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Abstract. This paper is a survey of several results concerning fi-
nite dualities, a special case of the famous Constraint Satisfaction
Problem (CSP). In CSP, the point is to characterize a class C of
objects X determined by constraints represented by the require-
ment of the existence of structure preserving mappings from X into
special ones. In a finite duality, such a class C is characterized by
the non-existence of special maps into X from a finite system of
objects.

In the first third of the article we recall some well-known facts
concerning constraints represented by classical homomorphisms of
relational systems. In the second part we present several results,
not yet published but mostly already submitted, concerning the
variant of full homomorphisms. The third part contains a few
results on hypergraphs and complexes in this context. These form
part of an investigation recently undertaken, and appear here first.

In the Constraint Satisfaction Problem, one is concerned with objects
X endowed with a given type of structure subjected to constraints,
usually represented by a system of special objects B, in our case always
finite, and the requirement that there exist a mapping X → B ∈ B
suitably linked with the structures. (For a more precise formulation
see Section 1 below.)

One endeavours to find a characterization, as transparent as possible,
of the resulting class. This can sometimes be done by requiring the
non-existence of special maps Ai → X from a finite list of objects
A1, . . . , An, or by requiring the non-existence of subobjects isomorphic
to any of the Ais. Then we speak of a finite duality.

Most of this paper is a survey. The first third is a report of some
facts concerning the case of (finitary) relational systems, with the maps
in question being standard homomorphisms. In the middle part we
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present several results on the case where the governing maps are full
homomorphisms instead. These results have not been published yet,
but are, in the majority, a part of an article that has been submitted
for publication. In the last third we discuss several (mostly negative)
aspects of the case where the structure is represented as a system of
subsets. This is a part of a more extensive investigation that is still in
its beginnings, and has not been published nor submitted yet.

1. The Constraint Satisfaction Problem

To illustrate the type of problems and facts to be presented, let us
start with the simple example of a finite binary relation. Given such
relations, R on a set X and R′ on a set X ′, a mapping f : X → X ′ is
a homomorphism G = (X, R) → G′ = (X ′, R′) if

(hom) (x, y) ∈ R ⇒ (f(x), f(y)) ∈ R′.

Homomorphisms capture many combinatorial properties of relations;
for a detailed treatment of graph homomorphisms see [9]. Of a partic-
ular interest will be the case where there is a fixed target B and we ask
whether there is a homomorphism G → B. That is, we are interested
in the class

{G | there is an f : G → B}.

The target B, or a system of targets B, is what we speak of as a con-

straint. When we ask whether a given graph G satisfies the constraint,
we are interested only in whether a homomorphism from G into B
exists, and not in the homomorphism itself.

Speaking of binary relations as a simple example is not quite correct.
Note that, already in the case of symmetric graphs and B = Kn (the
complete graph with n vertices), checking whether a given graph sat-
isfies the constraint is equivalent to checking whether it is n-colorable,
an extremely difficult task.

1.1. More generally, consider a category C, that is,

• a specification of objects of interest (relations, relational sys-
tems, hypergraphs etc.; in our case they will always be finite),
and

• a specification of morphisms, that is maps which in one way
or another repect the structure. For instance, for relational
systems (Ri)i∈J resp. (R′

i)i∈J on X resp. X ′, they will be the
homomorphisms f : (X, (Ri)) → (X ′, (R′

i)) satisfying

∀i ∈ J, (x1, . . . , xni
) ∈ Ri =⇒ (f(x1), . . . , f(xni

)) ∈ Ri,
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or the full homomorphisms f : (X, (Ri)) → (X ′, (R′
i)) satisfying

∀i ∈ J, (x1, . . . , xni
) ∈ Ri ⇐⇒ (f(x1), . . . , f(xni

)) ∈ Ri.

The Constraint Satisfaction Problem (briefly, CSP) is that of determin-
ing for a (typically finite) system of objects B the class

CSP(B) = {X objects of C | ∃B ∈ B, ∃ morphism X → B in C}.

2. Forbidding (homo)morphisms

2.1. In a complementary way, the class CSP(B) can be represented
by forbidding (instead of requiring) homomorphisms, namely as

Forb(A) = {X | there is no f : A → X with A ∈ A}

Indeed we can take

(2.1) A = {A | there is no f : A → B with B ∈ B}.

(If X ∈ CSP(B) then X → B ∈ B and if we had A → X we would
have A → B; if X /∈ CSP(B) then X /∈ Forb(A) because of the
identity X → X.)

