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Abstract. We show that the Priestley sum of finite trees contains
no cyclic finite poset.

1. Introduction

A Priestley space is an ordered compact space satisfying a natural
separation property, and Priestley maps are those which are continuous
and preserve the order. The resulting category is dually equivalent to
that of bounded distributive lattices (and 01-preserving lattice homo-
morphisms) by the famous Priestley duality ([10], [11], [8]). Since the
latter category obviously admits arbitrary products, arbitrary coprod-
ucts (sums) of Priestley spaces exist. These are suitable compactifica-
tions of the disjoint union

⋃

J Xj of the summand spaces Xj, and this
union appears as a dense subspace of the sum X ≡

∐

J Xj, which is,
of course, bigger whenever the index set J is infinite.

Although the order structure of X is not yet fully understood, by now
quite a few facts are known about the configurations (finite connected
posets) that are present. Thus, for instance, no finite tree appears
in X unless it also appears in some of the summands Xj ([2], [3],
[5]). On the other hand, a configuration containing a cycle may be
present in X without being present in any of the Xj’s ([4], [6]). But,
in all known constructions producing the latter phenomenon, the Xj’s
contain cycles, albeit not the one in question.
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The problem, then, naturally arises as to whether one can create a
cycle in a sum without having a cycle in any of the summands. Using
the forbidden tree result from [2] it is easy to see that this is impossible
in the case of Xj’s with tops, but the general case seems to be much
harder. In this article we resolve the issue in the negative for arbitrary
sums of finite trees, and hence, for arbitrary sums of finite acyclic
Priestley spaces.

The major result appears here as Theorem 3.3.1, for which the pre-
ceding material is preparation: Section 2 contains the necessary termi-
nology and background, and Section 3 contains the proof. The proof
is organized into three cases analyzed in parallel. Although the key
idea is already present in the motivational Lemma 3.1.1, the heart of
the proof is a combinatorial analysis of trees and their convex subsets
carried out in Subsection 3.2. The proof of the theorem itself is the
content of Subsection 3.3.

2. Preliminaries

In this section we outline the background and notation necessary for
what follows.

2.1. Graphs, paths, and trees. A graph is a couple G = (X, E),
where X is a set and E is a binary symmetric antireflexive relation on
X. The elements of X are called the vertices or nodes of G, and the
pairs (x, y) ∈ E are called the edges of G. A path of length n connecting
x to y is a sequence of the form

x = x0, x1, . . . , xn = y,

where (xi, xi+1) ∈ E for 0 ≤ i < n. If x = y, the path is called a
cycle. If y = xn, xn+1, . . . , xm = z is a path from y to z, then the
concatenation of the two is the path

x = x0, x1, . . . , xn, xn+1, . . . xm = z

from x to z.
The path x0, x1, . . . , xn is called simple if the xi’s are distinct, save

for the possibility that x0 = xn, in which case it is called a simple cycle.
Note that any path x0, x1, . . . , xn can be reduced to a simple path as
follows. If, say, xi = xj for 0 ≤ i < j ≤ n, then the path may be
replaced by the shorter path

x = x0, . . . , xi, xj+1 . . . xn = y.

The graph G is said to be connected if any two of its vertices can be
connected by a path, and acyclic if it admits no nontrivial simple cycles,
i.e., no simple cycles of length n ≥ 3. Finally, a tree is a connected
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acyclic graph, i.e., a graph such that any two of its vertices can be
connected by precisely one simple path.

2.2. Posets, diamonds, and crowns. In a poset (X,≤), we say that
y is a successor to x, or that x is a predecessor to y, and write x ≺ y,
to mean that x < y and

∀z (x ≤ z ≤ y =⇒ (x = z or y = z)) ,

and we write x �≺ y to mean that x ≺ y or x � y. Thus we have asso-
ciated with the poset (X,≤) the graph (X,�≺), and the terminology
of the associated graph is then applied to the poset. In particular, we
say that the poset X is connected or a tree if (X,�≺) has the same
property. We use the term configuration for a finite connected poset,
and acyclic configuration as a synonym for tree configuration.

