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Abstract.

In this paper, we give some sufficient conditions for distance local connectivity
of a graph, and a degree condition for local connectivity of a k-connected graph
with large diameter. We study some relationships between ¢-distance chromatic
number and distance local connectivity of a graph and give an upper bound on

the t-distance chromatic number of a k-connected graph with diameter d.
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1 Introduction

By a graph we mean a simple undirected graph. We use [2] for terminology and notation
not defined here. Let dists(z,y) denote the distance between vertices x and y in G. An
x,y—path is a path between vertices z and y in G. Let d = maxdistg(zy) : z,y € V(Q)
denote the diameter of G. An z, y-path P is called diameter — path, if distg(z,y) = d and
|E(P)| = d. Let dg(x) denote the degree of a vertex z in G, §(G) the minimum degree
of G and A(G) the maximum degree of G. For a nonempty set U C V(G), the induced
subgraph on U is denoted by (U). For a nonempty set A C V(G), G — A denotes the
subgraph of G' that we obtain by deleting all vertices of A and all edges adjacent to at

k
least one vertex of A. Let ox(G) = min{ Y d¢(z;)|{x1,...,2x} C V(G), independent}.
i=1
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The square of a graph G, denoted by G?, is the graph in which V(G?) = V(G) and
E(G?) = E(G) U {{u,v}| distg(u,v) = 2}.

Let Ng(z) ={y € V(G),zy € E(G)}, let Ng[z] = Ng(z) U {z}. The set Ng(x) is called
the neighbourhood of the first type of x in G. We say that x is a locally connected vertex of
G, if (Ng(x)) is connected. We say that G is a locally connected graph, if every vertex of G
is locally connected. Chartrand and Pippert [3] proved the following Ore-type condition

for local connectivity of graphs:
Theorem A [3]. Let G be a connected graph of order n. If
4
de(u) + dg(v) > g(n —1)
for every pair of vertices u, v € V(G), then G is locally connected.

Let No(x) be a subgraph induced by the set of edges uwv, such that
min{distg(z, u), distg(z,v)} = 1.

The subgraph Ny(x) is called the neighbourhood of the second type of x in G. We say
that x is an Ny-locally connected vertex of G, if Ny(x) is connected. We say that G is

Ns-locally connected, if every vertex of GG is Na-locally connected.

Now define the distance neighbourhood of the first type of a vertex of G as in [5]. Let m be
a positive integer and let  be an arbitrary vertex of a graph G. The N{"-neighbourhood
of z in G, denoted by N7*(x), is the set of all vertices y € V(G),y # z, such that
distg(z,y) < m. Let N{"[z] = N{"(x) U {z}. A vertex x is called N{"-locally connected if
(N7"(z)) is connected. A graph G is said to be N{"-locally connected if every vertex of G

is N{"-locally connected.

The distance local connectivity of the second type is analogously defined as the neigh-
bourhood of the second type. Let m be a positive integer and let x be an arbitrary vertex
of a graph G. The NJ"-neighbourhood of =, denoted by NJ*(x), is the subgraph induced by
all edges {u,v} of G, u # x, v # x, with min{distg(z, u), distg(z,v)} < m. We say that
x is Nj*-locally connected in G if NJ"(x) is connected. A graph G is said to be NJ"-locally

connected if every vertex of G is NJ*-locally connected in G.

Let ¢t be a positive integer. The t-distance chromatic number of a graph G, denoted

x® (@), is the minimum number of colours required to colour all vertices of G in such a
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way that any two vertices z,y with diste(z,y) < ¢ have distinct colours. Let x(x) denote
the colour of a vertex x in G. Recall that the vertex distance colouring was introduced by
Kramer and Kramer in [7] and [8]. In the 90s, several results on vertex distance colourings

were presented, cf. Baldi in [1], Skupien in [11], Chen et al. in [4]

The following result was proved by Jendrol’ and Skupien in [6].

