
6-critical graphs on the Klein bottle

Ken-ichi Kawarabayashi∗ Daniel Král’† Jan Kynčl‡
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Abstract

We provide a complete list of 6-critical graphs that can be embed-
ded on the Klein bottle settling a problem of Thomassen [Problem 3,
J. Comb. Theory Ser. B 70 (1997), 67–100]. The list consists of nine
non-isomorphic graphs which have altogether 18 non-isomorphic 2-cell
embeddings and one embedding that is not 2-cell.

1 Introduction

We study colorings of graphs embedded on surfaces. It is well-known [12]
that the chromatic number of a graph embedded on a surface of Euler genus

g is bounded by the Heawood number H(g) =
⌊

7+
√

24g+1

2

⌋

. Dirac Map Color

Theorem [4, 5] asserts that a graph G embedded on a surface of Euler genus
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University, Malostranské náměst́ı 25, 118 00 Prague 1, Czech Republic. E-mail:
kyncl@kam.mff.cuni.cz.

§Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles
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g 6= 0, 2 is (H(g)− 1)-colorable unless G contains a complete graph of order
H(g) as a subgraph. Dirac’s theorem can be rephrased using the language of
critical graphs as follows: the only H(g)-critical graph that can be embedded
on a surface of Euler genus g 6= 0, 2 is the complete graph of order H(g).
Recall that a graph G is k-critical if G is k-chromatic and every proper
subgraph of G is (k − 1)-colorable.

In fact, Dirac [4] showed that there are only finitely many k-critical
graphs, k ≥ 8, that can be embedded on a fixed surface. The number of
7-critical graphs that can be embedded on a fixed surface is also finite by
classical results of Gallai [10, 11] as pointed out by Thomassen in [15]. Later,
Thomassen [17] established that the number of 6-critical graphs that can be
embedded on any fixed (orientable or non-orientable) surface is finite (see
also [9] for related results on 7-critical graphs). This result is best possible as
there are infinitely many k-critical graphs, 3 ≤ k ≤ 5, that can be embedded
on any fixed surface different from the plane [8].

In this paper, we focus on 6-critical graphs on surfaces, motivated by
Problem 3 from [17]. As every plane graph is 4-colorable [1, 2, 13], there
are no 6-critical graphs in the plane. Dirac Map Color Theorem implies that
the complete graph of order six is the only 6-critical projective planar graph.
Thomassen [15] classified 6-critical toroidal graphs: the only 6-critical graphs
that can be embedded on the torus are the complete graph K6, the join of
the cycles C3 and C5 (recall that the join of two graphs G1 and G2 is the
graph obtained by adding all edges between G1 and G2), the graph obtained
by applying Hajos’ construction to two copies of K4 and then by adding
K2 joined to all other vertices, and the third distance power of the cycle
C11 (which is further denoted by T11). Thomassen posed as a problem [15,
Problem 3] whether the toroidal 6-critical graphs distinct from T11 and the
graph obtained by applying Hajos’s to two copies of K6 are the only 6-critical
graphs that can be embedded on the Klein bottle.

We refutate Thomassen’s conjecture by exhibiting the list of all nine 6-
critical graphs that can be embedded on the Klein bottle (the graphs are
depicted in Figure 7). The same result was independently of us established
by Chenette, Postle, Streib, Thomas and Yerger [3]. Both the proofs use
different approaches (and we thus agreed to publish two separate papers):
Chenette et al. investigated the structure of 6-critical graphs on the Klein
bottle, i.e., found 6-critical graphs that could possibly be embedded on the
Klein bottle and ruled out those that cannot. Our approach is based on
a systematic generating of all embeddings of 6-critical graphs on the Klein
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bottle from the complete graph K6. Our proof is computer-assisted (unlike
the proof of Chenette et al.) but it additionally yields the list of all non-
isomorphic embeddings of 6-critical graphs on the Klein bottle. We believe
that our proof can be decomputerized (in the expense of massive case anal-
ysis) but we decided not to do so in the light of the proof of Chenette et al.
which is significantly shorter than our decomputerized proof would be.