We abbreviate the path notation in a poset. Instead of writing a
path S in the form s0, . . . , sn, we write it as a word

S = s0 . . . sn.

A segment of S is any path of the form sj . . . sk, 0 ≤ j ≤ k ≤ n, and a
segmentation of S is a sequence of segments of the form

(s0 . . . sj1) (sj1+1 . . . sj2) . . . (sjk+1 . . . sn) .

Note that the adjacent segments are not concatenated, for they do
not share an endpoint. We abuse the path notation to the extent of
using the same letter S for a path or segment s0s2 . . . sn as for the
set {si : 0 ≤ i ≤ n} of its nodes. Note that a segment is nonempty by
definition, in the sense that it involves at least one node, even if the
path is of length 0.

In a tree (connected acyclic poset) T , the reduction to the shortest
path given in Subsection 2.1 can be simplified. A path S = s0s2 . . . sn

can fail to be simple iff it contains a redundancy, i.e., si−1 = si+1

for some i, 1 < i < n. One step in the path reduction procedure is
then just the replacement of S by s0 . . . si−1si+2 . . . sn, and a path is
simple iff no redundancy occurs. In what follows, we make repeated
use without comment of the important fact that, in a tree T , there is a
unique simple path between any two nodes s and t. We refer to this as
the shortest path from s to t, and denote it 〈s, t〉.

Acyclic posets are characterized by the absence of the following three
configurations as induced subposets.

• A diamond is a configuration of four distinct points

x0 < x1, x3 < x2,
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with x1 and x3 incomparable. When dealing with the diamond,
index arithmetic is assumed to be mod 4.

• A proper 2-crown is a configuration of four distinct points

x0 < x1 > x2 < x3 > x0

such that there is no intermediate point x such that x0, x2 <
x < x1, x3. When dealing with the 2-crown, index arithmetic
is assumed to be mod 4.

• For n > 2, an n-crown is a configuration of 2n distinct points

x0 < x1 > x2 < x3 > . . . < x2n−1 > x0

such that no order relationships obtain beyond those displayed.
When dealing with the n-crown, index arithmetic is assumed to
be mod 2n.

2.3. Up-sets and down-sets. In a poset (X,≤), for a subset M ⊆ X,
we set

↓M ≡ {x : ∃m ∈ M (x ≤ m)} and ↑M ≡ {x : ∃m ∈ M (x ≥ m)} ,

and we abbreviate ↓{x} to ↓x and ↑{x} to ↑x. The subset M is said
to be a down-set if M = ↓M and an up-set if M = ↑M . Obviously,
unions and intersections of down-sets are down-sets, and similarly for
up-sets. Note that an intersection M = U ∩ D of an up-set and a
down-set is typically neither an up-set nor a down-set, but is convex,
meaning that for all x, y, z ∈ X,

(x ≤ y ≤ z and x, z ∈ M) =⇒ y ∈ M.

2.4. Priestley duality. A Priestley space is a compact ordered space
(X, τ,≤) such that whenever x � y there is a clopen up-set U with
y /∈ U 3 x. A Priestley map f : (X, τ,≤) → (X ′, τ ′,≤′) is a continuous
order-preserving function. The resulting category is designated PSp.
Recall the Priestley duality ([8], [10], [11]) between PSp and the cate-
gory D of bounded distributive lattices with bound-preserving lattice
homomorphisms. It can be given by the pair of functors

Psp
U

�
P

D,

where

U (X, τ,≤) = ({U : U is a clopen up-set in X} ,∪,∩, ∅, X) ,

U (f) (U) = f−1 [U ]
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and

P (L) = ({F : F is a prime filter in L} , τ,⊆)

P (h) (F ) = h−1 [F ] .

The topology τ is generated by basic sets of the form Σ (a, b), a, b ∈ L,
where

Σ (a, b) = {F : a /∈ F 3 b} .

Due to the obvious existence of products in D, we have the following
fundamental observation.

Lemma 2.4.1. PSp has coproducts.