This is, of course, trivial. The less trivial question is whether we can
find, for a finite B, a finite A such that

Forb(A) = CSP(B).

Then we speak of a finite duality. First defined in [16], finite dualities
have been intensively studied from the conbinatorial and logical point
of view, and also in the optimization (mostly CSP) context.

Note that if one has a finite duality as above then the class CSP(B)
is decidable in polynomial time. A more general (and very interest-
ing) problem, into which we will not go here, is that of an equality
Forb(A) = CSP(B) with at least “transparently described” A, in
which case we obtain a so called good characterization of CSP(B),
that is, at least a deterministic decision procedure for both the posi-
tive and negative membership questions.

3. Finite dualities for relations with standard
homomorphisms

The following theorem has recently been proven, as a combination
of results of [2] and [18]:
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3.1. Theorem. In the case of finite binary relations, there is a finite

duality Forb(A) = CSP({B}) if and only if the class CSP({B}) is

first order definable.

Moreover, if the finite duality exists then the A can be chosen in a
surprisingly special way. Namely, one has

3.2. Theorem. If B = {B} admits a finite duality then it admits a

dualiy Forb(A) = CSP(B) with A a finite set of finite trees.

For classical graphs (symmetric antireflexive relations), there are no
non-trivial finite dualities. But for oriented graphs they abound ([10]),
although such did not appear to be the case at the outset of the investi-
gations. Furthermore, theorems similar to 3.1 above can be proven for
relational structures of finite types; the dualities are well characterized
and abundant.

3.3. Encouraged by these results, one might expect something sim-
ilar for finite algebras. But the facts there are entirely different. It has
been recently shown ([12]) that there are no such dualities at all. One
has

Theorem. Let ∆ be a finite type. Then for every finite set A of

finite algebras of a type ∆ and every finite algebra B of this type there

exists a finite algebra A such that A ∈ Forb(A) and A /∈ CSP(B).

This not only excludes a duality, but even the existence of a finite A
such that

Forb(A) ⊆ CSP(B).

Among bounded structures this is a special feature of algebras. Simi-
lar inclusions in more general relational structures may yield non-trivial
classes even when there is no non-trivial duality. For instance, it can be
shown that the existence of an inclusion Forb(A) ⊆ CSP(B) in graphs
amounts to the boundedness of the chromatic numbers in Forb(A);
such A were characterized in [16].

For hypergraphs there is, however, a fact reminiscent of the Theorem
above; see 8.3 below, and the non-existence of non-trivial inclusions
Forb(A) ⊆ CSP(B) for complexes in 9.3.

Homomorphisms of algebras have special properties distinguishing
them from general homomorphisms of relational structures. Thus for
instance, for a one-one homomorphism of algebras one has

x = αi(x1, . . . , xni
) ⇐⇒ f(x) = α′

i(f(x1), . . . , f(xni
))).

equivalent with the formally weaker condition with =⇒. This makes
them, in a sense, structurally close to full homomorphisms (recall 1.1.).
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But the lack of dualities is in the specific nature of objects (algebras).
As we will see below, for general relational objects the fullness condition
is no obstacle to finite dualities. In fact it even helps and the dualities
are much more frequent than in the standard homomorphism cases.

4. Intermezzo: Forbidden homomorphisms and forbidden
subobjects

4.1. It is often the case that important classes of objects are char-
acterized by prohibiting a system of subobjects rather than homomor-

phisms from a system of objects. (In fact, the idea of prohibiting sub-
objects emerged prior to that of prohibiting morphisms.) For example,
planar graphs are characterized by the absence of two specific config-
urations. In the cases we have in mind it can always be done in this,
perhaps more transparent, way.

Let us introduce the following notation.

X → A for ∃A ∈ A, X → A,

A → X for ∃A ∈ A, A → X,

X →| A for ∀A ∈ A, X →| A,

A →| X for ∀A ∈ A, A →| X.

Thus, Forb(A) = A →| , CSP(B) = → B. If we, further set

(4.1) N (B) = →| B = {X | X →| B}

we see that the trivial fact from 2.1 can be expressed as

(4.2) N (B) →| X iff X → B

and the dualities we are discussing can be rewritten as

(4.3) P \ (A →) = → B.

