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Preface

The COMBSTRU Workshop was held from March 10 to March 12, 2006
in our newly reconstructed building on Malostranské náměst́ı 25. This of
course contributed to the comfort of the participants as all the activities
(including the lunches) could be taken on the same site. Besides, as it
was expressed by several participants, the renovated faculty building surely
belongs to the most beautiful math and CS departments in the world! The
workshop was organized by the EU network (RTN) COMBSTRU jointly
with the DIMATIA centre of Charles University.

The workshop was immediately preceeded by colloquium held by Endre
Szemeredi. The programme of the workshop followed daily routine with
morning and early afternoon discussions and presentations. The workshop
was attended by many past and recent trainees from all participating sites
of COMBSTRU network as well as by participants of DOCCOURSE 2006
“Harmonic Analysis in Computer Science and Combinatorics”. This DOC-
COURSE, which is a continuation of similar programme in years 2004 and
2005 (http://kam.mff.cuni.cz/˜matousek/doccourse06.html) is a traditional
COMBSTRU-activity. This report reflects some of the presentations dur-
ing the workshop. Perhaps you can digest some of the atmosphere at the
workshop from these pages.

This volume was edited by Martin Pergel. All following contributions
were supplied by the authors in electronic form. In a few cases slight typo-
graphical changes were necessary. We apologize for any possible inaccuracies
which might have occurred in the editing process.

We gratefully acknowledge the support of COMBSTRU. We would like
to thank to all participating institutions for all their work. In its final year
we are witnessing the booming activity of COMBSTRU. This clearly gives
to all of us the energy to continue activity of the network in the future.

Jaroslav Nešetřil
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Variable Length Codes With Marker, Feedback

and Localized Errors

R. Ahlswede, C. Deppe, V. Lebedev

A famous problem in coding theory consists in finding good bounds for the
maximal size, M(n, t, q), of a t-error correcting code over a q-ary alphabet
Q = {0, 1, . . . , q − 1} with blocklength n.
Suppose that having sent letters x1, . . . , xj−1 the encoder knows the letters
y1, . . . , yj−1 received before he sends the next letter xj (j = 1, 2, . . . , n). We
then have the presence of a noiseless feedback channel. For q = 2 this model
was considered by Berlekamp [3], who derived striking results for triples of
performance (M,n, t)f , that is, the number of messages M , blocklength n
and the number of errors t. It is convenient to use the notation relative error
τ = t/n and rate R = n−1 log M . We investigate here the q-ary case. Again
the Hamming bound for Cq(τ), the maximal rate achievable for τ and all
large n, is a central concept:

Hq(τ) =

{

1 − hq(τ) − τ logq(q − 1) if 0 ≤ τ ≤ q−1
q

0 if q−1
q < τ ≤ 1,

(1)

where hq(τ) = −τ logq(τ)− (1− τ) logq(1− τ). We also call Cq : [0, 1] → R+

the capacity error function (or curve). One readily verifies that for every q

Cq(τ) = 0 for τ ≥
1

2
. (2)

We turn now to another model. Suppose that the encoder, who wants
to encode message i ∈ {1, 2, . . . ,M}, knows the t-element set E ⊂ [n] =
{1, . . . , n} of positions, in which only errors may occur. He then can make
the codeword presenting i dependent on E ∈ Et =

([n]
t

)

, the family of t-
element subsets of [n]. We call them “a priori error pattern”. A family
{ui

E : 1 ≤ i ≤ M, E ∈ Et} of q-ary vectors with n components is an
(M,n, t, q)l code (for localized errors), if for all E,E ′ ∈ Et and all q-ary
vectors e ∈ V (E) = {e = (e1, . . . , en) : ej = 0 for j 6∈ E} and e′ ∈ V (E′)

ui
E ⊕ e 6= ui′

E′ ⊕ e′ for i 6= i′.

We denote now the optimal rate for τ by C l
q(τ).

The two models described have ingredients feedback resp. localized errors,
which give possibilities for code constructions which are not available with-
out them in the standard model of error correction (c.f. [4] and also for
probabilistic channel models ([1], [2]).
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Whereas all this work is for block codes, we investigate variable length codes
with all lengths bounded from above by n. The end of a word carries the
symbol � and is thus recognizable by the decoder. Very important here is
that the lengths carry sure data which can be used as a “protocol” infor-
mation.

For both, the �-model with feedback and the �-model with localized errors,
the Hamming bound is the exact capacity curve for τ < 1/2. Somewhat
surprisingly, whereas with feedback the capacity curve coincides with the
Hamming bound also for 1/2 ≤ τ ≤ 1, in this range for localized errors the
capacity curve equals 0.
Also notice that without the marker � in the range 0 ≤ τ < 1/2 with
feedback the capacity curve is smaller than that for localized errors.
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Acyclic Orientation of Drawings

Kevin Buchin∗† Eyal Ackerman‡ Christian Knauer∗

Günter Rote∗

Given a set of curves in the plane or a topological graph, we ask for
an orientation of the curves or edges which induces an acyclic orientation
on the corresponding planar map. Depending on the maximum number of
crossings on a curve or an edge, we provide algorithms and hardness proofs
for this problem.

Let G be a topological graph, that is, a graph drawn in the plane such
that its vertices are distinct points, and its edge set is a set of Jordan arcs,
each connecting two vertices and containing no other vertex. In this work
we further assume that G is a simple topological graph, i.e., every pair of
its edges intersect at most once, either at a common vertex or at a crossing
point.

An orientation of (the edges of) a graph is an assignment of a direction
to every edge in the graph. We say that an orientation is acyclic if the
resulting directed graph does not contain a directed cycle. Finding an acyclic
orientation of a given undirected (abstract) graph can be easily computed
in linear time by performing a depth-first search on the graph and then
orienting every backward edge from the ancestor to the descendent. However,
is it always possible to find an orientation of the edges of a topological graph,
such that a traveller on that graph will not be able to return to his starting
position even if allowed to move from one edge to the other at their crossing
point? Rephrasing it in a more formal way, let M(G) be the planar map
induced by G. That it, the map obtained by adding the crossing points of
G as vertices, and subdividing the edges of G accordingly. Then we ask for
an orientation of the edges of G such that the induced directed planar map
M(G) is acyclic.

Clearly, if the topological graph is x-monotone, that is, every vertical
line crosses every edge at most once, then one can orient each edge from
its endpoint with the smaller x-coordinate towards its endpoint with the
greater x-coordinate. Travelling on the graph under such orientation, one
always increases the value of ones x-coordinate and therefore cannot form a
directed cycle. However, not every topological graph is acyclic-orientable as
Figure 1 demonstrates.

Note that the degree of every vertex in this example is one. This gives rise
for considering the orientation problem in the special case the degree of each

∗Research supported by the Deutsche Forschungsgemeinschaft within the European
graduate program “Combinatorics, Geometry, and Computation” (No. GRK 588/2).

†Institute of Computer Science, Freie Universität Berlin, Takustr. 9, 14195 Berlin,
Germany. {buchin|knauer|rote}@inf.fu-berlin.de

‡Department of Computer Science, Technion—Israel Institute of Technology, Haifa
32000, Israel. ackerman@cs.technion.ac.il
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Figure 1: A non-orientable topological graph

vertex is one, or in other words, when one looks for an acyclic orientation
of a set of curves embedded in the plane.

It turns out that determining whether a topological graph (resp., a set
of curves) has an acyclic orientation depends crucially on the maximum
number of times an edge in the graph (resp., a curve) can be crossed. Given
a (simple) topological graph G on n vertices, such that each edge in G is
crossed at most once, we show that one can find an acyclic orientation of G
in O(n) time. When four crossing per edge are allowed, deciding whether
there exists an acyclic orientation becomes NP-complete. For a set of n
curves in which each pair of curves intersects at most once and every curve
is crossed at most k times, we describe an O(n)-time orientation algorithm
for the case k ≤ 3. When k ≥ 5 finding an acyclic orientation of the set of
curves is NP-complete.
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On the Computability of the Fréchet Distance

Between Triangulated Surfaces

Maike Buchin∗

The Fréchet distance is a distance measure for comparing geometric
shapes represented by parameterized curves or two- or higher-dimensional
surfaces. Whereas efficient algorithms are known for computing the Fréchet
distance between polygonal curves, the same problem for triangulated sur-
faces is NP-hard. Furthermore, it is not known whether it is computable at
all. In this talk we discuss two partial answers to this open problem: the
Fréchet distance between triangulated surfaces is semi-computable and for
simple polygons the Fréchet distance is polynomial time computable.