2.5. Coproduct conventions. Let {Xj : j ∈ J} be a pairwise disjoint
family of finite posets. If we denote by Aj the lattice U (Xj) of up-sets
of Xj, then

∐

J

Xj
∼= P

(

∏

J

Aj

)

.

Now
∏

J Aj is isomorphic to A ≡ {U : U is an up-set of
⋃

J Xj} by
means of the association

∏

J

Aj 3 a 7−→
⋃

J

a (j) ∈ A,

so that we have the coproduct represented as

X ≡ ({F : F is a prime filter on A} , τ,⊆) ,

with τ generated by basic sets of the form Σ (a, b), a, b ∈ A, where

Σ (a, b) = {F : a /∈ F 3 b} .

The canonical insertion ρj : Xj → X is the map

ρj (x) ≡ {a : x ∈ a} ∈ X, x ∈ Xj.

Lemma 2.5.1. Each ρj is an order embedding, meaning that ρj (x) ≤
ρj (y) iff x ≤ y for x, y ∈ Xj. And each ρj [Xj] is order independent in
X, meaning that no point of ρj [Xj] is related to any point of Xrρj [Xj].
And

⋃

J ρj [Xj] is both a subposet and a dense subspace of X.

Proof. See [9] for a penetrating analysis of the structure of X, of which
this lemma is only a small part. �

From now on we identify each Xj with its image under ρj, and use
letters like x, y, and z to designate the elements of X, whether they lie
in
⋃

J Xj or in the remainder X r
⋃

J Xj.
We record a consequence of Lemma 2.5.1 for our subsequent use. Let

T ≡
⋃

J Xj.
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Lemma 2.5.2. For any subset U ⊆ X, (↑X U) ∩ T = ↑T (U ∩ T ),
meaning

{t ∈ T : ∃ x ∈ U (t ≥ x)} = {t ∈ T : ∃ t′ ∈ (U ∩ T ) (t ≥ t′)} ,

and likewise (↓X U) ∩ T = ↓T (U ∩ T ).

3. The proof of the acyclicity of a sum of trees

The proof of the main result, Theorem 3.3.1 below, will proceed by
analyzing the three cases set out in the trichotomy of Subsection 2.2.
That is, we will show that a sum of finite trees houses no diamond, no
proper 2-crown, and no n-crown with n > 2. We develop all three cases
in parallel in order to emphasize the common aspects of the arguments.

3.1. A motivational lemma. We begin with the observation that
the presence of a cycle in a Priestley space is signaled by the exis-
tence of a certain finite collection of convex clopen subsets in a specific
relationship to one another.

Lemma 3.1.1. Let X be a Priestley space.

(1) Four points x0 < x1, x3 < x2 form a diamond iff x1 and x3 have
clopen down-set neighborhoods U1 and U3, respectively, such that
x1 /∈ U3 and x3 /∈ U1.

(2) Four points x0, x2 < x1, x3 form a 2-crown iff each xi has a
clopen neighborhood Ui such that U0 and U2 are up-sets, U1 and
U3 are down-sets, and

⋂

0≤i≤3

Ui = ∅.

(3) The following are equivalent for a collection of 2n points, n > 2,
related as follows:

x0 < x1 > x2 < . . . > x2n−2 < x2n−1 > x0.

(a) The collection forms an n-crown, i.e., no order relation-
ships hold among the xi’s other than those displayed.

(b) Each xi has a clopen neighborhood Ui such that the Ui’s
are up-sets for even indices and down-sets for odd indices,
and such that Ui ∩ Uj = ∅ for even i and odd j such that
|i − j| 6= 1. (Index arithmetic is mod2n.)

(c) Each xi, i even, is contained in a clopen upset Ui which
contains only those xj for which |i − j| ≤ 1. (Index arith-
metic is mod 2n.)
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Proof. (1) If x1 is unrelated to x3 then the existence of the Ui’s is a
consequence of the total order disconnectedness of X. The converse is
obvious. (2) The condition certainly implies the absence of an interme-
diate point, since such a point would lie in the displayed intersection.
So suppose the crown is proper. Viewing the points of X as prime fil-
ters on some bounded distributive lattice L, the lack of an intermediate
point translates into the condition that the filter generated by x0 ∪ x2

meets the ideal generated by (T r x1) ∪ (T r x3). That condition, in
turn, produces lattice elements a0 ∈ x0, a1 /∈ x1, a2 ∈ x2, and a3 /∈ x3

such that

a1 ∨ a3 ≥ a0 ∧ a2.