4.2. The categories we discuss in this paper have the following prop-
erties:

(a) for an object A there are, up to isomorphism, only finitely many
objects C such that there exists an onto morphism A → C,

(b) each morphism f : X → Y can be written as a composition
of an onto one and an injection (that is an embedding of a
subobject), symbolically

f = (A � C ↪→ B)

where we use � to indicate morphisms onto and ↪→ to indicate
injections
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Consequently, the duality (4.2) gives rise to the equality

P \ ((A�)↪→) = →B.

and finally, setting A1 = A�, to

P \ (A1↪→) = →B,

Hence if we write

Forbsub(A1) = A1↪→| =

= {X | X has no subobject isomorphic with an A ∈ A1}

we have our original finite duality replaced by a finite “subobject du-
ality”

Forbsub(A1) = CSP(B).

These types of situations were part of the pre-CSP motivation for
studying finite dualities in [16].

5. CSP in relational systems with full homomorphisms

The categories of relational systems, and similarly the categories of
hypergraphs and complexes we will be discussing later, have properties
(a) and (b) from 4.2. They also obviously have the property that

(a∗) every object has only finitely many subobjects.

A property that these categories do not have, but that holds true in
the variant with full homomorphisms, is that

(c) each onto morphism f : A → B is a retract, that is, there is a
g : B → A such that fg is the identity.

An object A is said to be reduced if it has no non-trivial (≡ non-
isomorphic) retract r : A → B. Obviously, each object has a reduced
retract and consequently each finite duality can be replaced with one
in which all the objects in A and B are reduced.

An object A is critical with respect to a class of objects B if

• it is reduced,
• A →| B, and
• if A′ → A →| A′ then A′ → B.

Set

N0(B) = {X ∈ N (B) | X critical w.r.t. B}.

The following simple lemma plays a crucial role in the theorem below.
What it does is reduce the N (B) from (4.1) to its essential part. The
proof of the theorem will not be presented – it is in [3] – but the lemma
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will be useful in a variant that does not immediately follow and that
we will prove later.

5.1. Lemma. In a category satisfying (a), (a∗), (b) and (c) one has

N0(B) →| X iff X → B.

Proof. Take the N (B) from (4.1) and then consider just its reduced
elements, forming a set A. We still have A →| X iff X → B. It is
easy to see that for a reduced A every morphism A → X is one-one.
Thus, if A ∈ A is not critical we have a proper subobject A′ ↪→ A such
that still A′ →| X. Hence we can restrict ourselves to the smallest A of
A (smallest in the order of “being a subobject”) and these constitute
precisely the N0(B). �

Let ∆ be any finite type. Denote by Relfull(∆) the category of rela-
tional systems of this type with full homomorphisms.

5.2. Proposition. ([3]) Let ∆ = (nt)t∈T and let B be a finite set

of objects of Relfull(∆). Let m > maxt nt. Then, with possibly finitely

many exceptions, every A critical with respect to B can be embedded

into an object of Relfull(∆) carried by Xm where

X = XB ∪ {ω}

for some B ∈ B and ω /∈ XB.

As an immediate consequence one obtains
5.3. Theorem. In Relfull(∆) there exists for every finite set of

objects B a finite system of objects A and a finite duality

A →| X iff X → B.

For graphs and one element B = {B} this was proved (a.o.) inde-
pendently in [5]. Moreover, the authors have proved that one can find
a duality with |A| ≤ |B| + 1 for all the A ∈ A. In this result it is
essential that the graphs are not necessarily connected. For connected
graphs the situation is unclear – see 7.2 below.

6. Ramsey lists

In contrast with the general fact about B from 5.3, it is seldom
possible to complete a finite A to a finite duality with A on the left
hand side. For instance, in the category of graphs (with full homomor-
phisms), there are only the following four lists A with fewer than three
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elements:
{K1}, {K2}, {K3, P3} and {K3, P4}

(The Kns are complete graphs, the Pns are paths, see below). There are
infinitely many such lists with three elements, however (see 7.1 below).

It is no wonder such lists are relatively rare, for they have a very
strong combinatorial property.

A collection of reduced objects A = {A1, . . . , An} is said to be a
Ramsey list, or, briefly, to be Ramsey, if there is a finite F ⊆ obj C
such that each reduced X that is not isomorphic to an object of F has
a subobject isomorphic to one of the Ais. (The reader may wish to
consult [14] and [7] for a general background on Ramsey theory.)

6.1. Proposition. Let C be a category satisfying (a), (a∗), (b) and

(c), and let A be a finite collection of reduced objects of C. Then A is

Ramsey iff there is a finite duality

A →| X iff X → B.

Proof. If there is such a duality then it suffices to take for F the set
of all subobjects of the elements of B.

