A PRIESTLEY SUM OF FINITE TREES IS ACYCLIC

RICHARD N. BALL, ALEŠ PULTR, AND JIŘÍ SICHLER

Abstract. We show that the Priestley sum of finite trees contains no cyclic finite poset.

1. Introduction

A Priestley space is an ordered compact space satisfying a natural separation property, and Priestley maps are those which are continuous and preserve the order. The resulting category is dually equivalent to that of bounded distributive lattices (and 01-preserving lattice homomorphisms) by the famous Priestley duality ([10], [11], [8]). Since the latter category obviously admits arbitrary products, arbitrary coproducts (sums) of Priestley spaces exist. These are suitable compactifications of the disjoint union $\bigcup_{J} X_{j}$ of the summand spaces X_{j}, and this union appears as a dense subspace of the sum $X \equiv \coprod_{J} X_{j}$, which is, of course, bigger whenever the index set J is infinite.

Although the order structure of X is not yet fully understood, by now quite a few facts are known about the configurations (finite connected posets) that are present. Thus, for instance, no finite tree appears in X unless it also appears in some of the summands X_{j} ([2], [3], [5]). On the other hand, a configuration containing a cycle may be present in X without being present in any of the X_{j} 's ([4], [6]). But, in all known constructions producing the latter phenomenon, the X_{j} 's contain cycles, albeit not the one in question.

[^0]The problem, then, naturally arises as to whether one can create a cycle in a sum without having a cycle in any of the summands. Using the forbidden tree result from [2] it is easy to see that this is impossible in the case of X_{j} 's with tops, but the general case seems to be much harder. In this article we resolve the issue in the negative for arbitrary sums of finite trees, and hence, for arbitrary sums of finite acyclic Priestley spaces.

The major result appears here as Theorem 3.3.1, for which the preceding material is preparation: Section 2 contains the necessary terminology and background, and Section 3 contains the proof. The proof is organized into three cases analyzed in parallel. Although the key idea is already present in the motivational Lemma 3.1.1, the heart of the proof is a combinatorial analysis of trees and their convex subsets carried out in Subsection 3.2. The proof of the theorem itself is the content of Subsection 3.3.

2. Preliminaries

In this section we outline the background and notation necessary for what follows.
2.1. Graphs, paths, and trees. A graph is a couple $G=(X, E)$, where X is a set and E is a binary symmetric antireflexive relation on X. The elements of X are called the vertices or nodes of G, and the pairs $(x, y) \in E$ are called the edges of G. A path of length n connecting x to y is a sequence of the form

$$
x=x_{0}, x_{1}, \ldots, x_{n}=y
$$

where $\left(x_{i}, x_{i+1}\right) \in E$ for $0 \leq i<n$. If $x=y$, the path is called a cycle. If $y=x_{n}, x_{n+1}, \ldots, x_{m}=z$ is a path from y to z, then the concatenation of the two is the path

$$
x=x_{0}, x_{1}, \ldots, x_{n}, x_{n+1}, \ldots x_{m}=z
$$

from x to z.
The path $x_{0}, x_{1}, \ldots, x_{n}$ is called simple if the x_{i} 's are distinct, save for the possibility that $x_{0}=x_{n}$, in which case it is called a simple cycle. Note that any path $x_{0}, x_{1}, \ldots, x_{n}$ can be reduced to a simple path as follows. If, say, $x_{i}=x_{j}$ for $0 \leq i<j \leq n$, then the path may be replaced by the shorter path

$$
x=x_{0}, \ldots, x_{i}, x_{j+1} \ldots x_{n}=y
$$

The graph G is said to be connected if any two of its vertices can be connected by a path, and acyclic if it admits no nontrivial simple cycles, i.e., no simple cycles of length $n \geq 3$. Finally, a tree is a connected
acyclic graph, i.e., a graph such that any two of its vertices can be connected by precisely one simple path.
2.2. Posets, diamonds, and crowns. In a poset (X, \leq), we say that y is a successor to x, or that x is a predecessor to y, and write $x \prec y$, to mean that $x<y$ and

$$
\forall z(x \leq z \leq y \Longrightarrow(x=z \text { or } y=z))
$$

and we write $x \succ \prec y$ to mean that $x \prec y$ or $x \succ y$. Thus we have associated with the poset (X, \leq) the graph $(X, \succ \prec)$, and the terminology of the associated graph is then applied to the poset. In particular, we say that the poset X is connected or a tree if $(X, \succ \prec)$ has the same property. We use the term configuration for a finite connected poset, and acyclic configuration as a synonym for tree configuration.

We abbreviate the path notation in a poset. Instead of writing a path S in the form s_{0}, \ldots, s_{n}, we write it as a word

$$
S=s_{0} \ldots s_{n}
$$

A segment of S is any path of the form $s_{j} \ldots s_{k}, 0 \leq j \leq k \leq n$, and a segmentation of S is a sequence of segments of the form

$$
\left(s_{0} \ldots s_{j_{1}}\right)\left(s_{j_{1}+1} \ldots s_{j_{2}}\right) \ldots\left(s_{j_{k}+1} \ldots s_{n}\right)
$$

Note that the adjacent segments are not concatenated, for they do not share an endpoint. We abuse the path notation to the extent of using the same letter S for a path or segment $s_{0} s_{2} \ldots s_{n}$ as for the set $\left\{s_{i}: 0 \leq i \leq n\right\}$ of its nodes. Note that a segment is nonempty by definition, in the sense that it involves at least one node, even if the path is of length 0 .