The sets

U0 ≡ {x ∈ X : a0 ∈ x} ,

U1 ≡ {x ∈ X : a1 /∈ x} ,

U2 ≡ {x ∈ X : a2 ∈ x} ,

U3 ≡ {x ∈ X : a3 /∈ x} ,

clearly have the required properties.
(3) If (b) holds then it is clear that xi can be related to xj only if

|i − j| ≤ 1, from which (a) follows. The implication from (c) to (b)
goes by setting

U2i−1 ≡ X r
⋃

|2i−1−2k|6=1

U2k.

So assume (a) to prove (c). We view the xi’s as prime filters on some
bounded distributive lattice. If i is an even index and j is an odd index
such that |i − j| 6= 1, the fact that xi � xj produces a lattice element
aij ∈ xi r xj, so we define

ai ≡
∧

odd j

|i−j|6=1

aij ∈ xi r
⋃

odd j

|i−j|6=1

xj.

The sets Ui ≡ {x : ai ∈ x} clearly have the required properties. �

3.2. In a finite tree. In all three cases, the proof proceeds by analyz-
ing the combinatorial properties of a finite collection of subsets Ui of
the type that arise in Lemma 3.1.1. But we emphasize that the analy-
sis takes place, not in an arbitrary Priestley space X, but instead in a
given finite tree T . Therefore, for the remainder of this section, T will
represent a fixed finite tree and {Ui : 0 ≤ i ≤ n} will represent subsets
of T which are either up-sets or down-sets.
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The sets Ui and their complements partition T into subsets of the
form

⋂

0≤i≤n U ′
i , where U ′

i stands for either Ui or T rUi. We term such
subsets basic, and remind the reader that we pointed out in Subsection
2.3 that they are convex. What is most important for our purposes is
that any path S in T has a unique segmentation

S = S1S2 . . . Sk

such that the nodes of each Si lie within the same basic subset, and
such that nodes of adjacent segments lie in different basic subsets. We
refer to this as the basic segmentation of S.

We single out certain basic sets for special consideration, and de-
note these sets Vi. (Roughly speaking, these are the basic subsets
corresponding to the points of the diamond or the crown under con-
sideration.) In the case of the diamond, we are given clopen down-sets
U1 and U3, from which we define

V0 ≡ U1 ∩ U3,

V1 ≡ U1 ∩ (T r U3) ,

V2 ≡ (T r U1) ∩ (T r U3) ,

V3 ≡ (T r U1) ∩ U3.

In the case of the 2-crown, we are given clopen up-sets U0 and U2 and

clopen down-sets U1 and U3 such that
⋂

Ui = ∅, from which we define

V0 ≡ U0 ∩ U1 ∩ (T r U2) ∩ U3,

V1 ≡ U0 ∩ U1 ∩ U2 ∩ (T r U3) ,

V2 ≡ (T r U0) ∩ U1 ∩ U2 ∩ U3,

V3 ≡ U0 ∩ (T r U1) ∩ U2 ∩ U3.

In the case of the n-crown, n > 2, we are given n clopen up-sets U2i,
0 ≤ i < n, from which we define

V2i ≡ U2i ∩
⋂

0≤i6=j<n

(T r U2j) , 0 ≤ i < n.

V2i+1 ≡ U2i ∩ U2i+2 ∩
⋂

0≤i6=j 6=i+1<n

(T r U2j) , 0 ≤ i < n.