As we have mentioned, our proof is computer-assisted. In the paper, we
outline the main concepts we use and explain the procedure used to generate
all embeddings of 6-critical graphs on the Klein bottle. In order to verify
the correctness of our programs, we have separately prepared two different
programs implementing our procedures and compared their outputs. Fur-
ther details of the implementation and the source code of our programs can
be found at http://kam.mff.cuni.cz/∼bernard/klein. In the paper, we
establish the correctness of used algorithms and refer the reader for details
on implementation to the web page. The outcome of our programs is sum-
marized in Section 7 where we also briefly discuss the algorithmic corollaries
of our results.

2 6-critical graphs

In this section, we observe basic properties of 6-critical graphs on the Klein
bottle. Euler’s formula implies that the average degree of a graph embedded
on the Klein bottle is at most six. As Sasanuma [14] established that every
6-regular graph that can be embedded on the Klein bottle is 5-colorable, we
have the following proposition (observe that no 6-critical graph contains a
vertex of degree four or less):

Proposition 1. The minimum degree of every 6-critical graph on the Klein
bottle is five.

Let G be a 6-critical graph on the Klein bottle and v a vertex of degree
five in G. Further let vi, 1 ≤ i ≤ 5, be the neighbors of v in G. If all vertices
vi and vj, 1 ≤ i < j ≤ 5, are adjacent, the vertices v and vi, 1 ≤ i ≤ 5, form
a clique of order six in G. As G is 6-critical, G must then be a complete
graph of order six. Hence, we can conclude the following:

Proposition 2. Let G be a 6-critical graph embedded on the Klein bottle. If
G is not a complete graph of order six, then G contains a vertex v of degree
five that has two non-adjacent neighbors v ′ and v′′.
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We now introduce the following reduction: let G be a 6-critical graph
embedded on the Klein bottle that is not isomorphic to K6 and let v, v′

and v′′ be three vertices as in Proposition 2. G|vv′v′′ is the graph obtained
from G by removing all the edges incident with v except for vv ′ and vv′′ and
contracting the edges vv′ and vv′′ to a new vertex w. The obtained graph can
have parallel edges but it does not have loops as the vertices v ′ and v′′ are
not adjacent. Observe that the graph G|vv′v′′ is not 5-colorable: otherwise,
consider a 5-coloring of G|vv′v′′ and color the vertices v′ and v′′ with the color
assigned to the vertex w. Next, extend the 5-coloring to v—this is possible
since v has five neighbors and at least two of them (v ′ and v′′) have the
same color. Hence, we obtain a 5-coloring of G contradicting our assumption
that G is 6-critical. Since G|vv′v′′ has no 5-coloring, it contains a 6-critical
subgraph—this subgraph will be denoted by |G|vv′v′′| and we say that G can
be reduced to |G|vv′v′′|.

Observe that the reduction operation can again be applied to |G|vv ′v′′|
until a graph that is isomorphic to K6 is obtained (the process eventually
terminates since the order of the graph is decreased in each step).

We continue with a simple observation on the graph |G|vv ′v′′|.

Proposition 3. Let G be a 6-critical graph embedded on the Klein bottle, v a
vertex of degree five in G and v′ and v′′ two non-adjacent neighbors of v. The
graph |G|vv′v′′| contains the vertex w obtained by contracting the path v ′vv′′.
Moreover, the vertex w has a neighbor w′ in |G|vv′v′′| that is a neighbor of
v′ in G but not of v′′ and it also has a neighbor w′′ that is neighbor of v′′ but
not of v′ in G.

Proof. If |G|vv′v′′| does not contain the vertex w, then |G|vv′v′′| is a subgraph
of G \ {v, v′, v′′}. Since both |G|vv′v′′| and G are 6-critical graphs, this is
impossible. Hence, |G|vv′v′′| contains the vertex w.