In a tree (connected acyclic poset) T, the reduction to the shortest path given in Subsection 2.1 can be simplified. A path $S=s_{0} s_{2} \ldots s_{n}$ can fail to be simple iff it contains a redundancy, i.e., $s_{i-1}=s_{i+1}$ for some $i, 1<i<n$. One step in the path reduction procedure is then just the replacement of S by $s_{0} \ldots s_{i-1} s_{i+2} \ldots s_{n}$, and a path is simple iff no redundancy occurs. In what follows, we make repeated use without comment of the important fact that, in a tree T, there is a unique simple path between any two nodes s and t. We refer to this as the shortest path from s to t, and denote it $\langle s, t\rangle$.

Acyclic posets are characterized by the absence of the following three configurations as induced subposets.

- A diamond is a configuration of four distinct points

$$
x_{0}<x_{1}, x_{3}<x_{2}
$$

with x_{1} and x_{3} incomparable. When dealing with the diamond, index arithmetic is assumed to be mod 4 .

- A proper 2 -crown is a configuration of four distinct points

$$
x_{0}<x_{1}>x_{2}<x_{3}>x_{0}
$$

such that there is no intermediate point x such that $x_{0}, x_{2}<$ $x<x_{1}, x_{3}$. When dealing with the 2 -crown, index arithmetic is assumed to be $\bmod 4$.

- For $n>2$, an n-crown is a configuration of $2 n$ distinct points

$$
x_{0}<x_{1}>x_{2}<x_{3}>\ldots<x_{2 n-1}>x_{0}
$$

such that no order relationships obtain beyond those displayed. When dealing with the n-crown, index arithmetic is assumed to be $\bmod 2 n$.
2.3. Up-sets and down-sets. In a poset (X, \leq), for a subset $M \subseteq X$, we set

$$
\downarrow M \equiv\{x: \exists m \in M(x \leq m)\} \text { and } \uparrow M \equiv\{x: \exists m \in M(x \geq m)\}
$$

and we abbreviate $\downarrow\{x\}$ to $\downarrow x$ and $\uparrow\{x\}$ to $\uparrow x$. The subset M is said to be a down-set if $M=\downarrow M$ and an up-set if $M=\uparrow M$. Obviously, unions and intersections of down-sets are down-sets, and similarly for up-sets. Note that an intersection $M=U \cap D$ of an up-set and a down-set is typically neither an up-set nor a down-set, but is convex, meaning that for all $x, y, z \in X$,

$$
(x \leq y \leq z \text { and } x, z \in M) \Longrightarrow y \in M
$$

2.4. Priestley duality. A Priestley space is a compact ordered space (X, τ, \leq) such that whenever $x \not \leq y$ there is a clopen up-set U with $y \notin U \ni x$. A Priestley map $f:(X, \tau, \leq) \rightarrow\left(X^{\prime}, \tau^{\prime}, \leq^{\prime}\right)$ is a continuous order-preserving function. The resulting category is designated PSp. Recall the Priestley duality ([8], [10], [11]) between PSp and the category \mathbf{D} of bounded distributive lattices with bound-preserving lattice homomorphisms. It can be given by the pair of functors

$$
\operatorname{Psp} \underset{\mathcal{P}}{\stackrel{U}{\rightleftarrows}} \mathbf{D}
$$

where

$$
\begin{aligned}
\mathcal{U}(X, \tau, \leq) & =(\{U: U \text { is a clopen up-set in } X\}, \cup, \cap, \emptyset, X) \\
\mathcal{U}(f)(U) & =f^{-1}[U]
\end{aligned}
$$

and

$$
\begin{aligned}
\mathcal{P}(L) & =(\{F: F \text { is a prime filter in } L\}, \tau, \subseteq) \\
\mathcal{P}(h)(F) & =h^{-1}[F] .
\end{aligned}
$$

The topology τ is generated by basic sets of the form $\Sigma(a, b), a, b \in L$, where

$$
\Sigma(a, b)=\{F: a \notin F \ni b\}
$$

Due to the obvious existence of products in \mathbf{D}, we have the following fundamental observation.

Lemma 2.4.1. PSp has coproducts.
2.5. Coproduct conventions. Let $\left\{X_{j}: j \in J\right\}$ be a pairwise disjoint family of finite posets. If we denote by A_{j} the lattice $\mathcal{U}\left(X_{j}\right)$ of up-sets of X_{j}, then

$$
\coprod_{J} X_{j} \cong \mathcal{P}\left(\prod_{J} A_{j}\right)
$$

Now $\prod_{J} A_{j}$ is isomorphic to $A \equiv\left\{U: U\right.$ is an up-set of $\left.\bigcup_{J} X_{j}\right\}$ by means of the association

$$
\prod_{J} A_{j} \ni a \longmapsto \bigcup_{J} a(j) \in A
$$

so that we have the coproduct represented as

$$
X \equiv(\{F: F \text { is a prime filter on } A\}, \tau, \subseteq)
$$

with τ generated by basic sets of the form $\Sigma(a, b), a, b \in A$, where

$$
\Sigma(a, b)=\{F: a \notin F \ni b\}
$$

The canonical insertion $\rho_{j}: X_{j} \rightarrow X$ is the map

$$
\rho_{j}(x) \equiv\{a: x \in a\} \in X, x \in X_{j} .
$$

Lemma 2.5.1. Each ρ_{j} is an order embedding, meaning that $\rho_{j}(x) \leq$ $\rho_{j}(y)$ iff $x \leq y$ for $x, y \in X_{j}$. And each $\rho_{j}\left[X_{j}\right]$ is order independent in X, meaning that no point of $\rho_{j}\left[X_{j}\right]$ is related to any point of $X \backslash \rho_{j}\left[X_{j}\right]$. And $\bigcup_{J} \rho_{j}\left[X_{j}\right]$ is both a subposet and a dense subspace of X.
Proof. See [9] for a penetrating analysis of the structure of X, of which this lemma is only a small part.