Suitable distance measures for comparing the similarity of shapes are
an important issue in application areas like computer vision and pattern
recognition. A distance measure that is often used is the Hausdorff distance
which is a distance measure for point sets. However, if shapes are modeled
by curves or surfaces, there are examples of objects having little resemblance
but a small Hausdorff distance.

In these cases the Fréchet distance is more appropriate, which is a metric
for parameterized geometric objects. The idea of the Fréchet distance is to
take into account the “flow” of the curve or surface given by its parameter-
ization.

A popular illustration of the Fréchet distance between two curves is
the following. Suppose a man is walking his dog on a leash. The man is
walking on one curve and the dog on the other. Both may stop but not
walk backwards. Then the Fréchet distance is the shortest length of leash
allowing them to walk on the two curves from start to end. Formally the
Fréchet distance is defined as follows. Let f, g be parameterizations of two
curves or surfaces, i. e., continuous functions f, g : [0, 1]k → R

d where d ≥ k,
k = 1 for curves and k = 2 for two–dimensional surfaces. Then their Fréchet
distance is

δF (f, g) := inf
σ:[0,1]k→[0,1]k

sup
t∈[0,1]k

||f(t) − g(σ(t))||.

where the reparameterization σ ranges over all orientation preserving home-
omorphisms. As underlying norm ||.|| we assume the Euclidean norm, but
any other computable norm may be considered as well.

∗Institute of Computer Science, Freie Universität Berlin, Takustr. 9, 14195 Berlin,
Germany. mbuchin@inf.fu-berlin.de. This research was supported by the Deutsche
Forschungsgemeinschaft within the European graduate program ‘Combinatorics, Geome-
try, and Computation’ (No. GRK 88/2).
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Note that the Fréchet distance is defined for parameterized shapes, how-
ever usually non-parameterized continuous shapes can be meaningfully pa-
rameterized by a natural parameterization based on the geometric descrip-
tion of the object, such as arc length for the case of curves.

For polygonal curves Alt and Godau have shown that the Fréchet dis-
tance is computable in polynomial time. For two–dimensional surfaces, how-
ever, the computation of the Fréchet distance is much harder. In fact, Godau
showed that computing the Fréchet distance between triangulated surfaces
even in two–dimensional space is NP-hard. The computationally hard part
of computing the Fréchet distance for higher dimensions is that, according
to the definition, the infimum over all homeomorphisms of the parameter
space has to be taken. For curves these are the orientation-preserving home-
omorphisms on the unit interval which can be characterized as continuous,
onto, monotone increasing functions. For higher dimensions such a charac-
terization does not exist and the homeomorphisms can be much “wilder”.

In this talk, we present two partial results concerning the computability.
First, we show that the Fréchet distance between triangulated surfaces is
upper semi-computable, i. e. there is a non-halting Turing machine which
produces a monotone decreasing sequence of rationals converging to the
result. It follows that the decision problem whether the Fréchet distance
between two given surfaces lies below some specified value a is recursively
enumerable.

For showing the semi-computability we approximate the homeomor-
phisms by discrete maps which are easier to handle. We do this by first
approximating arbitrary homeomorphisms by piecewise linear homeomor-
phisms which is a known result from topology. These piecewise linear home-
omorphisms are then approximated by homeomorphisms which are compat-
ible with certain subdivisions of the original triangulations of the parameter
spaces. Finally, as we are considering arbitrary fine subdivisions it suffices
to compute the distances at the finitely many vertices of a fixed subdivision.

The second answer concerning the computability of the Fréchet distance
between surfaces that we discuss is the polynomial time computability of
the Fréchet distance between simple polygons. A simple polygon is the area
enclosed by a non-self-intersecting closed polygonal curve in the plane. Sim-
ple polygons are a very restricted but also important class of triangulated
surfaces that arise often in two–dimensional applications. When consider-
ing the Fréchet distance between simple polygons, the first question that
comes to mind is: Is the Fréchet distance between polygons different from
the Fréchet distance between their boundary curves? For the special case
of convex polygons the Fréchet distance between the polygons equals the
Fréchet distance between their boundary curves, but in general the Fréchet
distance between two polygons may be arbitrarily much larger than the
Fréchet distance between their boundary curves.

For showing that the Fréchet distance between simple polygons is polyno-
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mial time computable, we show that it suffices to consider homeomorphisms
that map an arbitrary triangulation of one polygon to the other polygon
such that diagonals of the triangulation are mapped to shortest paths in
the other polygon. This yields a class of homeomorphisms that we can han-
dle by extending the algorithm for curves to include also the diagonals of a
triangulation.

Concluding we can say that the Fréchet distance is a well-suited distance
measure for curves and surfaces. For triangulated surfaces in general it is
still hard to compute but for simple polygons we have given a polynomial
time algorithm. And by showing the semi-computability for triangulated
surfaces we have gained insight on the problem. In the future we hope to find
polynomial time or approximation algorithms for more classes of surfaces, so
that the Fréchet distance can be employed as a distance measure for surfaces
in practice.
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Efficient Computation of Nash Equilibria for Very

Sparse Win-Lose Bimatrix Games

Bruno Codenotti ∗ Mauro Leoncini † Giovanni Resta∗

In 1951 Nash proved that any n-player game has an equilibrium in the
mixed strategies [8]. The proof was based on a fixed point argument, and left
open the associated computational question of finding such an equilibrium.

Abbott, Kane, and Valiant [1] proved that finding a Nash equilibrium
for win-lose bimatrix games, i.e., 2-player games where the players’ payoffs
are zero and one, is as hard as for general bimatrix games.

In 1994 Papadimitriou introduced a complexity class, PPAD, which cap-
tures a wealth of equilibrium problems, e.g., the market equilibrium prob-
lem as well as Nash equilibria for n-player games [9]. Problems complete for
this class include a (suitably defined) computational version of the Brouwer
Fixed Point Theorem.

In 2005 a flurry of results appeared, where first the PPAD-completeness
of 4-player games [6], then of 3-player games [2, 7], and finally of 2-player
games [3] were proven. In particular, the latter hardness result by Chen and
Deng came as a sort of surprise, since the 2-player case was conjectured to
be computationally tractable. Combined with the result by Abbott, Kane,
and Valiant [1], it also implies the PPAD-completeness of win-lose bimatrix
games.

In this paper we describe a linear time algorithm which computes a
Nash equilibrium for win-lose bimatrix games where the number of winning
positions per strategy of each of the players is at most two.

The algorithm acts on the directed graph that represents the zero-one
pattern of the payoff matrices describing the game. It is based upon the
efficient detection of certain subgraphs which enable us to determine the
support of a Nash equilibrium.

Following [5], we cast the problem of computing an equilibrium for win-
lose games in terms of finding a good assignment in a directed graph.

The restriction on the zero-one pattern induces very sparse directed
graphs. We show how to efficiently detect suitable subgraphs of these sparse
graphs, which lead to the discovery of the support of a Nash equilibrium,
and to the actual determination of the equilibrium strategies. The full paper
is available at [4].

∗Istituto di Informatica e Telematica IIT-CNR, Via Moruzzi 1, Pisa (Italy). E-mail:
[b.codenotti, g.resta]@iit.cnr.it.

†Dipartimento di Ingegneria dell’Informazione. Università di Modena e Reggio Emilia,
Modena (Italy) . E-mail: leoncini@unimo.it.
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On Hamilton Cycles in Random Intersection

Graphs∗

C. Efthymiou,† C. Raptopoulos†‡ and P. Spirakis †‡

euthimio@ceid.upatras.gr, raptopox@ceid.upatras.gr, spirakis@cti.gr

Random Intersection Graphs is a relatively new model of random graphs
introduced in [3], in which each of n vertices randomly and independently
chooses some elements from a universal set, of cardinality m. Each element
is chosen with probability p. Two vertices are joined by an edge iff their
chosen element sets intersect.

This talk is based on [1] and [4] where we consider the existence and
efficient construction of Hamilton Cycles in random intersection graphs. We
begin by presenting a result for the case m = nα, α > 1, that allows us
to apply (with the same probability of success) any algorithm that finds a
Hamilton cycle with high probability in a Gn,k graph (i.e. a graph chosen
equiprobably form the space of all graphs with k edges). This can also serve
as an existential result.

We continue by presenting tighter lower bounds p0(n,m), on the value of
p, as a function of n and m, above which the graph Gn,m,p is almost certainly
Hamiltonian. These bounds are tight in the sense that when p is asymptoti-
cally smaller than p0(n,m) then Gn,m,p almost surely has a vertex of degree
less than 2. Our proof involves new, nontrivial, coupling techniques that
allow us to circumvent the edge dependencies in the random intersection
model. Interestingly, Hamiltonicity appears well below the general thresh-
olds, of [2], at which Gn,m,p looks like a usual random graph. Thus bounds
are much stronger than the trivial bounds implied by those thresholds. Our
results strongly support the existence of a threshold for Hamiltonicity in
Gn,m,p.