Assume now that |G|vv′v′′| contains no vertex w′ as described in the state-
ment of the proposition, i.e., all neighbors of w in |G|vv′v′′| are neighbors of
v′′ in G. This implies that |G|vv′v′′| is isomorphic to a subgraph of G\{v, v′}
(view the vertex v′′ as w) which is impossible since both G and |G|vv′v′′| are
6-critical. A symmetric argument yields the existence of a vertex w′′.

The strategy of our proof is to generate all 6-critical graphs by reversing
the reduction operation. More precisely, we choose a vertex w of a 6-critical
graph G and partition the neighbors of w into two non-empty sets W1 and
W2. We next replace the vertex w with a path w1ww2 and join the vertex
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wi, i = 1, 2, to all vertices in the set Wi. Let G[w, W1, W2] be the resulting
graph. We say that G[w, W1, W2] was obtained by expanding the graph G.
By Proposition 3, the following holds (choose w as in the statement of the
proposition):

Proposition 4. Let G be a 6-critical graph embedded on the Klein bottle and
let v be a vertex of degree five of G with two non-adjacent neighbors v ′ and v′′.
The graph G′ = |G|vv′v′′| contains a vertex w such that G′[w, W1, W2] ⊆ G

for some partition W1 and W2 of the neighbors of the vertex w.

3 Minimal graphs

Our plan is to generate all 6-critical graphs from the complete graph K6

by expansions and insertions of new graphs into faces. In this section, we
describe the graphs we have to insert into the faces to be sure that we have
generated all 6-critical graphs.

A plane graph G with the outer face bounded by a cycle C of length k

is said to be k-minimal if for every edge e ∈ E(G) \ C, there exists a proper
precoloring ϕe of C with five colors that cannot be extended to G and that
can be extended to a proper 5-coloring of G \ e (the graph G with the edge
e removed). Note that the precolorings ϕe can differ for various choices of e.

The cycle Ck of length k is k-minimal (the definition vacuously holds); we
say that Ck is a trivial k-minimal graph. For k = 3, it is easy to observe that
C3 is the only 3-minimal graph since the colors of the vertices of C3 must
differ and every planar graph is 5-colorable. Similarly, C4 and the graph
obtained from C4 by adding a chord are the only 4-minimal graphs. As for
k = 5, Thomassen [15] showed that if G is a plane graph with the outer face
bounded by a cycle C of length five and C is chordless, then a precoloring
of C with five colors can be extended to G unless G is the 5-wheel and the
vertices of C are precolored with all five colors. Hence, C5, C5 with one
chord, C5 with two chords and the 5-wheel are the only 5-minimal graphs.
The analogous classification result of Thomassen [15] implies that the only
6-minimal graphs (up to an isomorphism) are those depicted in Figure 1.

The following lemma justifies the use of k-minimal graphs in our consid-
erations:

Lemma 5. Let G be a 6-critical graph embedded on the Klein bottle. If C

is a contractible cycle of G of length k, then the subgraph G′ of G inside the
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Figure 1: The list of all 6-minimal graphs.

cycle C (G′ includes the cycle C itself) is k-minimal.

Proof. We verify that G′ is k-minimal. Let e be an edge of G′ that is not
contained in C. Since G is 6-critical, G \ e has a 5-coloring c. Let ϕe be the
coloring c restricted to the cycle C. If ϕe could be extended to G′, then the
extension of ϕe to the subgraph G′ combined with the coloring c outside C

would yield a 5-coloring G. This establishes the existence of a precoloring ϕe

as in the definition of k-minimal graphs and the proof of the lemma is now
finished.

In the light of Lemma 5, our next goal is to find all k-minimal graphs
for small values of k. The following proposition enables us to systematically
generate all k-minimal graphs for any fixed k from the lists of k′-minimal
graphs for 3 ≤ k′ < k.