Theorem B [6].  Given a planar graph G, let D = max{8, A(G)}. Then the t-distance

chromatic number of G is

D
(@) <6+ 25 (D - 1) - 1),

Madaras and Marcinové strengthened this condition in [9].

Theorem C [9]. Let G be a planar graph, let D = max{8, A(G)}. Then

2D + 12
YD(G) <6+ e o

< ) (D -1t —1).

2 Distance local connectivity of a graph in k-connected

graphs

The concept of the local connectivity of a graph was introduced in 1970’s. Ryjacek used
the concept of the local connectivity of a vertex in [10] for local completing in his closure
concept for claw-free graphs. This closure concept gave a solution for several hamiltonian
problems. A degree condition is one of the easily verified conditions. Chartrand and
Pippert in [3] proved a degree condition for the local connectivity of connected graphs
(see Theorem A). The same degree condition can guarantee the local connectivity of
any vertex of a connected locally connected graph. In this chapter, degree conditions for
the local connectivity of a k-connected graph with a large diameter will be presented as
a strengthening of the result of Chartrand and Pippert. Holub and Xiong in [5] proved
degree conditions for distance local connectivity of 2-connected graphs. As a strengthening
of this condition, degree conditions for distance local connectivity of a k-connected graph

with a large diameter will be shown too.



Theorem 1. Let k > 2 be an integer, G be a k-connected graph of order n. Let d be
the diameter of G, let d > 5. If

de(u) + dg(v) > g(n — kd + 5k — 3)

for every pair of vertices u,v € V(G), then G is locally connected.

Theorem 2. Let k > 2 be an integer, G be a k-connected graph of order n. Let d be
the diameter of G, m be an integer such that 2 <m < 3(d— 7). If

oy > n — kd + 2mk + 6k — t, where t = 2m + 1 if m = 0(mod 3),
2)oy > n — kd+ 2mk + 6k —2 —t, wheret = 3(m —1)+3 if m = 1(mod3),

3)oy = n—kd+2mk +4k —1—t, wheret=2(m —2)+3 if m = 2(mod3).

then G is N{"-locally connected.
Before proofs of these two theorems, some auxiliary statements will be shown.

Lemma 1. Let k > 2 be an integer, G be a k-connected graph and x be an arbitrary
vertex of G. Let d be the diameter of GG, let d > 5. If x does not belong to any diameter-
path in G, then there are at least kd — 5k + 2 vertices y such that distg(z,y) > 2.

Proof. Let P denote a diameter-path in G, let u,v be the end vertices of P. Since G
is k-connected, there are at least k vertex-disjoint u,v-paths in G by Menger’s theorem.
Choose Pi,..., P, with minimum sum of their lengths. Note that |E(F;)| > d, i =
1,..., k. Now it will be shown that there are at least d — 3 vertices at the required
distance from x on each of P, i = 1,..., k. Let M; = {y € Pj|distg(z,y) < 2},
j=1,... k. For each path of P;, + =1,..., k, there are two following cases:
Case 1: If M; = (), then there are at least d + 1 vertices at the required distance from x
on P;.
Case 2: If M; # 0, then let a; € M; such that distg(a;,u) = 7£r€11]\r41J distg(m,u) and let
b; € M, such that distg(b;,v) = W{I&I}J distg(m, v). Since z does not belong to any

diameter path, we have
diste(u, a;) + distg(ay, x) + diste(x, b;) + diste(b;, v) > d+ 1.
Since distg(aj, z) < 2 and distg(b), z) < 2, we obtain
diste(u, a;) + diste (b, v) > d — 3.