Finally, we present two algorithms for finding Hamilton cycles in random
intersection graphs. The first runs in expected polynomial time for the

case p = constant and m ≤ α
√

n
log n for some constant α. The second

basically suggests that the greedy approach still works well even in the case
m = o( n

log n) and p just above the connectivity threshold of Gn,m,p.

∗This work has been partially supported by the IST Programme of the European Union
under contract number 001907 (DELIS) and by the GSRT PENED 2003 ALGO.D.E.S.
Project.

†Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
‡University of Patras, 26500 Patras, Greece
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Strong Oriented Coloring of 2-Outerplanar Graphs

Louis Esperet∗ and Pascal Ochem∗

1 Introduction

A homomorphism from an oriented graph G to an oriented graph H is a
mapping ϕ from V (G) to V (H) which preserves the arcs, that is (x, y) ∈
E(G) =⇒ (ϕ(x), ϕ(y)) ∈ E(H). We say that H is a target graph of G if there
exists a homomorphism from G to H. The oriented chromatic number χo(G)
of an oriented graph G is defined as the minimum order of a target graph
of G. The oriented chromatic number χo(G) of an undirected graph G is
then defined as the maximum oriented chromatic number of its orientations.
Nešetřil and Raspaud introduced in [4] the strong oriented chromatic number
of an oriented graph G (denoted by χs(G)), which definition differs from that
of χo(G) by requiring that the target graph is an oriented Cayley graph. A
graph G is 2-outerplanar if it has a planar embedding such that the subgraph
obtained by removing the vertices of the external face is outerplanar.

2 Structural properties of 2-outerplanar graphs

Definition 1. A 2-outerplanar graph embedded in the plane is said to be a
block if its external face is an induced cycle.

Lemma 1. Let G be an outerplanar graph. G contains either a 1-vertex, two
adjacent 2-vertices, a 2-vertex adjacent to a 3-vertex as depicted in Figure
1.a, or two 2-vertices adjacent to a 4-vertex as depicted in Figure 1.b.

Proof. By induction on the structure of outerplanar graphs.

We now use Lemma 1 to prove a key structural theorem on 2-outerplanar
graphs admitting a block embedding in the plane.

Theorem 2. Let G be a 2-outerplanar graph admitting a block embedding
in the plane. G contains either a ≤3-vertex, two adjacent 4-vertices, or the
configuration depicted in Figure 2.

Proof. Follows from Lemma 1.

∗LaBRI UMR CNRS 5800, Université Bordeaux I, 33405 Talence Cedex, France,
{esperet,ochem}@labri.fr
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a) b)

??

Figure 1: Unavoidable configurations in an outerplanar graph without two
adjacent 2-vertices. The star symbol indicates the external face.

?

Figure 2: Unavoidable configuration in a 2-outerplanar block containing
neither a ≤3-vertex nor two adjacent 4-vertices.

3 Strong oriented coloring of 2-outerplanar graphs

Theorem 3. If G is a 2-outerplanar graph, then χs(G) ≤ 67.

For a prime power q ≡ 3 (mod 4), the vertices of the Paley tournament
QRq are the elements of Fq and (i, j) is an arc in QRq if and only if j − i
is a non-zero quadratic residue of Fq. An orientation vector of size k is a
sequence α = {α1, α2, . . . , αk} in {0, 1}k . Let G be an oriented graph and
X = (x1, x2, . . . , xk) be a sequence of pairwise distinct vertices of G. A
vertex y of G is said to be an α-successor of X if for every i, 1 ≤ i ≤ k, we
have αi = 1 ⇒ (xi, y) ∈ E(G) and αi = 0 ⇒ (y, xi) ∈ E(G). The graph G
satisfies property Sk,n if for every sequence X = (s1, s2, . . . , sk) of k pairwise
distinct vertices of G, and for every orientation vector α of size k, there exist
at least n vertices in V (G) which are α-successors of X.

A computer check proves the following lemma:

Lemma 4. The tournament QR67 satisfies properties S2,16, S3,6 and S4,1.

We use the method of reducible configurations to show that every 2-
outerplanar graph is QR67-colorable. Let w(G) = |V (G)| + |E(G)|. We
consider a 2-outerplanar graph G having no homomorphism to QR67 such
that w(G) is minimum.

Lemma 5. G is 2-connected and does not contain a cut consisting in two
adjacent vertices.

13



Notice that Lemma 5 implies that every 2-outerplanar embedding of G
is a block.

Lemma 6.

1. The graph G does not contain any ≤3-vertex.

2. The graph G does not contain two adjacent 4-vertices.

3. The graph G does not contain the configuration depicted in Figure 2.

Proof.

1. By contradiction, using properties S2,1 and S3,1.

2. and 3. Using properties S3,6 and S4,1.

By Lemma 5 G is a block. Using Theorem 2, G must contain one of the
configurations that are forbidden by Lemma 6. This contradiction completes
the proof of Theorem 3.
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Orthogonal Surfaces:

Combinatorics and Geometry

Stefan Felsner∗

Let IRd be equipped with the dominance order:

x ≤ y ⇐⇒ xi ≤ yi for i = 1, .., d

Let V ⊂ IRd be a finite antichain in the dominance order. The orthogonal

surface SV generated by V is the boundary of the filter

I≥V =
{

y ∈ IRd : ∃x ∈ V with y ≥ x
}

.

Example.

• The left figure shows an orthogonal 1-surface, i.e., an orthogonal surface
in two dimensions.

• The middle figure shows a suspended and generic orthogonal 2-surface in
three dimensions. Suspended means that there are special suspension
vectors si = (0, .., 0,M, 0, ..0) ∈ V such that 0 < xi

j < M for all the
other elements of V . Generic means that the non-suspension vectors in
V have pairwise different coordinates.

• The right figure shows a 2-surface which shows all kinds of ‘unfriendly’
features.

Orthogonal surfaces are related to various mathematical fields:

• Study of discrete production sets in mathematical economics, (Scarf).

• Resolutions of monomial ideals, (Miller, Sturmfels)

• Connections with order dimension.

• Planar graphs and Schnyder woods.

The most remarkable result in the theory of orthogonal surfaces goes back
to Scarf [3].
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Theorem 7 (Scarf’s Theorem). Generic suspended orthogonal surfaces in
IRd induce simplicial complexes which are face complexes of simplicial d-
polytopes (minus one facet).

We review a proof of this theorem in the 3-dimensional case. This proof
naturally leads to the notion of a Schnyder wood and to Schnyder’s charac-
terization of planar graphs via order dimension, [4].

Theorem 8 (Schnyder’s Theorem). A graph is planar if and only if the
dimension of its incidence order is at most 3.

Order dimension is also useful as a tool to classify simplicial d-polytopes
as not realizable on an orthogonal surface. As an example: Trotter has
shown that the order dimension of K12 is four but the dimension of K13 is
five, it follows that neighbourly 4-polytopes with more than 13 vertices are
not realizable on an orthogonal surface in IR4.

The extremal function for the number of edges of a graph of dimension
d was studied by Agnarsson, Felsner and Trotter [1].

Theorem 9. The number of edges of a graph of dimension 4 is at most
3
8n2 + o(n2).

We consider rectangle graphs whose edges are defined by pairs of points
in diagonally opposite corners of empty axis-aligned rectangles. The maxi-
mum number of edges of such a graph on n points is shown to be b 1

4n2+n−2c.
This number also has other interpretations:

• It is the maximum number of edges of a graph of dimension [3ll4], i.e.,
of a graph with a realizer of the form π1, π2, π1, π2.

• It is the number of 1-faces in a special Scarf complex.

The last of these interpretations allows to deduce the maximum number
of empty axis-aligned rectangles spanned by 4-element subsets of a set of
n points. Moreover, it follows that the extremal point sets for the two
problems coincide.

We investigate the maximum number of of edges of a graph of dimen-
sion [3 l 4], i.e., of a graph with a realizer of the form π1, π2, π3, π3. This
maximum is shown to be at most 1

4n2 + 3n − 1.
Box graphs are defined as the 3-dimensional analog of rectangle graphs.

The maximum number of edges of such a graph on n points is shown to be
7
16n2 + o(n2).