Proposition 6. If G is a non-trivial k-minimal graph, k ≥ 3, with the outer
cycle C, then either the cycle C contains a chord or G contains a vertex
v adjacent to at least three vertices of the cycle C. In addition, if C ′ is a
cycle of G of length k′ and G′ is the subgraph of G bounded by the cycle C ′

(inclusively), then G′ is a k′-minimal graph.

Proof. First assume that C is chordless and each vertex v of G is adjacent
to at most two vertices of C. Let G′ be the subgraph of G induced by the
vertices not lying on C. We consider the following list coloring problem:
each vertex of G′ not incident with the outer face receives a list of all five
available colors and each vertex incident with the outer face is given a list of
the colors distinct from the colors assigned to its neighbors on C in G. By our
assumption, each such vertex has a list of at least three colors. A classical list
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coloring result of Thomassen [16] on list 5-colorings of planar graphs yields
that G′ has a coloring from the constructed lists. Hence, every precoloring of
the boundary of G can be extended to the whole graph G and thus G cannot
be k-minimal. This establishes the first part of the proposition. The proof of
the fact that every cycle of length k′ bounds a k′-minimal subgraph is very
analogous to that of Lemma 5 and omitted.

Proposition 6 suggests the following algorithm for generating k-minimal
graphs. Assume that we have already generated all `-minimal graphs for
` < k and let M` be the list of all `-minimal graphs. Note that we have
explicitly described the lists M3, M4, M5 and M6. The list Mk is then
generated by the following procedure (the vertices of outer boundary are
denoted by v1, . . . , vk):

M_k := { the cycle C_k on v_1,...,v_k }

repeat

M’ := M_k

forall 1 <= a < b <= k with b-a>=2 do

G := the cycle C_k on v_1,...,v_k with the chord v_av_b

forall G_1 in M_{b-a+1} and G_2 in M_{k+a-b+1} do

H := G with G_1 and G_2 pasted into its faces

if H is k-minimal and H is not in M_k then

add H to M_k

endfor

endfor

forall 1 <= a < b < c <= k do

G := the cycle C_k on v_1,...,v_k with the vertex v

adjacent to v_a, v_b and v_c

forall G_1 in M_{b-a+2}, G_2 in M_{c-b+2} and

G_3 in M_{k+a-c+2} do

H := G with G_1, G_2 and G_3 pasted into its faces

if H is k-minimal and H is not in M_k then

add H to M_k

endfor

endfor

until M_k = M’

Proposition 6 implies that the list Mk contains all k-minimal graphs after
the termination of the procedure: if G is a k-minimal graph, it contains
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k 3 4 5 6 7 8 9 10
|Mk| 1 2 4 14 46 291 2124 19876
nk 0 0 1 3 4 6 7 9

Table 1: The numbers of non-isomorphic k-minimal graphs for 3 ≤ k ≤ 10
and the largest number nk of internal vertices of a k-critical graph.

either a chord or a vertex v adjacent to three vertices on the outer cycle
and the graphs inside the faces of the skeleton formed by the outer cycle
and the chord / the edges adjacent to v are also minimal. The verifications
whether the graph G is isomorphic to one of the graphs in Mk and whether
G is k-minimal are straightforward and the reader can find the details in the
program available at http://kam.mff.cuni.cz/∼bernard/klein.

The numbers of non-isomorphic k-minimal graphs for 3 ≤ k ≤ 10 can be
found in Table 1. We finish this section by justifying our approach with show-
ing that the number of k-minimal graphs is finite for every k; in particular,
the procedure always terminates for each value of k.

Proposition 7. The number of k-minimal graphs is finite for every k ≥ 3.