From now on we identify each X_{j} with its image under ρ_{j}, and use letters like x, y, and z to designate the elements of X, whether they lie in $\bigcup_{J} X_{j}$ or in the remainder $X \backslash \bigcup_{J} X_{j}$.

We record a consequence of Lemma 2.5.1 for our subsequent use. Let $T \equiv \bigcup_{J} X_{j}$.

Lemma 2.5.2. For any subset $U \subseteq X,\left(\uparrow_{X} U\right) \cap T=\uparrow_{T}(U \cap T)$, meaning

$$
\{t \in T: \exists x \in U(t \geq x)\}=\left\{t \in T: \exists t^{\prime} \in(U \cap T)\left(t \geq t^{\prime}\right)\right\}
$$

and likewise $\left(\downarrow_{X} U\right) \cap T=\downarrow_{T}(U \cap T)$.

3. The proof of the acyclicity of a sum of trees

The proof of the main result, Theorem 3.3.1 below, will proceed by analyzing the three cases set out in the trichotomy of Subsection 2.2. That is, we will show that a sum of finite trees houses no diamond, no proper 2 -crown, and no n-crown with $n>2$. We develop all three cases in parallel in order to emphasize the common aspects of the arguments.
3.1. A motivational lemma. We begin with the observation that the presence of a cycle in a Priestley space is signaled by the existence of a certain finite collection of convex clopen subsets in a specific relationship to one another.

Lemma 3.1.1. Let X be a Priestley space.
(1) Four points $x_{0}<x_{1}, x_{3}<x_{2}$ form a diamond iff x_{1} and x_{3} have clopen down-set neighborhoods U_{1} and U_{3}, respectively, such that $x_{1} \notin U_{3}$ and $x_{3} \notin U_{1}$.
(2) Four points $x_{0}, x_{2}<x_{1}, x_{3}$ form a 2-crown iff each x_{i} has a clopen neighborhood U_{i} such that U_{0} and U_{2} are up-sets, U_{1} and U_{3} are down-sets, and

$$
\bigcap_{0 \leq i \leq 3} U_{i}=\emptyset
$$

(3) The following are equivalent for a collection of $2 n$ points, $n>2$, related as follows:

$$
x_{0}<x_{1}>x_{2}<\ldots>x_{2 n-2}<x_{2 n-1}>x_{0}
$$

(a) The collection forms an n-crown, i.e., no order relationships hold among the x_{i} 's other than those displayed.
(b) Each x_{i} has a clopen neighborhood U_{i} such that the U_{i} 's are up-sets for even indices and down-sets for odd indices, and such that $U_{i} \cap U_{j}=\emptyset$ for even i and odd j such that $|i-j| \neq 1$. (Index arithmetic is $\bmod 2 n$.)
(c) Each x_{i}, i even, is contained in a clopen upset U_{i} which contains only those x_{j} for which $|i-j| \leq 1$. (Index arithmetic is $\bmod 2 n$.)

Proof. (1) If x_{1} is unrelated to x_{3} then the existence of the U_{i} 's is a consequence of the total order disconnectedness of X. The converse is obvious. (2) The condition certainly implies the absence of an intermediate point, since such a point would lie in the displayed intersection. So suppose the crown is proper. Viewing the points of X as prime filters on some bounded distributive lattice L, the lack of an intermediate point translates into the condition that the filter generated by $x_{0} \cup x_{2}$ meets the ideal generated by $\left(T \backslash x_{1}\right) \cup\left(T \backslash x_{3}\right)$. That condition, in turn, produces lattice elements $a_{0} \in x_{0}, a_{1} \notin x_{1}, a_{2} \in x_{2}$, and $a_{3} \notin x_{3}$ such that

$$
a_{1} \vee a_{3} \geq a_{0} \wedge a_{2}
$$

The sets

$$
\begin{aligned}
& U_{0} \equiv\left\{x \in X: a_{0} \in x\right\}, \\
& U_{1} \equiv\left\{x \in X: a_{1} \notin x\right\}, \\
& U_{2} \equiv\left\{x \in X: a_{2} \in x\right\}, \\
& U_{3} \equiv\left\{x \in X: a_{3} \notin x\right\},
\end{aligned}
$$

clearly have the required properties.
(3) If (b) holds then it is clear that x_{i} can be related to x_{j} only if $|i-j| \leq 1$, from which (a) follows. The implication from (c) to (b) goes by setting

$$
U_{2 i-1} \equiv X \backslash \bigcup_{|2 i-1-2 k| \neq 1} U_{2 k}
$$

So assume (a) to prove (c). We view the x_{i} 's as prime filters on some bounded distributive lattice. If i is an even index and j is an odd index such that $|i-j| \neq 1$, the fact that $x_{i} \not \leq x_{j}$ produces a lattice element $a_{i j} \in x_{i} \backslash x_{j}$, so we define

$$
a_{i} \equiv \bigwedge_{\substack{\text { odd } j \\|i-j| \neq 1}} a_{i j} \in x_{i} \backslash \bigcup_{\substack{\text { odd } j \\|i-j| \neq 1}} x_{j} .
$$

The sets $U_{i} \equiv\left\{x: a_{i} \in x\right\}$ clearly have the required properties.
3.2. In a finite tree. In all three cases, the proof proceeds by analyzing the combinatorial properties of a finite collection of subsets U_{i} of the type that arise in Lemma 3.1.1. But we emphasize that the analysis takes place, not in an arbitrary Priestley space X, but instead in a given finite tree T. Therefore, for the remainder of this section, T will represent a fixed finite tree and $\left\{U_{i}: 0 \leq i \leq n\right\}$ will represent subsets of T which are either up-sets or down-sets.