These results are from [2].
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The Number of 3-Orientations of a Triangulation

Stefan Felsner∗ Florian Zickfeld∗

Schnyder woods have been introduced by W. Schnyder in [4] and [5], and
they are a powerful tool in the theory of planar triangulations. Schnyder
woods are for example useful in graph drawing and in the dimension theory
of graphs. We refer to [2] for a comprehensive introduction to the topic.
In this extended abstract we are concerned with estimating the number of
Schnyder woods of a triangulation. We consider only plane triangulations
and will omit to repeat this in the sequel.

Definition 2. Let T be a triangulation with outer face {a1, a2, a3}. A Schny-
der wood of T is an orientation and coloring of the inner edges of T with
colors 1, 2, 3 such that

W1 Each inner vertex v has three outgoing edges, which are colored 1, 2, 3
in clockwise order around v. The edges incoming between the outgoing
edges colored i, i + 1 have color i − 1, where we use cyclic arithmetics
on {1, 2, 3}.

W2 All inner egdes at ai are directed towards ai and have color i.

The set of triangulations, which have a unique Schnyder wood, coin-
cides with the class of stacked triangulations. For the maximum number of
Schnyder woods on a triangulation we obtain the following bounds.

Theorem 10. Let T be a plane triangulation with n vertices and S(T ) the
set of Schnyder woods of T . Then,

|S(T )| ≤ 3.87n

and there exist infinitely many triangulations with

|S(T )| ≥ 2.27n.

The following results are of interest in this context.

Theorem 11 ([3]). Let G = (V,E) be a plane graph and X an orientation
of its edges. Let α : V → N and call X an α-orientation if d+

X(v) = α(v),
∀v ∈ V , where d+

X(v) denotes the outdegree of X at v. Then, the set of
α-orientations of G is a distributive lattice.
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Theorem 12 ([1]). Let T be a plane triangulation. Define a function αT

by αT (v) := 0 if v lies on the outer face, αT (v) := 3 otherwise. Then, there
is a bijection between the Schnyder woods and the αT -orientations of T .

Theorem 12 says, that just the edge orientations are necessary to define
a Schnyder wood, while the edge colors can be deduced. We will use this in
the sequel and refer to an αT -orientation simply as a 3-orientation.

We now outline briefly by which means we obtain the results in Theo-
rem 10.
Upper bound. A trivial upper bound for the number of 3-orientations
of T = (V,E) is 2|E| = 23n−6. We observe that if A ⊂ E is cycle-free,
then there is at most one way to complete an orientation of E \ A to a
3-orientation of E. This is because at a vertex v with only one unoriented
edge e, the already oriented edges and the degree requirement determine the
orientation of e. By choosing A to be a spanning tree we obtain the bound
22n−5 < 4n.

To obtain the upper bound of 3.87n a first step is to show that we can
restrict our attention to 4-connected triangulations. A 4-connected trian-
gulation T has a Hamilton cycle H and by the Four Color Theorem an
independent set of size at least n/4. If we orient E \ H, then there are
at most two ways to complete this to a 3-orientation of T . One needs to
check, that for a vertex v at most a fraction of 7/8 of the 2d(v)−2 possible
orientations of E \H at v can be completed to a 3-orientation. For the v ∈ I
the events of an orientation being locally completable at v are independent,
and we infer the bound of (7/8)n/4 · 4n ≤ 3.87n.

Lower Bound. We present a family T ∗
i,j which provides the lower bound

from Theorem 10, the figure shows T ∗
4,5. The triangulation T ∗

i,i has i2 + 3

vertices and (i − 1)2 edge disjoint directed cycles. From the observation,
that reversing a directed cycle yields another 3-orientation we deduce a
lower bound of 2(i−1)2 ≥ 2(1−ε)n, for ε > 0 and i sufficiently large. The
bound 2.27n is obtained by a more thorough analysis of T ∗

7,j . This analysis
follows a transfer matrix approach and the lower bound is obtained from
the dominant eigenvalue of the transfer matrix.
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l-Chain Profile Vectors

Dniel Gerbner∗ Balzs Patks†

Basic problems in extremal set theory consider a class A of families of
subsets of an n-element set all having some fixed property (Sperner, inter-
secting, complement free, etc.) and ask for the family with largest size. A
natural generalization of this problem if in the summation we allow weights
different from 1, but depending only on the size of the subset in question.

The tool that helps to deal with this generalized problem is the so-called
profile vector of a family F on an n-element base set. It is a vector p(F) ∈
R

n+1 the components of which are defined by p(F)i = |{F ∈ F : |F | = i}|.
Given a class of families A, let µ(A) denote the set of the profile vectors

of families in A (i.e. {p(F) : F ∈ A}). A basic fact of linear programming
says that the maximum weight can be attained only at an extreme point
of the convex hull of µ(A), which we call the profile polytope of A and we
denote it by 〈µ(A)〉. And if all wis are non-negative, then the maximum is
taken at an essential extreme point (i.e. an extreme point that is maximal
with respect to the component-wise ordering).The first result in this area
(implicitly, without using the notion of the profile polytope) is due to Ka-
tona, the systematic investigation of profile polytopes was started by P.L.
Erdős, P. Frankl, G.O.H. Katona.

However, there are problems dealing with other kind of weight functions,
and problems not dealing with sets of some families, but subfamilies of
families. A natural question is the following: let l ≤ k be two integers, how
many l-chains (a sequence of sets of length l in which every set contains the
previous one) can be contained in a family without a k + 1-chain.

To deal with the above problem we introduce the notion of l-chain profile
vector of a family F . This has

(n+1
l

)

components, and the αth component
pα, where α = (α1, ..., αl) with 0 ≤ α1 < α2 < ... < αl ≤ n, denotes the
number of l-chains in F in which the smallest set has size α1, the second
smallest has size α2, and so on. Note that for l = 1 this is just the original
notion of the profile vector.
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Let µl(A) denote the set of all l-chain profile vectors of families in A,
El(A) the extreme points of 〈µl(A)〉 and El(A) the families from A with
l-chain profile in El(A). Let E∗

l (A) denote the essential extreme points and
E∗

l (A) the corresponding families. We need the following notation:

(

n

α

)

=
l−1
∏

i=1

(

n − αi−1

αi+1 − αi

)

=
n!

α1!(α2 − α1)!...(αl − αl−1)!(n − αl)!

where α0 = 0 and 0! = 1 as usual. Note that
(

n
α

)

is the number of
l-chains that can be formed from subsets of an n-element set in such a way
that the smallest set has size α1, the second smallest has size α2 and so on.

The main tool that helps to determine the extreme points of the profile
polytope is the reduction to the circle. We observed that the method works
for the l-chain case as well, and - what seems to us more important - in some
cases it is enough to reduce the original problem to the chain instead of the
circle.

Definition: For a family F on a base set X and a maximal chain C in
X let F(C) = {F ∈ F ∩ C} and for a class of families A let A(C) = {F(C) :
F ∈ A}.

Let T l
C denote the following operator acting on the

(

n+1
l

)

-dimensional
R-space

T l
C : e 7→ T l

C(e) where T l
C(e)α =

(

n

α

)

eα.

Theorem. For any set of families A ⊆ 22X

if the extreme points
e1, e2, ..., em of 〈µl(A(C))〉 do not depend on the choice of C, then

〈µl(A)〉 ⊆ 〈{T l
C(e1), ..., T

l
C(em)}〉.

Corollary. For any l ≤ k the extreme points of the l-chain profile
polytope of k-Sperner families are the following: the all zero vector 0 and
for all l ≤ z ≤ k and β = {β1, ..., βz} with 0 ≤ β1 < ... < βz ≤ n the vectors
vβ

(vβ)α =

{(n
α

)

if α ⊆ β
0 otherwise.

Much easier to determine the extreme points of the l-chain profile poly-
tope when l = 1. Therefor it is practical to reduce the problem to that
case.

Definition: The upset of F is U(F) = {G ⊆ X : ∃F ∈ F(F ⊆ G)}. A
set A of families is upward closed if F ∈ A implies U(F) ∈ A.

Theorem. For any upward or downward closed set of families A and
for any l ≥ 1

E∗
l (A) ⊆ µl(E

∗
1(A)).

Clearly the class of t-intersecting families is upward closed. The profile
polytope of this class has been already determined in the case t = 1.
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Profile Vectors in the Lattice of Subspaces

Dániel Gerbner ∗ Balázs Patkós†

The profile vector f(F) ∈ R
n+1 of a family F ⊆ 2[n] is defined by

f(F)i = |{F ∈ F : |F | = i}|, and for a set of families A ⊆ 22[n]
its profile

polytope is the convex hull (in R
n+1) of µ(A) = {f(F) : F ∈ A}.