Proof. Let Ak be the number of k-minimal graphs and Ak,` the number of
k-minimal graphs G such that exactly ` precolorings of the boundary of G

with five colors can be extended to G. Clearly, Ak,` = 0 for ` > 5 · 4k−1 since
there are at most 5 ·4k−1 proper precolorings of the boundary of G. We prove
that the numbers Ak,` are finite by the induction on 5k + `. More precisely,
we establish the following formula:

Ak,` ≤ k ·

k−1
∑

i=3

4i(k + 2 − i)AiAk+2−i + (1)

k ·

k−1
∑

i=4

k+3−i
∑

i′=4

8ii′(k + 6 − i − i′)AiAi′Ak+6−i−i′ + (2)

k

`−1
∑

i=1

2kAk,i (3)

Fix k and `. By Proposition 6, every k-minimal graph G with ` extendable
precolorings of its boundary cycle C either contains a chord or a vertex v
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v

v′ v′′ v′′′

G′C C ′

Figure 2: The notation used in the proof of Proposition 2.

adjacent to three vertices on C. In the former case, the cycle C and the chord
forms cycles of length i and k+2− i. Since these cycles bound i-minimal and
(k + 2 − i)-minimal graphs by Proposition 6, the number of such k-minimal
graphs is at most AiAk+2−i. After considering at most k possible choices
of the chord (for fixed i) and 2i and 2(k + 2 − i) possible rotations and/or
reflections, we obtain the term (1).

Let us analyze the case that G contains a vertex v adjacent to three
vertices on C. If the neighbors of v are not three consecutive vertices of C,
then the edges between v and its neighbors delimit cycles of lengths i ≥ 4,
i′ ≥ 4 and k + 6 − i − i′. These cycles bound i-minimal, i′-minimal and
(k+6−i−i′)-minimal graphs and their number (including different rotations
and reflections) is estimated by the term (2).

Assume that the neighbors of v on C are consecutive. Let v ′, v′′ and v′′′

be the neighbors of v and G′ the subgraph of G inside the cycle C ′ where
C ′ is the cycle C with the path v′v′′v′′′ replaced with the path v′vv′′′ (see
Figure 2). Fix a precoloring ϕ0 of the vertices of C except for v′′. Let α be
the number of ways in which ϕ0 can be extended to v that also extends to
G′. Similarly, α′ the number of ways in which ϕ0 can be extended to v′′ that
also extends to G.

We show that α ≤ α′. If α = 0, then α′ = 0. If α = 1, then α′ > 1.
Finally, if α > 1, then α ≤ α′ as any extension of ϕ0 to C also extends to G

(note that α′ is 3 or 4 depending on ϕ0(v
′) and ϕ0(v

′′′)). We conclude that
the number of precolorings of C ′ that can be extended to G′ does not exceed
the number of precolorings of C extendable to G.

Let ϕ be the precoloring of C that cannot be extended to G but that can
be extended to G \ vv′′ and let ϕ0 be the restriction of ϕ to C \ v′′. It is easy
to infer that the value of α for this particular precoloring ϕ0 must be equal to
one and consequently α′ > 1 for ϕ0. Hence, the number of precolorings of C ′

that can be extended to G′ is strictly smaller than the number of precolorings
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Figure 3: The list of all seven non-isomorphic 2-cell embeddings of K6 on
the Klein bottle.

of C that can be extended to G. Since G′ is a k-minimal graph with fewer
precolorings of the boundary that can be extended to G′ than the number of
precolorings of C extendable to G, the number of k-minimal graphs G with
a vertex v with three consecutive neighbors on C including their possible
rotations and reflections is estimated by (3). This finishes the proof of the
inequality and thus the proof of the whole proposition.

4 Embeddings of K6 on the Klein bottle

Subsequent applications of our reduction procedure to a 6-critical graph on
the Klein bottle eventually lead to an embedding of the complete graph K6.
The resulting embedding of K6 is either a 2-cell embedding or not. Recall
that an embedding is said to be 2-cell if every face is homeomorphic to a
disc.