On the other hand, if A is Ramsey set B = {F | A →| F and F ∈
F}. �

7. Examples of concrete dualities in ConnGraphfull

7.1. Some particular graphs. We will use the following symbols
for particular graphs. Here ij indicates that both (i, j) and (j, i) are
in the relation.

• Kn = ({0, 1, . . . , n−1}, {ij | i 6= j}) is the complete graph with
n vertices,

• Pn is the n-path ({0, 1, . . . , n}, {01, 12, . . . , (n − 1)n}),
• Cn is the n-cycle ({0, 1, . . . , n − 1}, {01, 12, . . . , (n − 1)0}),
• Y = ({0, 1, 2, 3}, {01, 12, 23, 13}),
• T = ({0, 1, 2, 3, 4, 5}, {01, 12, 23, 34, 25}),
• A = ({0, 1, 2, 3, 4, 5}, {01, 12, 23, 34, 45, 14}),
• and B = ({0, 1, 2, 3, 4, 5}, {01, 12, 23, 34, 45, 14, 05}).

All the examples in this section are in the category of connected

symmetric graphs.

7.2. Several dualities.

1. For complete graphs we have

{Kn+1, P3, Y } →| X iff X → Kn.
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2. For paths:

{P4, C3, A, C5} →| X iff X → P3,

and for n ≥ 4,

{Pn+1, T, C3, A, B, C5, . . . , Cn+2} →| X iff X → Pn.

3. For cycles:

{P4, C3, A} →| X iff X → C5,

and for n ≥ 6,

{Pn−1, T, C3, A, B, C5, . . . , Cn−1} →| X iff X → Cn.

Remarks. Note the similarities of the left duals of the paths and
the cycles. Compare for instance the dualities

{P5, T, C3, A, B, C5, C6} →| X iff X → P4

and
{P6, T, C3, A, B, C5, C6} →| X iff X → C7.

7.3. A special example, and problem. By tedious checking we
obtain the duality, for the A from 7.1,

{P4, C3, C5, E} →| X iff X → A

with

E = ({0, 1, 2, 3, 4, 5, 6, 7}, {01, 12, 23, 34, 45, 14, 17, 26, 46, 67}),

a relatively complex graph (in this context).

This contrasts with the result of [5], as |E| = |A| + 2, and it can
be shown that the duality cannot be achieved with smaller graphs.
It should not be forgotten, however, that our examples concern the
category ConnGraph

full
, while the mentioned result speaks of general,

not just connected, obstruction graphs. As far as we know, the problem
of the bound on the sizes of the A ∈ A in the connected case is open.

7.4. Effectiveness of determining the left hand side.

All the examples have been established using variants of the con-
struction from 5.2. In the case of a symmetric binary relation, the
starting object does not need to be as big as Xm; it suffices to take,
roughly speaking, B redoubled with a point added, then filling in a
suitable structure between the two B-layers. The search for the struc-
ture went, more or less, by brute force. Can the search be done more
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effectively, if not for any graph then at least for some interesting class
of graphs?

8. Hypergraphs

The question naturally arises whether the general theorem 5.3 has
to do with the boundedness of the type. What happens if the arity
of the structure increases with the size? It turns out that, already in
the simplest unbounded structure, namely in the case of hypergraphs,
there are no non-trivial dualities, whether we consider the standard
homomorphisms or the full ones.

8.1. A hypergraph is a couple H = (VH , EH) with EH ⊆ exp(XH).
The complete hypergraph, that is any of the S = (VS, P(VS)), will

be referred to as a simplex, for reasons that will become apparent in
the next section.

A natural extension of the notion of a graph homomorphism is that
of a hypergraph homomorphism (further, briefly, just homomorphism)
f : G → H, a mapping f : VG → VH such that

∀X ⊆ VG, X ∈ EG =⇒ f [X] ∈ EH .

The resulting category will be denoted by

Hypgraph.

Extending the concept of full homomorphisms from graphs to rela-
tional structures, we obtain the full homomorphisms between hyper-
graphs satisfying

∀X ⊆ VG, X ∈ EG ⇐⇒ f [X] ∈ EH ;

the resulting category will be designated

Hypgraph
full

.

To avoid a messy discussion (caused by the fact that if f : H → G
then G has a void hyperedge only when H does), we will prove the
facts concerning the subcategory

Hypergraph◦

generated by the hypergraphs H such that ∅ ∈ EH . The corresponding
subcategory restricted to full homomorphisms is Hypgraph◦

full
.