These notions have been studied for more than 20 years, the reason
for which is that they generalize extremal problems for families of subsets.
If w : [n] → R is a weight-function, than the maximum of

∑

i w(i)f(F)i

(where F ranges through all families of some set A) is taken at an extreme
point of the profile polytope. (If all weights are non-negative, then at an
essential extreme point, i.e. an extreme point maximal with respect to the
component-wise ordering.)

Considering the constant one weight (in this case the above sum is just
the size of the family) we get the special case of finding the largest family
of the set. Putting w(k) = 1 and w(j) = 0, j 6= k, we get the case of
determining the largest k-uniform family in the set. If A is the set of Sperner-
families and w(i) = 1

(n

i
)
, then we get the famous LYM-inequality.

Profile vectors can be introduced not only in the Boolean poset, but for
example in the lattice of subspaces of an n-dimensional vectorspace over
GF (q). For a family U of subspaces let its profile f(U) ∈ R

n+1 be defined
by f(U)i = |{U ∈ U : dimU = i}|.

To determine the profile polytope of intersecting families of subspaces
(a family U of subspaces is called intersecting if for any U1, U2 ∈ U we have
dim(U1 ∩ U2) ≥ 1) we follow the so-called method of inequalities. Briefly it
consists of the following steps:

• establish as many linear inequalities valid for the profile of any in-
tersecting family (each inequality determine a halfspace, therefore the
profiles must lie in the intersection of all halfspaces determined by the
inequalities),

• determine the extreme points of the polytope determined by the above
halfspaces,

∗Department of Information Systems, Eötvös University, Pázmány Péter sétány 1/B,
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• for all of the above extreme points find an intersecting family having
this extreme point as profile vector.

The last step gives that the extreme points of the polytope determined
by the halfspaces are the extreme points of the profile polytope that we are
looking for.

By earlier results of Hsieh and Greene and Kleitman we know the fol-
lowing inequalities on the profiles of intersecting families:

• 0 ≤ fi ≤
[n−1
k−1

]

, 0 ≤ i ≤ n/2

• 0 ≤ fi ≤
[n

i

]

, n/2 < i ≤ n

Investigating intersecting families of k and d-dimensional subspaces where
1 ≤ kn/2, n/2 < d and k + d ≤ n (using the idea of the proof of Hsieh and
some further ideas) we are able to prove

Theorem 1. For the profile vector f of any family F of intersecting
subspaces of an n-dimensional vectorspace V , and for any k < n/2 and
n/2 < d ≤ n − k, the following holds

ck,dfk + fd ≤

[

n

d

]

,

where ck,d = qd [n−k

d
]

[n−d−1
k−1 ]

, and equality holds if fk = 0, fd =
[n
d

]

or if fk =
[n−1
k−1

]

, fd =
[n−1
d−1

]

.

These new inequalities (together with the old ones) are sufficient to de-
duce our main result.

Theorem 2. The essential extreme points of the profile polytope of the
set of intersecting families are the vectors vi 1 ≤ i ≤ n/2 for even n and
there is an additional essential extreme point v+ for odd n, where

(vi)j =











0 if 0 ≤ j < i
[

n−1
j−1

]

if i ≤ j ≤ n − i
[n
j

]

if j > n − i.

(0.1)

and

(v+)j =

{

0 if 0 ≤ j < n/2
[

n
j

]

if j > n/2.
(0.2)
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On Vertex Partitions and

the Colin de Verdière Parameter

D. Gonçalves∗

In 1990, Colin de Verdire [1, 2] introduced an interesting new graph
parameter µ(G) for any graph G. The parameter was motivated by the study
of the maximum multiplicity of the second eigenvalue of certain Schrdinger
operators. The parameter µ(G) can be described fully in terms of properties
of matrices related to G. We do not provide its definition in this abstract
(see [4] for a survey on µ). We just mention that this parameter is minor
monotone and that it gives a new characterization of well known minor
closed families of graphs. Indeed, for any graph G :

• µ(G) = 0 iff G has at most two vertices and no edges.

• µ(G) ≤ 1 iff G is a forest of paths (i.e. K3 and K3,1 minor-free).

• µ(G) ≤ 2 iff G is an outerplanar graph (i.e. K4 and K3,2 minor-free).

• µ(G) ≤ 3 iff G is a planar graph [6] (i.e. K5 and K3,3 minor-free).

• µ(G) ≤ 4 iff G is a linkless embeddable graph in R3 [5, 3] (i.e. without
minor in the Petersen family, a set of seven graphs including K6 and
the Petersen graph).

So using µ, topological properties of a graph G can be characterized by
spectral properties of matrices associated with G. Conversely the kernel of
these matrices related to G can be used to construct nice embeddings of G
in Rµ(G).

Here we investigate some links between this parameter and vertex par-
titionning problems. A stable graph G with more than two vertices is such
that µ(G) = 1. Since stable graphs are the K2 minor-free graphs, we would
like that µ(G) = 0 for stable graphs. So we define a slightly different pa-
rameter µ′ : if G is a stable let µ′(G) = 0, else µ′(G) = µ(G). Since graphs
with µ(G) ≤ 4 are (µ(G)+1)-colorable. Colin de Verdire made the following
conjecture.

Conjecture 1 (by Colin de Verdire).For any graph G, χ(G) ≤ µ(G) + 1.

Since any graph G is Kµ(G)+2 minor-free, this conjecture is implied by
the following well known conjecture.

∗LaBRI, U.M.R. 5800, Universit Bordeaux I, 351, cours de la liberation 33405 Talence
Cedex, France. goncalve@labri.fr
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Conjecture 2 (by Hadwiger). A graph G without Kk minor is (k − 1)-
colorable.

Actually, a k-coloring of a graph G is a k-partition of its vertex set
V (G) = V1 ∪ · · · ∪Vk such that each subset induces a stable graph G[Vi]. So
Conjecture 1 can be reformulated as follow : “Any graph G with µ(G) = k−1
has a vertex k-partition V1, . . . Vk into stable graphs G[Vi] (i.e. µ′(G[Vi]) =
0)”. We observe that outerplanar graphs have a vertex partition into 2
forests of paths and that planar graphs have vertex partitions into 2 out-
erplanar graphs or into 3 forests of paths. So we generalizes Conjecture
1.

Conjecture 3. For any graph G and any k ∈ [1 . . . µ′(G) + 1], the graph
G has a vertex k-partition V1, . . . Vk into graphs G[Vi] such that µ′(G[Vi]) ≤
µ′(G) + 1 − k.

When k = 1 it is trivially true and when k = µ′(G) + 1 it corresponds
to Conjecture 1. We proved that it is also true for k = 2 or 3.

Theorem 1. Any graph G has a vertex 2-partition (resp. 3-partition) into
graphs G[Vi] such that µ′(G[Vi]) ≤ µ′(G) − 1 (resp. µ′(G[Vi]) ≤ µ′(G) − 2).

The proof of this theorem is similar to the proof of the fact that forests
of paths (resp. outerplanar graphs) are 2-colorable (resp. 3-colorable). Un-
fortunately, it seems difficult to use the proof of the 4 Color Theorem to find
a proof for the next step, k = 4. To prove this case (k = 4) we could use a
different technique. Given two graphs H and G let H×G be the graph with
vertex set V (H) × V (G) and such that (u, v)(u′, v′) is an edge of H × G iff
uu′ ∈ E(H) or if u = u′ and vv′ ∈ E(G). We do the following conjecture :

Conjecture 4. For any graph X and any k ∈ [0 . . . µ′(X)] there exist two
graphs H and G, with µ′(H) ≤ k and µ′(G) ≤ µ′(X)−k, such that the graph
X is a subgraph of H × G.

This is true for k ≤ 3, and we note that if Conjectures 1 and Conjecture
4 are true, then Conjecture 3 is true.
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The t-Improper Chromatic Number

of Random Graphs

Ross J. Kang and Colin J. H. McDiarmid

We consider the t-improper chromatic numbers of the Erdös-Rényi ran-
dom graph. As usual, Gn,p denotes a random graph with vertex set {1, . . . , n}
in which the edges are chosen independently at random with probability p.
We shall assume here that p is a constant, with 0 < p < 1. A t-dependent
set in a graph G is a vertex subset which induces a subgraph of maximum
degree at most t. The t-improper chromatic number χt(G) is the smallest
number of colours needed in a t-improper colouring — a colouring of the
vertices in which colour classes are t-dependent sets.