If the resulting embedding of K6 is not 2-cell, the embedding must be
isomorphic to the embedding obtained from the unique embedding of K6 in
the projective plane by inserting a cross-cap into one of its faces. Otherwise,
the embedding is isomorphic to one of the seven embeddings of K6 depicted
in Figure 3. All 2-cell embeddings of K6 on the Klein bottle can be easily
generated by a simple program that ranges through all 2-cell embeddings of
K6 on surfaces: for each vertex v of K6, the program generates all cyclic
permutations of the other vertices (corresponding to the order in which the
vertices appear around v) and chooses which edges alter the orientation. Each
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such pair of cyclic permutations and alterations of orientations determines
uniquely both the embedding and the surface. It is straightforward to com-
pute the genus of the surface and test whether the constructed embedding is
not isomorphic to one of the previously found embeddings. The source code of
the program can be found at http://kam.mff.cuni.cz/∼bernard/klein.

5 Expansions of 2-cell embeddings of K6

In this section, we focus on embeddings of 6-critical graphs that can be
reduced to a 2-cell embedding of K6. All such 6-critical graphs can easily
be generated, using the expansion operation and Lemma 5, by the following
procedure:

G_1, G_2, G_3, G_4, G_5, G_6, G_7 :=

non-isomorphic embeddings of K_6 on the Klein bottle

k := 7

i := 1

while i <= k do

for all vertices w of G_i do

for all partitions of N(w) into W_1 and W_2 do

H_0 := G[w,W_1,W_2]

for all H obtained from H_0 by pasting

minimal graphs into its faces do

if H is not isomorphic to any of G_1, ..., G_k then

k := k + 1; G_k := H

endfor

endfor

endfor

i := i + 1

done { while }

output G_1, ..., G_k

The source code of the program implementing the above procedure can be
found at http://kam.mff.cuni.cz/∼bernard/klein. The program even-
tually terminates outputting 11 embeddings of 6-critical graphs on the Klein
bottle, which are depicted in Figure 4, in addition to the seven 2-cell embed-
dings of K6. Hence, Proposition 4 and Lemma 5 now yield:
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Figure 4: The list of 11 non-isomorphic embeddings of 6-critical graphs on
the Klein bottle that are distinct from K6. The graphs are drawn in the
plane with two cross-caps.
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w w1

w2

w3

w4 w5

w′

w′′ w
w1

w2

w3

w4 w5

w′

w′′

Figure 5: The unique embedding of K6 in the projective plane and its two
possible expansions.

Lemma 8. Let G be an embedding of a 6-critical graph on the Klein bottle
that is distinct from K6. If G can sequentially be reduced to a 2-cell embed-
ding of K6 on the Klein bottle, then G is isomorphic to one of the eleven
embeddings depicted in Figure 4.

6 Expansions of non-2-cell embedding of K6

As we have already analyzed embeddings of 6-critical graphs that can be
reduced to a 2-cell embedding of K6 on the Klein bottle, it remains to analyze
6-critical graphs that can be reduced to a non-2-cell embedding of K6. We
eventually show that all such embeddings are isomorphic to one of those
depicted in Figure 4.

Lemma 9. Let G be a 6-critical graph embedded on the Klein bottle. If G

can be reduced to a non-2-cell embedding of K6, then G is isomorphic to one
of the embeddings depicted in Figure 4.

Proof. Let G be a 6-critical graph on the Klein bottle with the smallest
order that can be reduced to a non-2-cell embedding of K6 and that is not
isomorphic to any of the embeddings in Figure 4. Observe that the choice of
G implies that any possible reduction of G yields a non-2-cell embedding of
K6 on the Klein bottle (otherwise, Lemma 8 yields that the reduced graph
is a smaller graph missing in Figure 4 which contradicts our choice of G).
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Let H be the unique embedding of K6 in the projective plane and w a
vertex of H. By Proposition 4, G contains H[w, W1, W2] for some partition
of the neighborhood of w into non-empty sets W1 and W2. By symmetry,
|W1| = 1 or |W1| = 2. We first analyze the case that |W1| = 1, i.e., G

contains the embedding drawn in the middle of Figure 5 as a subgraph. The
face which is not 2-cell is drawn using the gray color.