The sets U_{i} and their complements partition T into subsets of the form $\bigcap_{0 \leq i \leq n} U_{i}^{\prime}$, where U_{i}^{\prime} stands for either U_{i} or $T \backslash U_{i}$. We term such subsets $\bar{b} a s i c$, and remind the reader that we pointed out in Subsection 2.3 that they are convex. What is most important for our purposes is that any path S in T has a unique segmentation

$$
S=S_{1} S_{2} \ldots S_{k}
$$

such that the nodes of each S_{i} lie within the same basic subset, and such that nodes of adjacent segments lie in different basic subsets. We refer to this as the basic segmentation of S.

We single out certain basic sets for special consideration, and denote these sets V_{i}. (Roughly speaking, these are the basic subsets corresponding to the points of the diamond or the crown under consideration.) In the case of the diamond, we are given clopen down-sets U_{1} and U_{3}, from which we define

$$
\begin{aligned}
& V_{0} \equiv U_{1} \cap U_{3} \\
& V_{1} \equiv U_{1} \cap\left(T \backslash U_{3}\right) \\
& V_{2} \equiv\left(T \backslash U_{1}\right) \cap\left(T \backslash U_{3}\right), \\
& V_{3} \equiv\left(T \backslash U_{1}\right) \cap U_{3}
\end{aligned}
$$

In the case of the 2 -crown, we are given clopen up-sets U_{0} and U_{2} and clopen down-sets U_{1} and U_{3} such that $\bigcap U_{i}=\emptyset$, from which we define

$$
\begin{aligned}
& V_{0} \equiv U_{0} \cap U_{1} \cap\left(T \backslash U_{2}\right) \cap U_{3}, \\
& V_{1} \equiv U_{0} \cap U_{1} \cap U_{2} \cap\left(T \backslash U_{3}\right), \\
& V_{2} \equiv\left(T \backslash U_{0}\right) \cap U_{1} \cap U_{2} \cap U_{3}, \\
& V_{3} \equiv U_{0} \cap\left(T \backslash U_{1}\right) \cap U_{2} \cap U_{3} .
\end{aligned}
$$

In the case of the n-crown, $n>2$, we are given n clopen up-sets $U_{2 i}$, $0 \leq i<n$, from which we define

$$
\begin{aligned}
V_{2 i} & \equiv U_{2 i} \cap \bigcap_{0 \leq i \neq j<n}\left(T \backslash U_{2 j}\right), 0 \leq i<n . \\
V_{2 i+1} & \equiv U_{2 i} \cap U_{2 i+2} \cap \bigcap_{0 \leq i \neq j \neq i+1<n}\left(T \backslash U_{2 j}\right), 0 \leq i<n .
\end{aligned}
$$

We come now to the central definition, namely that of a tour. We begin by defining a fundamental tour. (As usual, index arithmetic is $\bmod 4$ in the case of the diamond and 2 -crown, and $\bmod 2 n$ in the case of the n-crown.) In the case of the diamond, a fundamental tour from s to t is a path R from s to t whose basic segmentation is of the form

$$
R_{0} R_{1} R_{2} R_{3} R_{4}
$$

where either $R_{i} \subseteq V_{i}$ for $0 \leq i \leq 4$ or $R_{i} \subseteq V_{4-i}$ for $0 \leq i \leq 4$. In the case of the n-crown, $n>2$, a fundamental tour from s to t is a path R from s to t whose basic segmentation is of the form

$$
R_{0} R_{1} \ldots R_{2 n}
$$

where either $R_{i} \subseteq V_{i}$ for $0 \leq i \leq 2 n$ or $R_{i} \subseteq V_{2 n-i}$ for $0 \leq i \leq 2 n$. In the case of the 2 -crown, a fundamental tour from s to t is a path from s to t whose basic segmentation can be expressed in the form

$$
R_{0} S_{0} R_{1} S_{1} R_{2} S_{2} R_{3} S_{3} R_{4}
$$

such that either $R_{i} \subseteq V_{i}$ for $0 \leq i \leq 4$ or $R_{i} \subseteq V_{4-i}$ for $0 \leq i \leq 4$. Any S_{i} may be void, meaning that no segment appears in that position, but if it represents an actual segment, then its nodes must occupy a basic subset different from any of the V_{j} 's, and different from those of S_{i+1}. In addition, if S_{3} and S_{0} are nonvoid then their nodes must occupy different basic subsets.

Lemma 3.2.1. Let R be a fundamental tour with basic segmentation $W_{0} \ldots W_{k}$. Then the nodes of W_{i-1} fall into a different basic subset than do those of $W_{i+1}, 0<i<k$, and likewise for the nodes of W_{k-1} and W_{1}.

Lemma 3.2.2. When applied to a fundamental tour, the reduction to the shortest path (see Subsection 2.1) produces a fundamental tour.

Proof. Let $R=s_{0} \ldots s_{n}$ be a fundamental tour with basic segmentation $W_{0} \ldots W_{k}$, and suppose a redundancy occurs at s_{i}, i.e., $s_{i-1}=s_{i+1}$, for some point s_{i} in segment W_{j}. But s_{i-1} must then also fall into W_{j}, since the only alternative is for s_{i-1} to fall into W_{j-1} and s_{i+1} to fall into W_{j+1}, and this cannot happen by Lemma 3.2.1.