The t-improper chromatic number was introduced twenty years ago in-
dependently by Andrews and Jacobson [1], Harary and Fraughnaugh (née
Jones) [6, 7], and Cowen et al [3]. In the first paper, the authors considered
various general lower bounds for the t-improper chromatic number; in the
second, the authors studied χt as part of the more general setting of gener-
alised chromatic numbers; in the third, the authors established best upper
bounds on χt for planar graphs to generalise the Four Colour Theorem.
Several papers on the topic have since appeared; in particular, two papers,
by Eaton and Hull [4] and Škrekovski [10], have extended the program of
Cowen et al to a list colouring variant of χt and both pose the question: is
every planar graph 1-improper 4-choosable?

Clearly, when t = 0, we are simply considering the ordinary notion of
chromatic number for random graphs, and this topic is well studied. Let γ =
2/ log 1

1−p . In 1975 Grimmett and McDiarmid [5] proved that for any ε > 0
the expected number of j-colourings of Gn,p tends to 0 if j ≤ (1 − ε) n

γ log n
and tends to ∞ if j ≥ (1 + ε) n

γ log n , showing that χ(Gn,p) ≥ (1 − ε) n
γn

asymptotically almost surely (a.a.s.), and suggesting that

χ(Gn,p) ∼
n

γ log n
a.a.s.

A decade or so later Bollobás [2], and Matula and Kučera [9], showed that
this is indeed correct.

Now clearly χt(Gn,p) ≤ χ(Gn,p). Also, it is easy to see that χt(G) ≥
χ(G)/(t+1), since each colour class of a t-improper colouring can be properly
coloured with at most t + 1 colours. Thus

χ(Gn,p)

t + 1
≤ χt(Gn,p) ≤ χ(Gn,p).
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It turns out that χt(Gn,p) is close to χ(Gn,p) as long as t(n) = o(log n). This
is in contrast to the behaviour of random geometric graphs, where χt is close
to χ/(t + 1) for t smaller than the expected average degree – see [8]. More
fully, we have:

Theorem 13. (a) if t(n) = o(log n), then χt(Gn,p) ∼
n

γ log n a.a.s.;

(b) if t(n) = Θ(log n), then χt(Gn,p) = Θ(np
t ) a.a.s.;

(c) if t(n) = ω(log n) and t(n) = o(n), then χt(Gn,p) ∼
np
t a.a.s.;

(d) if t(n) satisfies np
t → x, where 0 < x < ∞ and x is not integral, then

χt(Gn,p) = dxe a.a.s.

Now let us examine more closely case (b), where the above theorem is
imprecise. Suppose that t(n) ∼ τ log n for some fixed τ > 0. We identify
a constant κ > 0 (depending on p and τ) such that the expected number
of t-improper j-colourings of Gn,p tends to 0 if j ≤ (1 − ε) n

κ log n and to ∞
if j ≥ (1 + ε) n

κ log n . Note that this result is analogous to (and extends)
the result which we mentioned above on the expected numbers of ordinary
colourings. It is natural now to conjecture that χt(Gn,p) ∼

n
κ log n a.a.s.
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Non-Generic Orthogonal Surfaces

Sarah Kappes∗

The dominance order on R
d is defined by

x ≤ y ⇔ xi ≤ yi for all i = 1, . . . , d

The join of a finite set of points U ⊂ R
d is the coordinate-wise maximum of

all points in U .
Let V ⊂ N

d be a finite set of pairwise incomparable points containing d
suspensions s1, . . . , sd, where si

j = 0 for i 6= j and si
i is maximal within V .

The orthogonal surface SV generated by V is the boundary of the set
{α : v ≤ α for some v ∈ V }. The elements of V are the local minima of the
surface.

We are interested in the combinatorial structure of SV . This is captured
in the cp-order, the set of corners of SV equipped with the dominance order.
All corners are joins of subsets of V , the reverse is not true in general.

The surface SV is generic if no two elements of V share a non-zero
coordinate. In this case, the corners are exactly those joins of sets U ⊂ V
such that join(U) ∈ SV . These sets form a simplicial complex. By the
theorem of Scarf, the cp-order of a generic orthogonal surface in dimension d
can be extended to the face-lattice of a simplicial d-polytope. Figure 1 shows
a 3-dimensional generic surface and the plane triangulation generated by it.

In general, the cp-order does not even satisfy the most basic properties
needed to define a face-complex. Even the restriction to non-degenerate and
rigid surfaces does not suffice to guarantee a polytopal structure, but we can
show that the cp-orders of rigid surfaces have some other nice properties.

The cp-order of a non-degenerate surfaces allows orthogonal matchings
on the set of characteristic points. The ith orthogonal matching Mi is defined
by (c, d) ∈ Mi ⇐⇒ cj = dj for all j 6= i and ci < di. This matching is
almost perfect, only one minimum remains unmatched. Figure 2 shows an
orthogonal matching on a rigid orthogonal surface of dimension 3 and on
the Hasse-diagram of its cp-order.

For rigid surfaces, the orthogonal matchings satisfy an additional acyclic-
ity property, this leads to the following proposition:

Proposition 1. An orthogonal matching on the cp-order of a non-degenerate,
rigid orthogonal surface is a Morse-matching.

∗Institut für Mathematik, Technische Universität Berlin, D-10623 Berlin, Germany,
e-mail: kappes@mail.math.tu-berlin.de
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Figure 1: A 3-dimensional generic surface generates a plane triangulation

Figure 2: An orthogonal matching
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Forbidden Submatrices in 0-1 Matrices

Balázs Keszegh∗ Gábor Tardos†

We say that a 0-1 matrix (or pattern) P is contained in the 0-1 matrix
A if it can be obtained from a submatrix of it by changing extra 1 entries
to 0. We investigate the extremal function ex(n, P ) which is the maximum
number of 1 entries in an n by n matrix not containing P . Note that this is
an ordered variant of the classical Turán extremal graph theory for bipartite
graphs. This problem was first studied in [1], [2]. The case of patterns with
at most four 1 entries was asymptotically solved by [3], [5].

Theorem 1. Let A be a pattern which has two 1 entries in its first column
in row i and i + 1 for a given i. Let A′ be the pattern obtained from A by
adding two new rows between the ith and the (i+1)th row and a new column
before the first column with exactly two 1 entries in the intersection of the
new column and rows. Then ex(n,A′) = O(ex(n,A)).

Corollary 1. ex(n,L2) = O(n).
(in the figure we represent 1 entries with dots and 0 entries with blanks)

L2 =









• •
•
•

•









If the pattern P has higher than linear extremal function and by deleting
any 1 entry from it we obtain a pattern with linear extremal function, then
we call it minimal non-linear. We proved that the pattern H0 is such and so
far, this is the only pattern with more than four 1 entries known to be such.

Theorem 2. ex(n,H0) = Θ(n log n).

H0 =









• •
•
•

•
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It is not known how many minimal non-linear patterns are.

Conjecture 1. There are infinitely many minimal non-linear patterns.

We solve the analogous question on quasi-linear patterns, where we call
a pattern quasi-linear if it is bounded by n times an exponencial function
of α(n), where α(n) is the extremely slowly growing inverse Ackermann
function.

Theorem 3. There exist infinitely many pairwise different minimal non-
quasilinear patterns.

The following theorem was proved in [4]:

Theorem 4. (Marcus, Tardos)
For all permutation matrices P we have ex(n, P ) = O(n).

The conjectures below are in strengthening order and the second would
already imply Conjecture 1.

Conjecture 2.

1. ex(n,G) = O(n).

G =









• •
•

•
•









2. For any permutation pattern by doubling the column containing the 1
entry in its first row we obtain a pattern with linear extremal function.

3. By doubling one column of a permutation pattern we obtain a pattern
with linear extremal function.

4. By doubling every column of a permutation pattern we obtain a pattern
with linear extremal function.
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Bordeaux 3-Color Conjecture and 3-Choosability

Mickal Montassier∗ Andr Raspaud∗ Weifan Wang∗ †

A proper vertex coloring of a graph G is an assignment c of integers (or
labels) to the vertices of G such that c(u) 6= c(v) if the vertices u and v are
adjacent in G. A graph G is list L-colorable if for a given list assignment
L = {L(v) : v ∈ V (G)} there exists a proper coloring c of the vertices such
that ∀v ∈ V (G), c(v) ∈ L(v). If G is list L-colorable for every list assignment
with |L(v)| ≥ k for all v ∈ V (G), then G is k-choosable.