Let G15 be the subgraph of G contained inside the cycle C15 = ww′w′′w1w5

and G12 the subgraph contained inside the cycle C12 = ww′w′′w1w2. By
Lemma 5, G12 is either the cycle C12 with zero, one or two chords or a 5-
wheel bounded the cycle C12. The interiors of the remaining 2-cell faces of
H[w, W1, W2] must be empty (since they are triangles).

Assume that G12 6= C12. The graph G without the interior of the cycle
C12 is 5-colorable since G is 6-critical. Observe that the vertices w and w1

must get the same color in any such 5-coloring (since adding an edge ww1

to G would form a clique of order six). However, it is always possible to
permute the colors of the vertices of G15 preserving the colors of w, w1 and
w5 in such a way that the 5-coloring can be extended to G12. This contradicts
our assumption that G is 6-chromatic. Hence, G12 = C12.

Since G is 6-critical, the graph G15 is 5-colorable. Moreover, the vertices
w and w1 receive distinct colors in every 5-coloring of G15: if the vertices
w and w1 have the same color, the 5-coloring of G0 can be extended to the
whole graph G.

Let G′ be the graph obtained from G15 by identifying the vertices w

and w1. Since G15 can be drawn in the projective plane with the cycle C15

bounding a face, G′ can also be drawn in the projective plane. As no 5-
coloring assigns the vertices w and w1 the same color, G′ contains K6 as a
subgraph. On the other hand, since G is 6-critical, G does not contain K6 as
a subgraph and thus the subgraph of G′ isomorphic to K6 contains the vertex
obtained by the identification of w and w1. In addition, G′ does not contain
any edges except for the edges of the complete graph and the path ww5w1

(removing any additional edge from G would yield a graph that is also not
5-colorable contrary to our assumption that G is 6-critical). We conclude
that G15 is comprised of

1. the path ww5w1, a complete graph on a 5-vertex set X such that
{w′, w′′} ⊂ X and w5 6∈ X, and such that N(w) and N(w1) parti-
tion X, or

2. the path ww5w1, a complete graph on a 5-vertex set X, {w′, w′′, w5} ⊂
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X, such that N(w) \ {w5} and N(w1) \ {w5} partition X \ {w5}.

In the former case, the graph G is isomorphic to the first or the second
embedding on the first line in Figure 4; in the latter case, G is isomorphic to
the third or the fourth embedding on the first line in the figure. This finishes
the analysis of the case that |W1| = 1.

We now assume that |W1| = 2, i.e., G[w, W1, W2] is the graph depicted in
the right part of Figure 5. We can also assume that w is not adjacent to w2

in G since otherwise we could choose W1 = {w1} which would bring us to the
previous case. Similarly, the vertices w, w1 and w5 do not form a triangular
face of G. Let C15 be the cycle ww′w′′w1w5, C23 the cycle ww′w′′w2w3, G15

the subgraph of G inside the cycle C15, and G23 the subgraph inside the cycle
C23. As in the previous case, G23 is either the cycle C23 with zero, one or
two chords or a 5-wheel bounded by C23.

It is straightforward (but tedious) to check that any coloring c of G15

with five colors extends to a coloring of G unless:

• the vertices w and w′′ are assigned the same color in c, or

• all the five vertices w, w′, w′′, w1 and w5 are assigned mutually distinct
colors and G contains edges w3w

′ and w3w
′′ (see the embedding in the

left part of Figure 6).