We come now to the central definition, namely that of a tour. We
begin by defining a fundamental tour. (As usual, index arithmetic is
mod 4 in the case of the diamond and 2-crown, and mod 2n in the case
of the n-crown.) In the case of the diamond, a fundamental tour from
s to t is a path R from s to t whose basic segmentation is of the form

R0R1R2R3R4,
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where either Ri ⊆ Vi for 0 ≤ i ≤ 4 or Ri ⊆ V4−i for 0 ≤ i ≤ 4. In the
case of the n-crown, n > 2, a fundamental tour from s to t is a path R
from s to t whose basic segmentation is of the form

R0R1 . . . R2n,

where either Ri ⊆ Vi for 0 ≤ i ≤ 2n or Ri ⊆ V2n−i for 0 ≤ i ≤ 2n. In
the case of the 2-crown, a fundamental tour from s to t is a path from
s to t whose basic segmentation can be expressed in the form

R0S0R1S1R2S2R3S3R4,

such that either Ri ⊆ Vi for 0 ≤ i ≤ 4 or Ri ⊆ V4−i for 0 ≤ i ≤ 4. Any
Si may be void, meaning that no segment appears in that position, but
if it represents an actual segment, then its nodes must occupy a basic
subset different from any of the Vj’s, and different from those of Si+1.
In addition, if S3 and S0 are nonvoid then their nodes must occupy
different basic subsets.

Lemma 3.2.1. Let R be a fundamental tour with basic segmentation
W0 . . .Wk. Then the nodes of Wi−1 fall into a different basic subset
than do those of Wi+1, 0 < i < k, and likewise for the nodes of Wk−1

and W1.

Lemma 3.2.2. When applied to a fundamental tour, the reduction to
the shortest path (see Subsection 2.1) produces a fundamental tour.

Proof. Let R = s0 . . . sn be a fundamental tour with basic segmentation
W0 . . .Wk, and suppose a redundancy occurs at si, i.e., si−1 = si+1, for
some point si in segment Wj. But si−1 must then also fall into Wj,
since the only alternative is for si−1 to fall into Wj−1 and si+1 to fall
into Wj+1, and this cannot happen by Lemma 3.2.1. �

Finally, a tour from s to t is a path R from s to t which results
from concatenating an odd number of fundamental tours. That is to
say that, in the basic segmentation W0W1 . . .Wn of R, there is an odd
integer k, and there are indices

0 = i0 < i1 . . . < ik = n,

such that each segment of the form WijWij+1 . . .Wij+1
, 0 ≤ j < k, is a

fundamental tour.

Lemma 3.2.3. No tour is closed. That is, there is no tour from a
point to itself.

Proof. Suppose, on the contrary, that R is a tour from s to s with basic
segmentation W0 . . .Wn and indices 0 = i0 < i1 . . . < ik = n such that
each segment Wij . . .Wij+1

is fundamental. Let k be the least integer
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for which such a tour exists. Lemma 3.2.2 implies that k > 1, of course,
but more to the point, it allows us to assume without loss of generality
that each segment Wij . . .Wij+1

is simple.
We claim that, for l < m, the nodes of Wil are unrelated to those of

Wim . For if, say,

Wil 3 r > t ∈ Wim

then there is a path P from t to r lying entirely within V0, and this
gives rise to two closed paths. One is the segment of R from r to t
concatenated with P , and the other is the segment of R from t to s
concatenated with the segment of R from s to r concatenated with the
reversal of P . Each of these paths is a concatenation of fundamental
tours, and the total number of these fundamental tours is k. It follows
that one of these paths is a closed tour composed of fewer than k
fundamental tours, contrary to hypothesis.

Let us refer to a fundamental tour as positive if Ri ⊆ Vi for all i,
and as negative if Ri ⊆ V4−i or Ri ⊆ V2n−i. Because k is odd, there
must be two adjacent fundamental tours with the same parity, i.e.,
some index ij such that both Wij−1

. . .Wij and Wij . . .Wij+1
are, say,

positive. (This includes the possibility that j = k, meaning that both
Wik−1

. . .Wn and W0 . . .Wi1 are positive.)
Let q be the last node of Wij−1 and r the first node of Wij+1. (In

case j = k, q is chosen to be the last element of Wn−1 and r is chosen
to be the first element of W1.) We now have two paths from q to r.
The first is the segment of R from q to r. (If j = k, this is interpreted
to mean the segment of R from q to s concatenated with the segment
of R from s to r.) The second is the reversal of the segment of R from
s to q concatenated with the reversal of the segment of R from r to s.
(If j = k this is interpreted to mean the reversal of the segment of R
from r to q.)