Hence there are at least d — 3 vertices at the required distance from z on P;.
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On the paths P;, i = 1,..., k, there are at least k(d — 3) vertices at the required distance
from x in G. Since w and v can be counted only once, there are at least k(d — 5) + 2

different vertices at the required distance from z in G. O

Proof of Theorem 1. Suppose G is not locally connected. Then there is a vertex
x such that x is not locally connected in (G. There are at least two components of
(Ng(z)). Let Gy denote a smallest component of (Ng(z)) and let G2 be the union of all
the other components of (Ng(z)). Let g3 = |V(Gh)], let go = |[V(Gs)|. Let Z = {y €
V(G); distg(z,y) =2}, let z = |Z]. Let p = |{y € V(G); distg(z,y) > 2}|.
Case 1: Suppose that x does not belong to any diameter-path in G. By Lemma 1, the
number p > kd — 5k + 2. Clearly n = g1 + g2 + 2+ p+ 1. Choose arbitrary vertices
w and v such that u € V(G;) and v € V(G3). By the assumptions of Theorem 1

do(z) + do(u) > g(n — kd+ 5k — 3).

Since dg(z) = g1+ g2 and dg(u) < g1+z=n—1—-p—gs <n—1—gy—kd+5k—2,

we obtain
git+gpt+n—g—1—kd+5k—2> g(n—kd+5k—3).
Clearly ¢, > %(n—kd+5k—3) and g > %(n—kd+5k—3) since go > ¢;. Therefore
z < %(n—kd+5k—3).
For vertices u and v
de(u) +de(v) <gr+2z+9g2+2< %(n—kd+5k—3),

a contradiction.
Case 2: Suppose that x belongs to a diameter-path P. Let e, f be the end vertices of P.
Since G is k-connected, there are at least k vertex-disjoint e, f-paths in G. Choose
Py, ..., P, with a minimum sum of their lengths. For each of P;, i =1,..., k the
following cases can happen.
Subcase 2.1: V(P;) N Z = (. Then there are at least d + 1 vertices on P; at
distance at least 3 from z in G.
Subcase 2.2: V(P;) N (V(G1) UV (Gy)) = 0, but V(P) N Z # 0. Let d; =
|\V(P)NZ|. If d; < 4, then there are at least d — 3 vertices on P; at distance

at least 3 from z in G.



Now suppose that d; > 5. If there is a vertex w € V(G1) UV (G3) such that
w is adjacent to every vertex of V(P;) N Z, then there are at least d — 2

vertices at distance at least 3 from z in G since distg(e, f) > d. If none of
the vertices of V(G1) UV (G3) is adjacent to every vertex of V(P;) N Z, then

de(u)<gr+z—(d; =3)< g1 +2z—1, YueV(Gy),
de(v) < go+2z—(d; =3) < ga+2—1, YveV(Gy).

Subcase 2.3: V(B;) N (V(G1) UV (Gy)) # 0. Let d} = |[V(P,) NV(Gy)|, d? =
|[V(P)NV(Gy)| and d; = |V (P;) N Z|. Note that d; > 2. The following two

possibilities have to be considered.

i)

ii)

di =0 or d? = 0. Up to symmetry, suppose that d7=0. If d} =1
and d; = 2, then there are at least d — 3 vertices on P; at distance at
least 3 from z in G.

Now suppose that d} =1 and d; > 2. If there is a vertex w € V(G)
such that w is adjacent to every vertex of V(P;) N Z, then there
are at least d — 2 vertices at distance at least 3 from x in G since
distg(e, f) > d. If there is no vertex w € V(G;) adjacent to every
vertex of V(P;) N Z, then

degu) <gr+z—(d;i—2) < g1 +2z—1,YueV(G).

Now suppose that d} > 1. If there is a vertex w € V(Gy) such that w
is adjacent to every vertex of V(P;) N Z, then there are at least d — 2
vertices at distance at least 3 from x in G since distg(e, f) > d. If
there is no vertex w € V(G) adjacent to every vertex of V(P;) N Z,
then

do(u) < g1 +2—(dj —=2)—(d; = 1)< g1 +2—1,Yu € V(G)).

d} >0 and d? > 0. If P, is a diameter-path containing x, then there
are at least d — 4 vertices on P, at distance at least 3 from z in
G. If P; does not contain z, then d; > 3. If there is a vertex w €
V(G1) UV(G3) such that w is adjacent to every vertex of V(P;) N Z,
then there are at least d — 2 vertices at distance at least 3 from x
in G since distg(e, f) > d. If there is no vertex w € V(G1) UV (Gs)



adjacent to every vertex of V(P;) N Z, then

dg(u) <gr+z—(di—2)<gi+2z—1, YueV(G),
dg(v) < go+z—(d; —=2) < g+ 2z—1, Yv e V(Gy).