Finally, a tour from s to t is a path R from s to t which results from concatenating an odd number of fundamental tours. That is to say that, in the basic segmentation $W_{0} W_{1} \ldots W_{n}$ of R, there is an odd integer k, and there are indices

$$
0=i_{0}<i_{1} \ldots<i_{k}=n
$$

such that each segment of the form $W_{i_{j}} W_{i_{j}+1} \ldots W_{i_{j+1}}, 0 \leq j<k$, is a fundamental tour.

Lemma 3.2.3. No tour is closed. That is, there is no tour from a point to itself.

Proof. Suppose, on the contrary, that R is a tour from s to s with basic segmentation $W_{0} \ldots W_{n}$ and indices $0=i_{0}<i_{1} \ldots<i_{k}=n$ such that each segment $W_{i_{j}} \ldots W_{i_{j+1}}$ is fundamental. Let k be the least integer
for which such a tour exists. Lemma 3.2.2 implies that $k>1$, of course, but more to the point, it allows us to assume without loss of generality that each segment $W_{i_{j}} \ldots W_{i_{j+1}}$ is simple.

We claim that, for $l<m$, the nodes of $W_{i_{l}}$ are unrelated to those of $W_{i_{m}}$. For if, say,

$$
W_{i_{l}} \ni r>t \in W_{i_{m}}
$$

then there is a path P from t to r lying entirely within V_{0}, and this gives rise to two closed paths. One is the segment of R from r to t concatenated with P, and the other is the segment of R from t to s concatenated with the segment of R from s to r concatenated with the reversal of P. Each of these paths is a concatenation of fundamental tours, and the total number of these fundamental tours is k. It follows that one of these paths is a closed tour composed of fewer than k fundamental tours, contrary to hypothesis.

Let us refer to a fundamental tour as positive if $R_{i} \subseteq V_{i}$ for all i, and as negative if $R_{i} \subseteq V_{4-i}$ or $R_{i} \subseteq V_{2 n-i}$. Because k is odd, there must be two adjacent fundamental tours with the same parity, i.e., some index i_{j} such that both $W_{i_{j-1}} \ldots W_{i_{j}}$ and $W_{i_{j}} \ldots W_{i_{j+1}}$ are, say, positive. (This includes the possibility that $j=k$, meaning that both $W_{i_{k-1}} \ldots W_{n}$ and $W_{0} \ldots W_{i_{1}}$ are positive.)

Let q be the last node of $W_{i_{j}-1}$ and r the first node of $W_{i_{j}+1}$. (In case $j=k, q$ is chosen to be the last element of W_{n-1} and r is chosen to be the first element of W_{1}.) We now have two paths from q to r. The first is the segment of R from q to r. (If $j=k$, this is interpreted to mean the segment of R from q to s concatenated with the segment of R from s to r.) The second is the reversal of the segment of R from s to q concatenated with the reversal of the segment of R from r to s. (If $j=k$ this is interpreted to mean the reversal of the segment of R from r to q.)

The contradiction arises from observing that the two paths share only their endpoints, a situation which clearly cannot arise in a tree. For, other than the endpoints, the nodes of the first path lie entirely within V_{0}, and, by the claim above, are unrelated to the V_{0} nodes of the second path.

For our purposes, the important way in which tours arise is in the approximation of crowns. In the case of the diamond, we consider five points of T, arranged so that

$$
s_{0}<s_{1}<s_{2}>s_{3}>s_{4}
$$

with $s_{i} \in V_{i}$. We fill in all points intermediate between the s_{i} 's to get the path

$$
\begin{aligned}
& s_{0}=t_{0} \prec \ldots \prec t_{m_{1}}=s_{1} \prec t_{m_{0}+1} \prec \ldots \prec t_{m_{2}}=s_{2} \\
& s_{2}=t_{m_{2}} \succ \ldots \succ t_{m_{3}}=s_{3} \succ t_{m_{2}+1} \succ \ldots \succ t_{m_{4}}=s_{4} .
\end{aligned}
$$

In the case of the 2 -crown, we again consider five points of T, this time arranged so that

$$
s_{0}<s_{1}>s_{2}<s_{3}>s_{4}
$$

with $s_{i} \in V_{i}$. When the intermediate points are filled in, we get the path

$$
\begin{aligned}
& s_{0}=t_{0} \prec \ldots \prec t_{m_{1}}=s_{1} \succ t_{m_{0}+1} \succ \ldots \succ t_{m_{2}}=s_{2} \\
& s_{2}=t_{m_{2}} \prec \ldots \prec t_{m_{3}}=s_{3} \succ t_{m_{2}+1} \succ \ldots \succ t_{m_{4}}=s_{4}
\end{aligned}
$$

In the case of the n-crown, $n>2$, we consider $2 n+1$ points of T, arranged so that

$$
s_{0}<s_{1}>s_{2}<\ldots s_{2 n-1}>s_{2 n}
$$

with $s_{i} \in V_{i}$. When the intermediate points are filled in, we get the path

$$
\begin{aligned}
& s_{0}=t_{0} \prec \ldots \prec t_{m_{1}}=s_{1} \succ t_{m_{0}+1} \succ \ldots \succ t_{m_{2}}=s_{2} \\
& \ldots \\
& s_{2 n-1}=t_{m_{2 n-1}} \succ \ldots \succ t_{m_{2 n}}=s_{2 n} .
\end{aligned}
$$

Lemma 3.2.4. The path $\left\langle t_{i}\right\rangle$ described above is a tour.
Proof. Consider first the case of the diamond. Since U_{1} and U_{3} are down-sets, and since $s_{0} \in V_{0}=U_{1} \cap U_{3}$ and $s_{2} \notin U_{1} \cup U_{3}$, there exist integers k and l such that, for $0 \leq i \leq m_{2}$,

$$
t_{i} \in U_{3} \text { iff } i \leq k, \text { and } t_{i} \in U_{1} \text { iff } i \leq l
$$