All 2-choosable graphs were characterized completely in [ERT79]. Thomassen
[Tho94] proved that every planar graph is 5-choosable, whereas Voigt [Voi93]
presented an example of a planar graph which is not 4-choosable. Thus it
remains to determine whether a given planar graph is 3- or 4-choosable.
In [Gut96], Gutner proved that these problems are NP-hard. Therefore,
many authors tried to find sufficient conditions for a planar graph to be 3-
or 4-choosable. Alon and Tarsi [AT92] proved that every planar bipartite
graph is 3-choosable. Thomassen [Tho95] proved that every planar graph
of girth 5 is 3-choosable. More recently, some new sufficient conditions for
a planar graph to be 3-choosable have been given. These conditions in-
clude: having no 3-,5- and 6-cycles [LSS05]; having no 4-,5-,6- and 9-cycles
[ZW05]; or having no 4-,5-,7- and 9-cycles [ZW04]. The reader is referred
to [LXL99, LSX01, WL02b, WL02a] for results about the 4-choosability of
planar graphs.

In this paper, we investigate the 3-choosability of planar graphs with
sparse triangles and without cycles of special length. We prove that :

1. Every planar graph without 4- and 5-cycles, and without triangles at
distance less than 4 is 3-choosable.

2. Every planar graph without 4-, 5- and 6-cycles, and without triangles
at distance less than 3 is 3-choosable.

Moreover we show that :

3. There exists a non-3-choosable planar graph without 4-cycles, 5-cycles
and intersecting triangles.

∗LaBRI UMR CNRS 5800, Universit Bordeaux I, 33405 Talence Cedex, FRANCE.
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In 1969, Havel asked if there existed a constant C such that every planar
graph with the minimal distance between triangles at least C is 3-colorable
[Hav69]. This problem remains widely open. Borodin and Raspaud [BR03]
proved that every planar graph with neither 3-cycles at distance less than 4
nor 5-cycles is 3-colorable. Moreover, they made the following conjecture:

Conjecture 1 (Bordeaux 3-color Conjecture). Every planar graph without
intersecting 3-cycles and without 5-cycles is 3-colorable.

The result 3. shows that like Grtzsch’s Theorem and Steinberg’s Con-
jecture, the Bordeaux 3-color Conjecture can not be extended to the list
coloring situation.
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7:184–186, 1969.

[LSS05] P. Lam, W.C. Shiu, and Z.M. Song. The 3-choosability of plane
graphs of girth 4. Dicrete Math., 294:297–301, 2005.

[LSX01] B.C.P. Lam, W.C. Shiu, and B. Xu. On structure of some plane
graphs with applications to choosability. J. Combin. Theory Ser.
B, 82:285–296, 2001.

[LXL99] P. Lam, B. Xu, and J. Liu. The 4-choosability of planar graphs
without 4-cycles. J. Combin. Theory Ser. B, 76:117–126, 1999.

[Tho94] C. Thomassen. Every planar graph is 5-choosable. J. Combin.
Theory Ser. B, 62:180–181, 1994.

[Tho95] C. Thomassen. 3-list coloring planar graphs of girth 5. J. Combin.
Theory, Ser. B, (64):101–107, 1995.

37



[Voi93] M. Voigt. List colourings of planar graphs. Discrete Math.,
120:215–219, 1993.

[WL02a] W. Wang and K.W. Lih. Choosability and edge choosability of
planar graphs without five cycles. Appl. Math. Lett., 15:561–565,
2002.

[WL02b] W. Wang and K.W. Lih. Choosability and edge choosability of
planar graphs without intersecting triangles. SIAM J. Discrete
Math., 15:538–545, 2002.

[ZW04] L. Zhang and B. Wu. Three-choosable planar graphs without cer-
tain small cycles. Graph Theory Notes of New York, 46:27–30,
2004.

[ZW05] L. Zhang and B. Wu. A note on 3-choosability of planar graphs
without certain cycles. Discrete Math., 2005. In press.

38



Oriented Chromatic Index of Oriented Graphs

Pascal Ochem Alexandre Pinlou Éric Sopena∗

Introduction The notion of oriented vertex-coloring was introduced by
Courcelle [3] as follows: an oriented k-vertex-coloring of an oriented graph
G is a homomorphism ϕ from G to H, where H is an oriented graph of
order k. The oriented chromatic number of G, denoted by χo(G), is then
defined as the smallest order of an oriented graph H such that G admits a
homomorphism to H.

Oriented vertex-colorings have been studied by several authors in the
last decade and the problem of bounding the oriented chromatic number has
been investigated for various graph classes (see [2, 9, 10] for an overview).

One can define oriented arc-colorings of oriented graphs in a natural way
by saying that, as in the undirected case, an oriented arc-coloring of an ori-
ented graph G is an oriented vertex-coloring of its line digraph LD(G). We
say that an oriented graph G is H-arc-colorable if there exists a homomor-
phism ϕ from LD(G) to H and ϕ is then an H-arc-coloring. The oriented
chromatic index of G, denoted by χ′

o(G), is defined as the smallest order of
an oriented graph H such that LD(G) admits a homorphism to H.

The full proofs of the results presented in this abstract are available as
internal reports [7, 8].

The first easy result concerning oriented arc-coloring relates the oriented
chromatic index to the oriented chromatic number:

Theorem 1. Let G be an oriented graph. Then χ′
o(G) ≤ χo(G).

Therefore, all upper bounds for the oriented chromatic number are also
valid for the oriented chromatic index.

Oriented chromatic index and acyclic chromatic number Raspaud
and Sopena [9] proved that every oriented graph whose underlying undi-
rected graph has acyclic chromatic number at most k has oriented chromatic
number at most k · 2k−1 and recently, Ochem [6] proved that this bound is
tight. By Theorem 1, every oriented graph with acyclic chromatic number

∗LaBRI, Université Bordeaux 1, 351, cours de la Libération, 33405 Talence Cedex,
France. E-mail: {Pascal.Ochem,Alexandre.Pinlou,Eric.Sopena}@labri.fr
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k has oriented chromatic index at most k · 2k−1. We get a new bound which
is quadratic in terms of the acyclic chromatic number:

Theorem 2. Every oriented graph whose underlying undirected graph has
acyclic chromatic number at most k has oriented chromatic index at most
2k(k − 1) −

⌊

k
2

⌋

.

Oriented graphs whose underlying undirected graph has acyclic chro-
matic number at most k can be decomposed in

(k
2

)

forests. Then, we prove
that we can obtain an oriented arc-coloring of such graphs using three colors
for

⌊

k
2

⌋

forests and four colors for the remaining ones.

A celebrated result of Borodin [1] states that every planar graph has
acyclic chromatic number at most five. Theorem 2 and Borodin’s result
give the following upper bound:

Corollary 2. Let G be a planar graph. Then χ′
o(G) ≤ 38.

Graphs with bounded degree Kostochka et al. [5] proved that every
oriented graph with maximum degree ∆ has oriented chromatic number at
most 2∆22∆. Therefore, for such a graph G we also have χ′

o(G) ≤ 2∆22∆.
We improve this bound and show the following:

Theorem 3. Let G be an oriented graph with maximum degree ∆. Then,
χ′

o(G) ≤ 2∆2.

For an oriented graph G, we relate its oriented chromatic index and the
chromatic number of G2 and prove that χ′

o(G) ≤ 2(χ(G2) − 1). Then, the
bound of Theorem 3 directly follows from this fact.

The following result improves the bound implied by Theorem 3 for sub-
cubic graphs.

Theorem 4. [8] Let G be a subcubic graph. Then χ′
o(G) ≤ 7.

NP-completeness Klostermeyer and MacGillivray [4] have shown that
given an oriented graph G, deciding whether χo(G) ≤ k is polynomial time
if k ≤ 3 and is NP-complete if k ≥ 4.

We determine the complexity of deciding whether the oriented chromatic
index of a given oriented graph is at most a fixed positive integer and we
obtain the following:

Theorem 5. Given an oriented graph G, deciding whether χ′
o(G) ≤ k is

polynomial time if k ≤ 3 and NP-complete if k ≥ 4.

The case k ≤ 3 is a direct consequence from Klostermeyer and MacGillivray’s
result. We show that the case k ≥ 4 is NP-complete using a reduction from
3-colorability.
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[9] A. Raspaud and E. Sopena. Good and semi-strong colorings of oriented
planar graphs. Inform. Process. Lett., 51(4):171–174, 1994.

[10] E. Sopena. Oriented graph coloring. Discrete Math., 229(1-3):359–369,
2001.

41



Injective Coloring of Graphs

André Raspaud∗

For a graph G = (V (G), E(G)), a vertex k-colouring is a mapping c :
V (G) −→ [k], with [k] = {0, 1, . . . , k−1}. We say that a colouring of a graph
is injective if its restriction to the neighbourhood of any vertex is injective.
The injective chromatic number χi(G) of a graph G is the least k such that
there is an injective k-colouring.
We will use the maximum average degree of a graph to give bounds of its
injective chromatic number:

Definition 3. mad(G) = max{ 2|E(H)|
|V (H)| : H is a subgraph of G}.