The reader is asked to verify the details him-/her-/itself.
We first show that there is a coloring of G15 of the latter type. Let G′

be the graph obtained from G15 by adding the edge ww′′. Assume that G′

contains a complete graph of order six as a subgraph. If G23 contains an inner
edge e, consider a 5-coloring of G \ e which exists since G is 6-critical. The
coloring must assign the vertices w and w′′ the same color (since otherwise, c

restricted to G15 would also be a proper coloring of G′). Consequently, none
of the vertices wi, 1 ≤ i ≤ 5, can be assigned the common color of w and
w′′ which is impossible since the vertices wi, 1 ≤ i ≤ 5, form a clique. We
conclude (under the assumption that G′ contains K6 as a subgraph) that G23

is formed by the cycle C23 only. As in the previous case, we can now establish
that G′ is formed by a subgraph isomorphic to K6 and the path ww5w1w

′′

(which need not to be disjoint); in particular, the vertex w′ is contained in
the subgraph isomorphic to K6. It is now easy to verify that the embedding
of G must be isomorphic to the first or the last embedding in the first line
in Figure 4.
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Figure 6: The embeddings obtained in the analysis in the proof of Lemma 9.

Since G′ does not contain K6 as a subgraph, there is a coloring of G15

with five colors which assigns the vertices w and w′′ distinct colors. Since G

is not 5-colorable, G15 has a coloring assigning all the vertices w, w′, w′′, w1

and w5 distinct colors and G must be of the type depicted in the left part of
Figure 6. Since the vertices w and w2 are not adjacent in G and the degree of
w4 is five, we can consider the graph |G|w4ww2|; let G0 be this graph. By the
choice of G, G0 is a non-2-cell embedding of K6 in the projective plane and
Proposition 3 implies that G0 contains the vertex w0 obtained by contracting
the path ww4w2 in G.

If G0 does not contain the vertex w3, consider a coloring of G15 assigning
the vertices w, w′, w′′, w1 and w5 five distinct colors. This coloring restricted
to G0 is a proper coloring of G0 = K6 with five colors since G0 can contain
only the edges w0w

′′ and w0w1 in addition to those contained in G15 (viewing
the vertices w and w0 to be the same vertex). Hence, G0 contains the vertex
w3. Since the only neighbors of w3 in G|w4ww2 are the vertices w0, w′, w′′, w1

and w5, the vertex set of G0 must be {w0, w
′, w′′, w1, w5, w3}. In particular,

the vertex w5 is adjacent to w′ and w′′ in G. A symmetric argument applied
to |G|w2w

′′w4| implies that the vertex w1 is adjacent to w′ and w′′ in G. This
brings us to the embedding depicted in the right part of Figure 6, which is
isomorphic to the third embedding on the second line in Figure 4.

7 Main result

We now wrap the results obtained in the previous sections. The discussion
in Section 4 and Lemmas 8 and 9 yield the following:
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Figure 7: The list of all nine 6-critical graphs that can be embedded in the
Klein bottle. Some of the edges are only indicated in the figure: the straight
edges between two parts represent that the graph is obtained as the join of
the two parts and the vertices with stars of edges leaving them are adjacent
to all vertices in the graph.

Theorem 10. There are nine non-isomorphic 6-critical graphs that can be
embedded on the Klein bottle which are depicted in Figure 7. The graphs
have altogether a single non-2-cell embedding and 18 non-isomorphic 2-cell
embeddings on the Klein bottle, which are depicted in Figures 3 and 4.

Immediate corollaries of Theorem 10 are:

Corollary 11. Let G be a graph that can be embedded on the Klein bottle. G

is 5-colorable unless it contains one of the nine graphs depicted in Figure 7
as a subgraph.

Corollary 12. Let G be a graph embedded on the Klein bottle. G is 5-
colorable unless it contains a subgraph with embedding isomorphic to one of
the 19 embeddings depicted in Figures 3, 4 and 5.

Eppstein [6, 7] showed that testing the existence of a subgraph isomorphic
to a fixed graph H of a graph embedded on a fixed surface can be solved
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in linear time. As we have found the explicit list of 6-critical graphs on the
Klein bottle, we also obtain the following corollary:

Corollary 13. There is an explicit linear-time algorithm for testing whether
a graph embedded on the Klein bottle is 5-colorable.
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