The contradiction arises from observing that the two paths share
only their endpoints, a situation which clearly cannot arise in a tree.
For, other than the endpoints, the nodes of the first path lie entirely
within V0, and, by the claim above, are unrelated to the V0 nodes of
the second path. �

For our purposes, the important way in which tours arise is in the
approximation of crowns. In the case of the diamond, we consider five
points of T , arranged so that

s0 < s1 < s2 > s3 > s4,
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with si ∈ Vi. We fill in all points intermediate between the si’s to get
the path

s0 = t0 ≺ . . . ≺ tm1
= s1 ≺ tm0+1 ≺ . . . ≺ tm2

= s2

s2 = tm2
� . . . � tm3

= s3 � tm2+1 � . . . � tm4
= s4.

In the case of the 2-crown, we again consider five points of T , this time
arranged so that

s0 < s1 > s2 < s3 > s4,

with si ∈ Vi. When the intermediate points are filled in, we get the
path

s0 = t0 ≺ . . . ≺ tm1
= s1 � tm0+1 � . . . � tm2

= s2

s2 = tm2
≺ . . . ≺ tm3

= s3 � tm2+1 � . . . � tm4
= s4.

In the case of the n-crown, n > 2, we consider 2n + 1 points of T ,
arranged so that

s0 < s1 > s2 < . . . s2n−1 > s2n,

with si ∈ Vi. When the intermediate points are filled in, we get the
path

s0 = t0 ≺ . . . ≺ tm1
= s1 � tm0+1 � . . . � tm2

= s2

. . .

s2n−1 = tm2n−1
� . . . � tm2n

= s2n.

Lemma 3.2.4. The path 〈ti〉 described above is a tour.

Proof. Consider first the case of the diamond. Since U1 and U3 are
down-sets, and since s0 ∈ V0 = U1 ∩ U3 and s2 /∈ U1 ∪ U3, there exist
integers k and l such that, for 0 ≤ i ≤ m2,

ti ∈ U3 iff i ≤ k, and ti ∈ U1 iff i ≤ l.

And since tm1
= s1 ∈ V1 = U1 r U3,

0 ≤ k < m1 ≤ l < m2.

Likewise there exist integers n and p, m2 ≤ n < m3 ≤ p < m4, such
that, for m2 ≤ i ≤ m4,

ti /∈ U3 iff i ≤ n, and ti /∈ U1 iff i ≤ p.

Thus the basic segmentation of 〈ti〉 is

(t0 · · · tk) (tk+1 · · · tl) (tl+1 · · · tn) (tn+1 · · · tm4
) ,

and this segmentation clearly satisfies the requirements to be a tour.
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Next consider the case of the 2-crown. Since t0 ∈ U0 and U0 is an
upset, ti ∈ U0 for 0 ≤ i ≤ m1, and since tm1

∈ U1 and U1 is a down-set,
ti ∈ U1 for 0 ≤ i ≤ m1. Reasoning in similar fashion, we get that

ti ∈















U0 ∩ U1, 0 ≤ i ≤ m1,
U1 ∩ U2, m1 ≤ i ≤ m2,
U2 ∩ U3, m2 ≤ i ≤ m3,
U3 ∩ U4, m3 ≤ i ≤ m4.

Since tm1
/∈ U3 3 t0, there is an integer k, 0 ≤ k < m1, such that

ti ∈ U3 iff i ≤ k. Likewise there is an integer l, 0 ≤ l < m1, such that
ti /∈ U2 iff i ≤ l. And k ≤ l lest ∩Ui 6= ∅. Reasoning in similar fashion,
we get integers m, n, p, q, u, and v,

m2 ≤ m ≤ n < m2 ≤ p ≤ q < m3 ≤ u ≤ v < m4,

such that

ti ∈ U0 iff i ≤ m, and ti /∈ U3 iff i ≤ n, m1 ≤ i ≤ m2,

ti ∈ U1 iff i ≤ p, and ti /∈ U0 iff i ≤ q, m2 ≤ i ≤ m3,

ti ∈ U2 iff i ≤ u, and ti /∈ U1 iff i ≤ v, m3 ≤ i ≤ m4.

