithmetic progression game with
difference on the set S = {1, 2, . . . , n} as follows. Maker and breaker alternately pick
elements of S. Maker wins if he colours some (k + 1)-tuple of S where k elements
form an arithmetic progression P and the remaining element d denotes the difference
of P . If he is unable to colour such set, breaker wins. By rg(APd(k)) we mean the
smallest n such that maker has a winning strategy.

The arithmetic progression game (i.e. based on the original van der Waerden
theorem) was investigated by Beck [2] (see Theorem 1.2). We generalise the proof
ideas of Beck to work on arithmetic progression games with difference. We also give
a lower bound on the board size.

Theorem 4.2. Let k ≥ 2 be an integer. Assume maker and breaker play the k-term
arithmetic progression game with difference. Then maker has a winning strategy on
board of size O(2kk3) and breaker has a winning strategy on board of size Ω(2k/2

√
k),

i.e.
Ω(2k/2

√
k) ≤ rg(APd(k)) ≤ O(2kk3).

Proof. For a fixed n, let us define the following (k + 1)-uniform hypergraph H =
({1, . . . , n}, F ). The set F contains all (k + 1)-element subsets S ⊆ {1, . . . , n}
such that some k elements of S form an arithmetic progression P of length k, and
the one remaining element d of S denotes the difference d of P . Clearly, playing
the weak game on H is equivalent with the original weak arithmetic progression
game with difference. We are going to find the smallest n such that the inequality
|F | > 2k−2 · n · ∆2(H) from Weak Win Criterion holds.

Let us fix two distinct points a, b ∈ {1, . . . , n}, a < b, and we count the maximal
number of edges incident both with a and b. Three cases are possible:

• The point a denotes the arithmetic progression difference. Therefore, b can lie
on k positions of the arithmetic progression, so we get at most k possibilities.

• The point b denotes the difference. Similarly, there is at most k possibilities.

• Both a and b are members of the arithmetic progression. The number of
possibilities is therefore at most

(

k
2

)

as this is the number of all positions the
two points can occupy in a k-term progression.

Thus we have
(

k
2

)

+ 2k ≥ ∆2(H).
Observe there are Θ(n2/k) arithmetic progressions of length k in {1, . . . , n}. By

solving the inequality

c
n2

k
> 2k−2

((

k

2

)

+ 2k

)

n,

and due to Weak Win Criterion, maker has a winning strategy on H with n =
O(2kk3) vertices, therefore also in the original game.

Let us now show the lower bound. Recall there are Θ(n2/k) arithmetic progres-
sions. By solving the inequality cn2/k < 2k, we get n = O(2k/2

√
k). Theorem 2.3

applied on H with n vertices proves the existence of player II’s drawing strategy.�
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Note that the lower bound (and the corresponding drawing strategy) of the
previous theorem holds both for the strong and weak version of the game. It would
be interesting to close the gap in Theorem 4.2. Particularly, we don’t know whether
limk→∞ (rg(APd(k))2/k exists. Another interesting question is to study the game,
where the players keep taking arithmetic progressions of length ` and the goal of
maker is to find arithmetic progression of length k > ` with all progression of his
colour.
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[2] J. Beck: Van der Waerden and Ramsey Type Games, Combinatorica 1 (1981),
pp. 103–116.

[3] J. Beck: Positional games and the second moment method, Combinatorica, 22

(2) (2002), pp. 169–216.

[4] J. Beck: Tic-Tac-Toe Theory, Cambridge University Press, to appear in 2008.
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