And since $t_{m_{1}}=s_{1} \in V_{1}=U_{1} \backslash U_{3}$,

$$
0 \leq k<m_{1} \leq l<m_{2}
$$

Likewise there exist integers n and $p, m_{2} \leq n<m_{3} \leq p<m_{4}$, such that, for $m_{2} \leq i \leq m_{4}$,

$$
t_{i} \notin U_{3} \text { iff } i \leq n, \text { and } t_{i} \notin U_{1} \text { iff } i \leq p
$$

Thus the basic segmentation of $\left\langle t_{i}\right\rangle$ is

$$
\left(t_{0} \cdots t_{k}\right)\left(t_{k+1} \cdots t_{l}\right)\left(t_{l+1} \cdots t_{n}\right)\left(t_{n+1} \cdots t_{m_{4}}\right)
$$

and this segmentation clearly satisfies the requirements to be a tour.

Next consider the case of the 2 -crown. Since $t_{0} \in U_{0}$ and U_{0} is an upset, $t_{i} \in U_{0}$ for $0 \leq i \leq m_{1}$, and since $t_{m_{1}} \in U_{1}$ and U_{1} is a down-set, $t_{i} \in U_{1}$ for $0 \leq i \leq m_{1}$. Reasoning in similar fashion, we get that

$$
t_{i} \in\left\{\begin{array}{cc}
U_{0} \cap U_{1}, & 0 \leq i \leq m_{1} \\
U_{1} \cap U_{2}, & m_{1} \leq i \leq m_{2} \\
U_{2} \cap U_{3}, & m_{2} \leq i \leq m_{3} \\
U_{3} \cap U_{4}, & m_{3} \leq i \leq m_{4}
\end{array}\right.
$$

Since $t_{m_{1}} \notin U_{3} \ni t_{0}$, there is an integer $k, 0 \leq k<m_{1}$, such that $t_{i} \in U_{3}$ iff $i \leq k$. Likewise there is an integer $l, 0 \leq l<m_{1}$, such that $t_{i} \notin U_{2}$ iff $i \leq l$. And $k \leq l$ lest $\cap U_{i} \neq \emptyset$. Reasoning in similar fashion, we get integers m, n, p, q, u, and v,

$$
m_{2} \leq m \leq n<m_{2} \leq p \leq q<m_{3} \leq u \leq v<m_{4}
$$

such that

$$
\begin{aligned}
& t_{i} \in U_{0} \text { iff } i \leq m, \text { and } t_{i} \notin U_{3} \text { iff } i \leq n, m_{1} \leq i \leq m_{2} \\
& t_{i} \in U_{1} \text { iff } i \leq p, \text { and } t_{i} \notin U_{0} \text { iff } i \leq q, m_{2} \leq i \leq m_{3} \\
& t_{i} \in U_{2} \text { iff } i \leq u, \text { and } t_{i} \notin U_{1} \text { iff } i \leq v, m_{3} \leq i \leq m_{4}
\end{aligned}
$$

These indices allow us to give the basic segmentation of $\left\langle t_{i}\right\rangle$ in the required form $R_{0} S_{0} R_{1} S_{1} R_{2} S_{2} R_{3} S_{3} R_{4}$, as follows.

$$
\begin{aligned}
R_{0} & \equiv\left(t_{0} \cdots t_{k}\right) \subseteq U_{0} \cap U_{1} \cap\left(T \backslash U_{2}\right) \cap U_{3}=V_{0} \\
S_{0} & \equiv\left(t_{k+1} \cdots t_{l}\right) \subseteq U_{0} \cap U_{1} \cap\left(T \backslash U_{2}\right) \cap\left(T \backslash U_{3}\right) \\
R_{1} & \equiv\left(t_{l+1} \cdots t_{m}\right) \subseteq U_{0} \cap U_{1} \cap U_{2} \cap\left(T \backslash U_{3}\right)=V_{1} \\
S_{1} & \equiv\left(t_{m+1} \cdots t_{n}\right) \subseteq\left(T \backslash U_{0}\right) \cap U_{1} \cap U_{2} \cap\left(T \backslash U_{3}\right) \\
R_{2} & \equiv\left(t_{n+1} \cdots t_{p}\right) \subseteq\left(T \backslash U_{0}\right) \cap U_{1} \cap U_{2} \cap U_{3}=V_{2} \\
S_{2} & \equiv\left(t_{p+1} \cdots t_{q}\right) \subseteq\left(T \backslash U_{0}\right) \cap\left(T \backslash U_{1}\right) \cap U_{2} \cap U_{3} \\
R_{3} & \equiv\left(t_{q+1} \cdots t_{u}\right) \subseteq U_{0} \cap\left(T \backslash U_{1}\right) \cap U_{2} \cap U_{3}=V_{3} \\
S_{3} & \equiv\left(t_{u+1} \cdots t_{v}\right) \subseteq U_{0} \cap\left(T \backslash U_{1}\right) \cap\left(T \backslash U_{2}\right) \cap U_{3} \\
R_{4} & \equiv\left(t_{v+1} \cdots t_{m_{4}}\right) \subseteq U_{0} \cap U_{1} \cap\left(T \backslash U_{2}\right) \cap U_{3}=V_{0}
\end{aligned}
$$

(We interpret S_{0} to be void if $k=l$, and similarly for S_{1}, S_{2}, and S_{3}.) Cursory inspection reveals that this segmentation meets the requirements to be a tour in the case of the 2 -crown. In the case of the n-crown, $n>2$, no new ideas are involved in the proof and for that reason we leave it to the reader.