Proposition 1. If G is a planar graph with girth at least g then mad(G) <
2 + 4

g−2

We will denote by ∆(G) the maximum degree of a graph G.

In this talk we present two results obtained recently.

Theorem 14 (A. Doyon, G. Hahn, A.R. ’05). Let G be a graph

1. If mad(G) < 14
5 then χi(G) ≤ ∆(G) + 3.

2. If mad(G) < 3 then χi(G) ≤ ∆(G) + 4.

3. If mad(G) < 10
3 then χi(G) ≤ ∆(G) + 8.

Corollary 15. Let G be a planar graph

1. If g(G) ≥ 7 then χi(G) ≤ ∆(G) + 3

2. If g(G) ≥ 6 then χi(G) ≤ ∆(G) + 4

3. If g(G) ≥ 5 then χi(G) ≤ ∆(G) + 8

Theorem 16 (G. Hahn, A.R., W. Wang ’05). Let G be a K4-minor free
graph. Then χi(G) ≤ d3

2∆(G)e.

Moreover we propose the following conjecture:

Conjecture 2 (G. Hahn, A.R., W. Wang ’05). Let G be a planar graph
with maximum degree ∆(G). Then χi(G) ≤ d3

2∆(G)e.
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Variations on H-Coloring∗

Maria Serna†

Given two graphs G and H, an homomorphism from G to H is any
function mapping the vertices in G to vertices in H, in such a way that
the image of an edge is also an edge. In the case that H is fixed, such a
homomorphism is called an H-coloring of G. For a given graph H, the H-
coloring problem asks whether there exists an H-coloring of the input graph
G. The more general version in which a list of allowed colors (vertices of
H) is given for each vertex is known as the list H-coloring. See [8] for more
variations on the problem and complexity results.

We consider the variation of H-coloring in which the number of pre-
images of some vertices in the target graph H is restricted through a partial
weight assignment (C,K), assignig weight K(c) to any vertex c ∈ C ⊂
V (H). The restrictive H-coloring problem has as input a graph G and a
partial weight assignment (C,K) and ask for the existend of an H-coloring
χ of G in which, for any c ∈ C, |{v | χ(v) = c}| = K(c). We consider also
the list version of the restrictive H-coloring and the corresponding counting
problems: The restrictive #H-coloring, the restrictive list #H-coloring, the
restrictive #H-coloring, and the restrictive list #H-coloring. We survey
complexity classification of those problems given in [2].

The parameterized version of the restrictive H-coloring problems in which
the partial weight asignment is fixed independently of the input is known
as the (H,C,K)-coloring and was introduced in [1]. We survey the com-
plexity of the (H,C,K)-coloring presented in [5] and the efficient fixed pa-
rameter algorithms known for some particular classes of partially weighted
graphs [3, 4]. One of the fundamental tools for designing efficient fixed-
parameter algorithms for decision problems is the so called reduction to
problem kernel. The method consists in the polynomial time (in n and k)
self-reduction that transforms a problem input (S,K) to another instance
(S′,K ′), the kernel, such that the size of the new instance depends only

on some function of k. We refer the reader to [6, 9] for discussions on fixed
parameter tractability and the ways of constructing kernels. Our algorithms
use this method as basic tool.

In recent years, there has been a big effort focused on developing a theory
for the intractability of parameterized counting problems [7, 10]. However,
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Catalunya. Campus Nord Edifici Omega. c/ Jordi Girona Salgado 1-3, 08034, Barcelona,
Spain. e-mail: mjserna@lsi.upc.es

43



so far, no progress has been noticed in the development of algorithmic tech-
niques and, in particular, tools parallel to the reduction to problem kernel
for counting problems. We introduce a new algorithmic tool, that we call
the compactor enumeration. Instead of isolating a kernel to which the count-
ing problem can be reduced to, we define a general type of set, called the
compactor, which contains a certificate for each class in a suitable partition
of the solution space of (S,K).
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Some New Classification Results for Linear Binary

Codes With Minimum Distance 5 and 6

Zlatko Varbanov∗ Iliya Bouyukliev†

Let F n
2 be the n-dimensional vector space over the Galois field F2 =

GF (2). The Hamming distance between two vectors of F n
2 is defined to be

the number of coordinates in which they differ. A linear binary [n, k, d]-code
is a k-dimensional linear subspace of F n

2 with minimum Hamming distance
d. Generator matrix G of linear binary [n, k, d]-code C is any matrix of rank
k with rows from C. Dual code is C⊥ = {v ∈ F n

2 | (u, v) = 0, for all u ∈ C},
where (u, v) =

∑n
i=1 uivi ∈ F2 for u = (u1, . . . , un), v = (v1, . . . , vn) ∈ F n

2 is
the inner product in F n

2 . Residual code Res(C, c) with respect to codeword c
is the code generated by the restriction of generator matrix G to the columns
where c has a zero entry.

A central problem in coding theory is that of optimizing one of the
parameters n, k and d for given values of the other two. Two versions are:

• Find d2(n, k), the largest value of d for which an [n, k, d]q-code exists.

• Find k2(n, d), the largest value of k for which an [n, k, d]q-code exists.

Another important problem is: Characterize all nonequivalent binary
[n, k2(n, d), d] codes with given values of n and d.

We investigate linear binary codes with minimum distance 5 and 6. Our
main problem is: Are linear binary codes with parameters [34, 24, 5]?

Bounds for d2(n, k) were presented in [1]. The exact values of k2(n, d)
are known for d ≤ 4 and for d = 5, n ≤ 33. This is the reason to consider the
problem for existence or nonexistence of linear binary codes with parameters
[34, 24, 5].

The bounds for binary codes with minimum distance 5 and 6 are strongly
related because of the parity check bits in binary case. Some results for d = 5
and d = 6 have been presented in [2], [3], [4], [5], [6], [7], etc. A linear binary
[33, 23, 5] code was found in [2].
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In this research, we use some theoretical and software tools. One of our
tools is Q − Extension. The main problem which we solve in some cases
with this program is the problem to construct all inequivalent linear codes
with length n, dimension k, and minimum distance d, using a generator
matrix of residual code. But Q − Extension computes the dual distance
after the construction of the code and does not work efficiently for codes
with fixed dual distance. In our research for some specific cases we use
another algorithm for construction of codes - CCFDD (constructing codes
with fixed dual distance).

We have three basic results:

1. A linear binary code with parameters [34, 24, 5] does not exist and
k2(34, 5) = 23.

2. There are exact four nonequivalent linear binary codes with parame-
ters [33, 23, 5].

3. There exists a unique linear binary code with parameters [34, 23, 6].

Also, we characterize some other linear binary codes with minimum dis-
tance 5 and 6.

n,k number n,k number n,k number n,k number

10,3 2 16,8 1 22,13 128 28,18 ≥ 499

11,4 1 17,9 1 [6] 23,14 1 [7] 29,19 ≥ 74360

12,4 12 18,9 1558 24,14 ≥ 206600 30,20 ≥ 561458

13,5 15 19,10 16062 25,15 ≥ 135500 31,21 5146

14,6 11 20,11 13924 26,16 ≥ 31606 32,22 62

15,7 6 [3] 21,12 2373 27,17 ≥ 8655 33,23 4

Table 1: Classification results for optimal codes with d = 5, n < 34.

n,k number n,k number n,k number n,k number

11,3 1 17,8 1 [6] 23,13 8 29,18 ≥ 498

12,4 1 18,9 1 [6] 24,14 1 [7] 30,19 ≥ 49696

13,4 6 19,9 1700 25,14 ≥ 47384 31,20 ≥ 45461

14,5 6 [3] 20,10 1308 26,15 ≥ 116642 32,21 ≥ 200

15,6 5 [3] 21,11 737 27,16 ≥ 31605 33,22 7

16,7 3 [5] 22,12 128 28,17 ≥ 8654 34,23 1

Table 2: Classification results for optimal codes with d = 6, n < 35.

To obtain classification results for codes with dimension at most 8 we use
Q−Extension. For dimensions greater than 8 we use CCFDD. In general,
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if C is a linear binary [n, n − 10, 5] (or [n, n − 9, 5]) code, we consider its
dual [n, 10, d] ([n, 9, d]) code. We summarize all obtained results for codes
with minimum distance 5 and 6 in Table 1 and Table 2. To construct the
codes with minimum distance 6, we use the generator matrices of the codes
in Table 1.
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