These indices allow us to give the basic segmentation of 〈ti〉 in the
required form R0S0R1S1R2S2R3S3R4, as follows.

R0 ≡ (t0 · · · tk) ⊆ U0 ∩ U1 ∩ (T r U2) ∩ U3 = V0

S0 ≡ (tk+1 · · · tl) ⊆ U0 ∩ U1 ∩ (T r U2) ∩ (T r U3)

R1 ≡ (tl+1 · · · tm) ⊆ U0 ∩ U1 ∩ U2 ∩ (T r U3) = V1

S1 ≡ (tm+1 · · · tn) ⊆ (T r U0) ∩ U1 ∩ U2 ∩ (T r U3)

R2 ≡ (tn+1 · · · tp) ⊆ (T r U0) ∩ U1 ∩ U2 ∩ U3 = V2

S2 ≡ (tp+1 · · · tq) ⊆ (T r U0) ∩ (T r U1) ∩ U2 ∩ U3

R3 ≡ (tq+1 · · · tu) ⊆ U0 ∩ (T r U1) ∩ U2 ∩ U3 = V3

S3 ≡ (tu+1 · · · tv) ⊆ U0 ∩ (T r U1) ∩ (T r U2) ∩ U3

R4 ≡ (tv+1 · · · tm4
) ⊆ U0 ∩ U1 ∩ (T r U2) ∩ U3 = V0

(We interpret S0 to be void if k = l, and similarly for S1, S2, and
S3.) Cursory inspection reveals that this segmentation meets the re-
quirements to be a tour in the case of the 2-crown. In the case of the
n-crown, n > 2, no new ideas are involved in the proof and for that
reason we leave it to the reader. �

We arrive finally at the main point of this section, Proposition 3.2.5,
for which we need one more definition. It is the definition of a small
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subset of V0, which is slightly different in each case. In the case of the
diamond, S ⊆ V0 is small provided that

↓(↓(↑(↑S ∩ V1) ∩ V2) ∩ V3) ∩ S = ∅.

In the case of the 2-crown, S ⊆ V0 is small provided that

↓(↑(↓(↑S ∩ V1) ∩ V2) ∩ V3) ∩ S = ∅.

In the case of the n-crown, n > 2, S ⊆ V0 is small provided that

↓(↑(. . . (↓(↑S ∩ V1) ∩ V2) . . .) ∩ V2n−1) ∩ S = ∅.

Proposition 3.2.5. V0 can be partitioned into disjoint small subsets
S1 and S2 such that each Si satisfies ↑Si ∩ V0 = Si.

Proof. We write sΩt to indicate that there is a tour from s to t. Note
that sΩt iff tΩs, and that

(†) ∃ ri (sΩr1Ωr2Ωt) =⇒ sΩt.

Let S1 be maximal among subsets of V0 with respect to the property

(∗) (s ∈ S and sΩt) =⇒ t /∈ S.

We claim that S2 ≡ V0 rS1 satisfies (∗). For suppose r1Ωr2 for ri ∈ S2.
By the maximality of S1, there would then have to exist si ∈ S1 such
that siΩri, which would imply by (†) the contradiction s1Ωs2. We
next claim that any two nodes r and s for which 〈r, s〉 ⊆ V0 must lie
in the same Si, for otherwise rΩs and the tour from r to s could be
concatenated with 〈r, s〉 to produce a closed tour, contrary to Lemma
3.2.3. Therefore, though S2 may be empty, S1 is not, since for any
r ∈ V0, the nonempty set of nodes which can be reached from r by a
path lying entirely within V0 enjoys property (∗). Finally, it follows,
also from the second claim, that ↑Si ∩ V0 = Si.