Let [; denote the number of such the paths Py, ..., P, for which one of the following

conditions is satisfied

V(P)YNV(Z) # 0,V(P)N (V(G) UV(Gy)) = 0, d; > 5 and there is no
vertex w € V(G1) U V(G,) adjacent to every vertex of V(FP;) N Z,
V(P)N(V(G) UV (Gy)) # 0,d} =1,d? =0,d; > 2 and there is no vertex
w € V(Gy) adjacent to every vertex of V(P;) N Z,

V(P) N (V(G1)UV(Gy)) # 0,d} > 1,d? = 0 and there is no vertex w €
V(G,) adjacent to every vertex of V(FP;) N Z,

V(P) N (V(G)UV(Gy)) # 0,d}d? # 0,z & V(P;) and there is no vertex

w € V(G1) UV (G,) adjacent to every vertex of V(P;) N Z.

Let [5 denote the number of such the paths Py, ..., P, for which one of the following

conditions is satisfied

V(P)NV(Z) # 0,V(P) N (V(G)UV(Gs)) = 0,d; > 5 and there is no
vertex w € V(G1) U V(G,) adjacent to every vertex of V(P;) N Z,

V(P) N (V(G)UV(Gy)) # 0,d} =0,d? =1,d; > 2 and there is no vertex
w € V(G3) adjacent to every vertex of V(P;) N Z,

V(P) N (V(G1)UV(Gy)) # 0,d? > 1,d} = 0 and there is no vertex w €
V(G3) adjacent to every vertex of V/(P;) N Z,

V(P) N (V(G1)UV(Gy)) # 0,d}d? # 0,z & V(P;) and there is no vertex

w € V(G1) UV (G,) adjacent to every vertex of V(P;) N Z.

Let [ =l 4+ l5. Then there are at least kd — bk + 2 — [ — 1 vertices at distance at

least 3 from z in G and

dao(u) < g1 +2z—1hL, YueV(Gy),
dg(U) S go + 2z — lg, Yo € V(Gg),

Suppose that [y > [;. By the assumptions, for every u € V(G)

do(z) + dg(u) > g(n — kd+5k—3).

Since dg(z) = g1+ g and dg(u) < g1 +2z2—lL <n—1—gy— 1l —kd+5k —2+1,

we have

4
91+gg+n—g2—l1—kd+5k—3+l>g(n—kd+5k—3).



Clearly
g1 > %(n—k’d—l—f)k—?))—f—ll—l and
g2 > 5(n— kd + 5k — 3) + 1 — 1,
since go > ¢1. Thus
z < %(n—kd+5k—3)+2l1—l.

For vertices v and v, it holds that
4
dg<u)+dg<v) <gr+g+2z2—0 -l < 5(n—kd—|—5k—3)—|—l1—l2,

a contradiction, since lo > [y. Hence suppose that [; > l5. Then we get

gl>%(n—kd+5k—3)+ll—l2%(n—kd+5k—3)—l1.
Thus
g2 > 5(n—kd+ 5k —=3)+ 1, — I,
z <i(n—kd+5k=3)+1—1l+1l —1l=z(n—kd+ 5k —3).
Then
d(;(u)-i—d(;(v)§91+92+22—l1—l2<g(n—k‘d-l-f)k}—?))—f—l.
Hence

O W~

de(u) +dg(v) < =(n — kd + 5k — 3),

a contradiction.

The following example shows that the conditions of Theorem 1 are sharp.