We arrive finally at the main point of this section, Proposition 3.2.5, for which we need one more definition. It is the definition of a small
subset of V_{0}, which is slightly different in each case. In the case of the diamond, $S \subseteq V_{0}$ is small provided that

$$
\downarrow\left(\downarrow\left(\uparrow\left(\uparrow S \cap V_{1}\right) \cap V_{2}\right) \cap V_{3}\right) \cap S=\emptyset .
$$

In the case of the 2 -crown, $S \subseteq V_{0}$ is small provided that

$$
\downarrow\left(\uparrow\left(\downarrow\left(\uparrow S \cap V_{1}\right) \cap V_{2}\right) \cap V_{3}\right) \cap S=\emptyset
$$

In the case of the n-crown, $n>2, S \subseteq V_{0}$ is small provided that

$$
\downarrow\left(\uparrow\left(\ldots\left(\downarrow\left(\uparrow S \cap V_{1}\right) \cap V_{2}\right) \ldots\right) \cap V_{2 n-1}\right) \cap S=\emptyset .
$$

Proposition 3.2.5. V_{0} can be partitioned into disjoint small subsets S_{1} and S_{2} such that each S_{i} satisfies $\uparrow S_{i} \cap V_{0}=S_{i}$.

Proof. We write $s \Omega t$ to indicate that there is a tour from s to t. Note that $s \Omega t$ iff $t \Omega s$, and that

$$
\exists r_{i}\left(s \Omega r_{1} \Omega r_{2} \Omega t\right) \Longrightarrow s \Omega t
$$

Let S_{1} be maximal among subsets of V_{0} with respect to the property

$$
\begin{equation*}
(s \in S \text { and } s \Omega t) \Longrightarrow t \notin S \tag{*}
\end{equation*}
$$

We claim that $S_{2} \equiv V_{0} \backslash S_{1}$ satisfies $(*)$. For suppose $r_{1} \Omega r_{2}$ for $r_{i} \in S_{2}$. By the maximality of S_{1}, there would then have to exist $s_{i} \in S_{1}$ such that $s_{i} \Omega r_{i}$, which would imply by (\dagger) the contradiction $s_{1} \Omega s_{2}$. We next claim that any two nodes r and s for which $\langle r, s\rangle \subseteq V_{0}$ must lie in the same S_{i}, for otherwise $r \Omega s$ and the tour from r to s could be concatenated with $\langle r, s\rangle$ to produce a closed tour, contrary to Lemma 3.2.3. Therefore, though S_{2} may be empty, S_{1} is not, since for any $r \in V_{0}$, the nonempty set of nodes which can be reached from r by a path lying entirely within V_{0} enjoys property $(*)$. Finally, it follows, also from the second claim, that $\uparrow S_{i} \cap V_{0}=S_{i}$.

It remains only to show that the S_{i} 's are small. We argue in the case of the 2 -crown, the other cases being quite similar. If S_{1}, for example, is not small then there must be an element

$$
\begin{aligned}
& s_{5} \in \downarrow\left(\uparrow\left(\downarrow\left(\uparrow S_{1} \cap V_{2}\right) \cap V_{3}\right) \cap V_{4}\right) \cap S_{1}, \text { say } \\
& s_{5}<s_{4} \in \uparrow\left(\downarrow\left(\uparrow R_{1} \cap V_{2}\right) \cap V_{3}\right) \cap V_{4}, \text { hence } \\
& s_{4}>s_{3} \in \downarrow\left(\uparrow R_{1} \cap V_{2}\right) \cap V_{3}, \text { hence } \\
& s_{3}<s_{2} \in \uparrow R_{1} \cap V_{2}, \text { hence } \\
& s_{2}>s_{1} \in R_{1} .
\end{aligned}
$$

But, exactly as in the discussion above, these five points give rise to a tour from s_{1} to s_{5}, in violation of the defining condition $(*)$ for S_{1}.
3.3. Acyclicity of a sum of trees. Suppose $\left\{T_{j}: j \in J\right\}$ is a family of trees. Following the coproduct conventions of Subsection 2.5, we denote by A_{j} the lattice of up-sets of T_{j}, and by A the lattice of upsets of $T \equiv \bigcup_{J} T_{j}$. (A is isomorphic to $\prod_{J} A_{j}$.) We take the elements of the sum $X \equiv \coprod_{J} T_{j}$ to be the prime filters of A, and we regard T as a subset of X.

Theorem 3.3.1. A sum of finite trees is acyclic.
Proof. It is sufficient to show that X contains no diamond, no proper 2 -crown, and no n-crown, $n>2$. We show that X contains no proper 2-crown; the other cases can be handled in similar fashion. So suppose that $x_{1}, x_{2}<x_{3}, x_{4}$ is a proper 2 -crown in X, and let $U_{i}, 0 \leq i \leq 3$, be clopen neighborhoods of the points satisfying Lemma 3.1.1(2). Let

$$
\begin{aligned}
V_{0}^{\prime} & \equiv U_{0} \cap U_{1} \cap\left(X \backslash U_{2}\right) \cap U_{3}, \\
V_{1}^{\prime} & \equiv U_{0} \cap U_{1} \cap U_{2} \cap\left(X \backslash U_{3}\right), \\
V_{2}^{\prime} & \equiv\left(X \backslash U_{0}\right) \cap U_{1} \cap U_{2} \cap U_{3}, \\
V_{3}^{\prime} & \equiv U_{0} \cap\left(X \backslash U_{1}\right) \cap U_{2} \cap U_{3},
\end{aligned}
$$

and note that each V_{i}^{\prime} is a convex clopen subset of X containing x_{i}. For every $j \in J$, let S_{1}^{j} and S_{2}^{j} be the result of applying Proposition 3.2 .5 to the subsets $U_{i} \cap T_{j}$, let $S_{i} \equiv \bigcup_{J} S_{i}^{j}$, let $a_{i} \equiv \uparrow S_{i}$, let $R_{i} \equiv$ $\left\{x \in X: S_{i} \in x\right\}$, and let $W_{i} \equiv R_{i} \cap V_{0}^{\prime}$. Since each a_{i} lies in A, each R_{i} is a clopen up-set and each W_{i} is a convex clopen subset of V_{0}^{\prime}.