8.2. Proposition. There is no non-trivial duality in Hypergraph◦.

Proof. If each B ∈ B has the feature that EB contains no nonvoid
edges, then each X ∈ CSP(B) has this feature as well. And, if B were
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to participate in a duality with a finite set A, then no A ∈ A could
have this feature. But a hypergraph X such that EX contained nonvoid
edges, but such that its nonvoid edges were bigger than any of those
of the EAs, A ∈ A, would violate the duality.

Now if there is a one-point edge in some B ∈ B then X → B for any
X. In this case, B participates in a trivial duality with A taken to be
φ.

Finally, let there be non-void edges and let all of them have at least
two points. Choose a set X such that |X| > maxB∈B |VB|·maxA∈A |VA|,
and set C = (X, E), where

E = {M ⊆ X | |M | > max
A∈A

|VA|}.

Then C →| B and A →| C. �

8.3. Recall 3.3. In Hypgraphfull we have a similar situation. (The
term complex which appears in the following lemma is defined at the
beginning of Section 9 below.)

Lemma. For every system A1, . . . , Ak, B1 . . . , Bl of hypergraphs

there exists a complex C such that there is no full homomorphism C →
Bi and no full homomorphism Aj ↪→ C unless Aj is a simplex.

Proof. Set

b = max
i

|Bi|, a = max
i

|Ai|.

Choose a set VC with cardinality (a + 2)b and set

EC = {E ⊆ VC | |E| ≤ a + 1}.

If f is a homomorphism into some B ∈ B, choose an x ∈ VB such that
|f−1[{x}]| ≥ a + 2. Pick E, E ′ ⊆ f−1[{x}] such that |E| = a + 1 and
|E ′| = a + 2. Then f [E] = f [E ′] = {x}. As E ∈ EC , {x} is in EBi

. But
then f is not full, since E ′ /∈ EC .

Now let there be a full homomorphism f : Aj → C for some j. Let
E ⊆ VAj

be arbitrary. Since f [E] is in EC, E is in EAj
. �

Corollary. There is no non-trivial duality in Hypgraph◦

full
.

Proof. Confront the Ai and Bj with the C from the lemma, and in
addition the hypergraph D with VD = VC and

ED = {E ⊆ VD | |E| = a + 1 or 0}.

For the same reasons as above, D →| B. There must be an Aj ↪→ D,
which makes Aj discrete, and, since Aj →| B ∈ B, all the one-element
subsets of the B’s are hyperedges. But then again the simplex among
the Ais can be mapped to any such B. �
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9. Complexes

9.1. A complex is a hypergraph H such that

(1) ∀x ∈ VH , {x} ∈ EH ,
(2) ∀E ∈ VH , ∀E ′ ⊆ E, E ′ ∈ EH .

(This is a well-known concept from combinatorial topology; in accor-
dance with this we have called complete hypergraphs simplices – recall
8.1.)

The category of complexes with standard resp. full homomorphisms
will be denoted by

Compl resp. Compl
full

.

We will also be interested in the subcategory of Complfull constituted
by the complexes of dimension at most k, in other words, with the size
of the hyperedges bounded by k. It will be denoted by

Complk
full

.

A full homomorphism in this context is a mapping f : G → H such
that

∀X ⊆ VG, |X| ≤ k, X ∈ EG ⇐⇒ f [X] ∈ EH .

9.2. Proposition. There is no non-trivial duality in Compl.

Proof. Take a B ∈ B and choose an x0 ∈ VB. Now construct C as
follows. First, let A be the disjoint sum of all the A ∈ A. Set

VC = (VB \ {x0}) ∪ VA,

supposing the union disjoint, and define EC by

U ∈ EC if











either U ∈ EB and x0 /∈ U,

or U = (W \ {x0}) ∪ V, x0 ∈ W ∈ EB, ∅ 6= V ∈ EA

or U ∈ EA.

Then C is a complex, C → B, and A ↪→ C for all A ∈ A. �

9.3. Proposition. In Complfull there is no non-trivial finite dual-

ity. Moreover, there are no non-trivial finite sets A and B such that

Forb(A) ⊆ CSP(B).

Proof. Let us specify what we understand by trivial. There is, of
course, the trivial duality

A →| X iff X → B

with B empty and A a one-point simplex; this will be excluded.
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Now let B contain a non-empty complex B0. Suppose

Forb(A) ⊆ CSP(B).