Example: Let K1, ..

vertex x with each vertex of Ky U Ly, a new vertex u with each vertex of Kj, and a new
vertex v with each vertex of Ly,. Now join each vertex of K; with each vertex of K,_; for
1=1,..., k1, each vertex of L; with each vertex of L,_; for i =1,..., ks and each vertex
of KyU Ly with each vertex of M. Clearly the prescribed graph G is k-connected and the
vertex x is not locally connected. The diameter of G is d = ki + kg + 4. It holds that

n=1+4+2l1+0 —k+ (ks +k)k+2=3l1+(d—5)k + 3.

8

., Kj, be k; cliques of order k, let Ly, ... Ly, be ks cliques of order
k. Let Ky, Ly be two cliques of order I; > 2k — 1, let M be a clique of order [, — k.

All considered cliques Kj;, L; are vertex-disjoint. Construct a graph G by joining a new



Thus
3li =n—kd—+ 5k — 3.

Furthermore

Hence for every pair a, b of vertices of Ng[z| holds that
4
do(a) + dg(b) = 4l = =(n — kd + 5k = 3).

and x is not locally connected.

The following lemma is a proposition analogous to Lemma 1 for the N{"-local connectivity

of a vertex of a graph.

Lemma 2. Let k > 2 be an integer, G be a k-connected graph. Let d be the diameter
of G and m < 1(d — 1) be an integer. Then, for each vertex x of G, there are at least

kd — 2km + 2 vertices at distance at least m from x in G.

Proof. Let P denote a diameter-path in GG, let u,v be the end vertices of P. Since G
is k-connected, there are at least k vertex-disjoint u,v-paths in G by Menger’s theorem.
Choose Pi,..., P, with minimum sum of their lengths. Note that |E(FP;)| > d, i =

1,..., k. Now it will be shown that there are at least d — 2m + 2 vertices at the required
distance from x on each of P, i = 1,..., k. Let M; = {y € P;|distg(z,y) < m — 1},
7 =1,... k. For each path of P;, : =1,..., k there are two following cases:

Case 1: If M; = (), then there are at least d + 1 vertices at the required distance from x
on P,

Case 2: If M; # (), then let a; € M; such that distg(a;,u) = nr}élﬁ distg(m,u) and let
b; € M; such that distg(b;,v) = ngfgﬁ distg(m,v). Clearly

distg (u, a;) + distg(a;, x) + distg(z, b;) + dista (b, v) > d.
Since distg(a;, x) < m — 1 and distg(b;, x) < m — 1, we have
distg(u, a;) + distg(b;, v) > d — 2m + 2.
Hence there are at least d — 2m + 2 vertices at the required distance from x on P;.
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On the paths P;, i = 1,...,k there are at least k(d — 2m + 2) vertices at the required
distance from x in G. Since u and v can be counted only once, there are at least kd —

2km + 2 different vertices at the required distance from x in G. O

Let C be a cycle, x € V(C) and C be an orientation of C. Let 2~ denote the i-th

predecessor of z on C' and 2zt denote the i-th successor of z on C in the orientation C.

Lemma 3 [5]. Let G be a 2-connected graph, x € V(G), and m be a positive integer.
If z is not N{"-locally connected, then there is an induced cycle C' of length at least 2m+2
such that, in an orientation of C,

- distq(z~®, 2) =i and distg(z7, ) =i, i=1,..., m,

- distg(y,x) > m, for every y € V(C)\ {z, 2=V, ... o= g+ gt

The following consequence proved by Holub and Xiong we use in the proof of Theorem 2.

Corollary 1 [5]. Let m > 2 be an integer, G a 2-connected graph. If x € V(G) is not
Ni™-locally connected, then there is a set M C V(G) such that
1) M is independent in (G —z)?, M C N{"*!(z) and |M| > 2m+ 1, if m = 0(mod 3),
2) M is independent in (G—Ngla])2, M C (N7 (x) \ Ni(x)) and | M| > (m—1)+1,
if m = 1(mod 3),
3) M is independent in G*, M C N{*[z] and M| > 2(m — 2) + 2, if m = 2(mod 3).