We claim that the $W_{i}^{\prime \prime}$ s partition V_{0}^{\prime}. This is basically because $W_{i} \cap$ $T=S_{i}$ and the S_{i} 's partition $V_{0}^{\prime} \cap T$, but we will elaborate. First of all, $W_{1} \cap W_{2}$ is empty, since this open set meets the dense subset T in $S_{1} \cap S_{2}=\emptyset$. And secondly, $V_{0}^{\prime} \subseteq W_{1} \cup W_{2}$, since otherwise the nonempty open set $V_{0}^{\prime} \backslash\left(W_{1} \cup W_{2}\right)$ would meet T nontrivially, a state of affairs ruled out by the fact that $V_{0}^{\prime} \cap T \subseteq S_{1} \cap S_{2}$ by construction.

It follows that one of the W_{i} 's must contain x_{0}. But x_{0} cannot lie in W_{1}, for if it did then

$$
\begin{aligned}
x_{1} & \in \uparrow W_{1} \cap V_{1}^{\prime}, \\
x_{2} & \in \downarrow\left(\uparrow W_{1} \cap V_{1}^{\prime}\right) \cap V_{2}^{\prime}, \\
x_{3} & \in \uparrow\left(\downarrow\left(\uparrow W_{1} \cap V_{1}^{\prime}\right) \cap V_{2}^{\prime}\right) \cap V_{3}^{\prime}, \\
x_{0} & \in \downarrow\left(\uparrow\left(\downarrow\left(\uparrow W_{1} \cap V_{1}^{\prime}\right) \cap V_{2}^{\prime}\right) \cap V_{3}^{\prime}\right) \cap W_{1},
\end{aligned}
$$

meaning that the set displayed last, call it W_{1}^{\prime}, is nonempty. But this is not the case, since, by Lemma 2.5.2, that open set meets T in

$$
\downarrow\left(\uparrow\left(\downarrow\left(\uparrow S_{1} \cap V_{1}\right) \cap V_{2}\right) \cap V_{3}\right) \cap S_{1}
$$

where $V_{i} \equiv T \cap V_{i}^{\prime}$, and the latter set is empty by virtue of the smallness of each S_{1}^{j}. Likewise $x_{1} \notin S_{2}^{\prime}$, and this is a contradiction. We conclude that X contains no proper 2 -crown.

References

[1] J. Adámek, H. Herrlich and G. Strecker, Abstract and concrete categories, Wiley Interscience, 1990.
[2] R.N. Ball and A. Pultr, Forbidden Forests in Priestley Spaces, Cahiers de Top. et Géom. Diff. Cat. XLV-1 (2004), 2-22.
[3] R.N. Ball, A. Pultr and J. Sichler, Priestley configurations and Heyting varieties, to appear in Algebra Universalis. .
[4] R.N. Ball, A. Pultr and J. Sichler, Configurations in Coproducts of Priestley Spaces, Appl.Cat.Structures 13 (2005), 121-130.
[5] R.N. Ball, A. Pultr and J. Sichler, Combinatorial trees in Priestley spaces, Comment. Math. Univ. Carolinae 46, 217-234.
[6] R.N. Ball, A. Pultr and J. Sichler, The mysterious 2-crown, Algebra Universalis 55 (2006), 213-226.
[7] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Graduate Texts in Mathematics, 78, Springer-Verlag New York Heidelberg Berlin, 1981.
[8] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Second Edition, Cambridge University Press, 2001.
[9] V. Koubek and J. Sichler, On Priestley duals of products, Cahiers de Top. et Géom. Diff. Cat. XXXII (1991), 243-256.
[10] H.A. Priestley, Representation of distributive lattices by means of ordered Stone spaces, Bull. London Math. Soc. 2 (1970), 186-190.
[11] H.A. Priestley, Ordered topological spaces and the representation of distributive lattices, Proc. London Math. Soc. 324 (1972), 507-530.

Department of Mathematics, University of Denver, Denver, CO 80208

E-mail address: rball@du.edu
Department of Applied Mathematics and ITI, MFF, Charles University, CZ 11800 Praha 1, Malostranské nám. 25

E-mail address: pultr@kam.ms.mff.cuni.cz
Department of Mathematics, University of Manitoba, Winnipeg, Canada R3T 2N2

E-mail address: sichler@cc.umanitoba.ca

[^0]: 2000 Mathematics Subject Classification. Primary 06D55, 06A11, 54F05; Secondary 06D20, 03C05.

 Key words and phrases. distributive lattice, Priestley duality, poset, graph.
 The first author would like to express his thanks for support from project LN 1M0021620808 of the Ministry of Education of the Czech Republic. The second author would like to express his thanks for support from project 1M0021620808 of the Ministry of Education of the Czech Republic, from the NSERC of Canada and from a PROF grant from the University of Denver. The third author would like to express his thanks for the support from the NSERC of Canada and for partial support from the project 1M0021620808 of the Ministry of Education of the Czech Republic.