It remains only to show that the Si’s are small. We argue in the case
of the 2-crown, the other cases being quite similar. If S1, for example,
is not small then there must be an element

s5 ∈ ↓(↑(↓(↑S1 ∩ V2) ∩ V3) ∩ V4) ∩ S1, say

s5 < s4 ∈ ↑(↓(↑R1 ∩ V2) ∩ V3) ∩ V4, hence

s4 > s3 ∈ ↓(↑R1 ∩ V2) ∩ V3, hence

s3 < s2 ∈ ↑R1 ∩ V2, hence

s2 > s1 ∈ R1.

But, exactly as in the discussion above, these five points give rise to a
tour from s1 to s5, in violation of the defining condition (∗) for S1. �
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3.3. Acyclicity of a sum of trees. Suppose {Tj : j ∈ J} is a family
of trees. Following the coproduct conventions of Subsection 2.5, we
denote by Aj the lattice of up-sets of Tj, and by A the lattice of up-
sets of T ≡

⋃

J Tj. (A is isomorphic to
∏

J Aj.) We take the elements
of the sum X ≡

∐

J Tj to be the prime filters of A, and we regard T as
a subset of X.

Theorem 3.3.1. A sum of finite trees is acyclic.

Proof. It is sufficient to show that X contains no diamond, no proper
2-crown, and no n-crown, n > 2. We show that X contains no proper
2-crown; the other cases can be handled in similar fashion. So suppose
that x1, x2 < x3, x4 is a proper 2-crown in X, and let Ui, 0 ≤ i ≤ 3, be
clopen neighborhoods of the points satisfying Lemma 3.1.1(2). Let

V ′
0 ≡ U0 ∩ U1 ∩ (X r U2) ∩ U3,

V ′
1 ≡ U0 ∩ U1 ∩ U2 ∩ (X r U3) ,

V ′
2 ≡ (X r U0) ∩ U1 ∩ U2 ∩ U3,

V ′
3 ≡ U0 ∩ (X r U1) ∩ U2 ∩ U3,

and note that each V ′
i is a convex clopen subset of X containing xi.

For every j ∈ J , let Sj
1 and Sj

2 be the result of applying Proposition
3.2.5 to the subsets Ui ∩ Tj, let Si ≡

⋃

JSj
i , let ai ≡ ↑Si, let Ri ≡

{x ∈ X : Si ∈ x}, and let Wi ≡ Ri ∩ V ′
0 . Since each ai lies in A, each

Ri is a clopen up-set and each Wi is a convex clopen subset of V ′
0 .

We claim that the W ′
i ’s partition V ′

0 . This is basically because Wi ∩
T = Si and the Si’s partition V ′

0 ∩ T , but we will elaborate. First of
all, W1 ∩ W2 is empty, since this open set meets the dense subset T
in S1 ∩ S2 = ∅. And secondly, V ′

0 ⊆ W1 ∪ W2, since otherwise the
nonempty open set V ′

0 r (W1 ∪ W2) would meet T nontrivially, a state
of affairs ruled out by the fact that V ′

0 ∩ T ⊆ S1 ∩ S2 by construction.
It follows that one of the Wi’s must contain x0. But x0 cannot lie in

W1, for if it did then

x1 ∈ ↑W1 ∩ V ′
1 ,

x2 ∈ ↓(↑W1 ∩ V ′
1) ∩ V ′

2 ,

x3 ∈ ↑(↓(↑W1 ∩ V ′
1) ∩ V ′

2) ∩ V ′
3 ,

x0 ∈ ↓(↑(↓(↑W1 ∩ V ′
1) ∩ V ′

2) ∩ V ′
3) ∩ W1,

meaning that the set displayed last, call it W ′
1, is nonempty. But this

is not the case, since, by Lemma 2.5.2, that open set meets T in

↓(↑(↓(↑S1 ∩ V1) ∩ V2) ∩ V3) ∩ S1,
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where Vi ≡ T ∩V ′
i , and the latter set is empty by virtue of the smallness

of each Sj
1. Likewise x1 /∈ S ′

2, and this is a contradiction. We conclude
that X contains no proper 2-crown. �
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