We can apply Lemma 8.3 since the C there is a complex. One of the
Aj is a simplex, but then Aj → B0, which is a contradiction. �

9.4. The proof of the following proposition needs only a very small
modification of that of 5.2. But since 5.2 cannot be applied directly,
we will present it in some detail. Also it is an opportunity to illustrate
the principle of the proof that was omitted.

Proposition. Let B1, . . . , Br be objects of Complk
full

. Let m > k.

Then, with possibly finitely many exceptions, every A critical with re-

spect to B1, . . . , Br can be embedded into an object of Complk
full

carried

by Xm where

X = VB ∪ {ω}

for some B ∈ B and ω /∈ VB.

Consequently, for every finite set of objects B1, . . . , Br there is a

finite set of objects A1, . . . , An and a duality

{A1, . . . , An} →| X iff X → {B1, . . . , Br}.

Proof. Since A is reduced, it suffices to find a full homomorphism
from A into an object as stated.

Consider a critical A. For every a ∈ A there is a full homomorphism
i(a) : A \ {a} → Bi(a). Assume that A is sufficiently large so as to
contain distinct a1, . . . , am such that the Bi(aj )s coincide. Designate
the common value B, and choose full homomorphisms

fi : A \ {ai} → B.

Set X = VB ∪ {ω} and define mappings

f+
i : VA → X

by setting

f+
i (x) =

{

fi(x) if x 6= ai,

ω if x = ai.

Now define

B+ = (X, E+) with E+ = {U ⊆ X | |U | ≤ k, U \ {ω} ∈ EB}.

If U ∈ EA then f+
i [U ] \ {ω} = fi[U \ ai] ∈ EB and hence all the f+

i are
homomorphisms A → B+, though not necessarily full. Consider the
map

f : A → Xm defined by pif = f+
i ,
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where pi : Xm → X is the ith projection. Let

E = {f(U) | U ∈ EA} ∪ {U | |U | = 1}

Thus defined, (Xm, E) is an object of Complk
full

, and f and the pis are
homomorphisms. We claim that f is full. For if f [U ] ∈ E for some
U ⊆ VA with |U | ≤ k then, since m > k, there is an i such that ai /∈ U ,
hence f+

i [U ] = fi[U ]. Therefore

ω /∈ fi[U ] = f+
i [U ] = pif [U ] ∈ E+,

hence U ∈ EB, and since fi is full, U ∈ EA. �

9.5. It is a trivial observation that for a complex X one has

X ∈ Complk
full

iff Sk+1↪→| X

where Sk+1 is the simplex with k + 1 vertices. This, together with 9.4,
yields the following

Corollary. In contrast with the negative fact of 9.3, in Compl
full

there exists for each finite system of objects B a finite system A such

that

Forbsub(A) ⊆ CSP(B).

10. A few concluding remarks and open problems

10.1. Finite dualities constitute only a small part of the CSP prob-
lem. A very important question is that of Forb(A) with A not nec-
essarily finite, but given by a criterion which is transparent. A good
example is the characterization of bipartite graphs as being those into
which no odd cycle embeds. Another such criterion is algorithmically
generated A. For such results concerning bounded tree width dualities,
see [9].

10.2. In Proposition 5.2 (and similar results), the search for the
elements of A is restricted to subobjects of a well defined object. In
some cases this suffices to present a satisfactory list, but in general the
brute force search is too hard. Is there an effective search algorithm?

10.3. The existence of a non-trivial duality Forb(A) = CSP(B)
implies the existence of a non-trivial subobject duality Forbsub(A) =
CSP(B). It would be useful to study the situations in which the latter
exists and the former is absent. Note that for the “inclusion character-
ization” we have such a phenomenon in complexes: compare 9.3 with
9.5.
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10.4. In the hypergraph case there are other natural choices of mor-
phisms to be analyzed. A set of subsets can be viewed as a generalized
topology, and the open continuous maps constitute one of the fullness
type choices. In this particular case one has negative results similar to
those in Section 8, but there are some special features of interest.

10.5. Let us recall, once again, the problem of the size of the A ∈ A
bounded by the |B| in the case of connected symmetric graphs with
full homomorphisms (see 7.2). Does |B|+2 suffice? A very easy bound
is 2|B|, obviously too big.

An analogous question for standard homomorphisms is highly non-
trivial and was studied in [19].
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[10] P. Komárek, Some new good characterizations for directed graphs. Časopis
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[12] G. Kun, J. Nešetřil, Density and Dualities for Algrebras, submitted.
[13] S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New

York, 1971.
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