Proof of Theorem 2. Suppose that G is not N{"-locally connected. Then there is a
vertex € V(G) such that x is not N{"-locally connected in G. Hence (N]*(x)) consists of
at least two components. Let GG; denote arbitrary component of (N{*(z)), let Gy denote
the union of all the other components of (N{*(x)).

Case 1: m = 0(mod3). By Corollary 1 case 1), there is a set M C N{""'(x) such
that |[M| = 2m + 1 and M is independent in (G —xz)°. Lett = |M|. Using
Lemma 3, the set M can be chosen in the following way: M = {z1,z,..., x:},
where @y;_y = 2772 gy, = 2t & 5 =1 2 g = gD Let A =
{y € V(G)|distg(z,y) > m + 2}, let a = |A]. By Lemma 2, the number a >
kd — 2(m + 3)k + 2. Since M is independent in (G — z)*, we have, for every pair
u,v € M\ {z},

Ng_o(u) N Ng_p(v) = 0.
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Since x is adjacent to at most two vertices of M, we obtain
Y de(z)<(n—1)—t—a+2=n—t—a+ 1.
2 €M
Since a > kd — 2(m + 3)k + 2, we have
Z de(x;) <n—t—kd+2mk+ 6k — 1,
2 €M
a contradiction.

Case 2: m = 1(mod3). By Corollary 1 case 2), there is a set M C Nt (z) such that
M| =2(m—1)+1 and M is independent in (G — Nglz])®. Let t = |M]|. Using
Lemma 3, the set M can be chosen in the following way: M = {x1,z,..., x;},
where z;_1 = a7 37D gy = 2t D =1 meLl gy = gD Lep A =
{y € V(G)|distg(z,y) > m + 2}, let a = |A|. By Lemma 2, the number a >
kd — 2(m + 3)k + 2. Since M is independent in (G — Ng[z])®, we have, for every
pair u,v € M,

Neg(u) N Ng(v) = 0.

Since each vertex of Ng(x) is adjacent to at most one vertex of M, we obtain
> de(z) < (n—1)—t—a.
zi €M
Since a > kd — 2(m + 3)k + 2, we have
> da(x;) <n—t—kd+ 2mk + 6k — 3,
zi €M
a contradiction.
Case 3: m = 2(mod 3). By Corollary 1 case 3), there is a set M C N{"[z] such that
|M| = 2(m—2)+2and M is independent in G*. Let A = {y € V(G)|distg(x,y) >
m + 1}, let a = |A|. By Lemma 2, the number a > kd — 2(m + 2)k + 2. Since M

is independent in G2 we have , for every pair u,v € M,
N(;(U) N Ng(v) = @

Let ¢t = |M|. Hence
Z dg(x;)) <n—t—a.

z, €M
Since a > kd — 2(m + 2)k + 2, we obtain
> da(xi) <n—t—kd+2mk + 4k — 2,
r, €M

a contradiction.
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3 Vertex Distance Colouring

There are several results on t-distance chromatic number for planar graphs. In this
paragraph, results on ¢-distance chromatic number in k-connected, not necessary pla-
nar, graphs are presented. Moreover, the relations between distance local connectivity
and t-distance chromatic number in 2-connected graphs are given. Main results of this

section are the following theorems.

Theorem 3. Let G be a k-connected graph of order n, d be the diameter of G. Let

t < d be a positive integer. Then the distance-chromatic number

n—1 ift=d-—1,
X9(G) < .
n—(d—t—2k—2 ift<d—1.

Theorem 4. Let G be a 2-connected graph of order n, let t, k be positive integers. If
XP(G) >n— (2k—1)(t+1),

then G is N{"-locally connected, where m = k(t +1) — 1.

Theorem 5. Let G be a 2-connected graph of order n, k be a positive integer and t be
an even positive integer. If
x(G) >n —2k(t+1),

then G is N3*-locally connected, where m = k(t +1) + § — 1.

The distance local connectivity number of a 2-connected graph G, denoted dic(G), is the
smallest positive integer m for which G is N{"-locally connected. Since G is 2-connected,
the number dlc(G) is well-defined. Note that local connectivity of a graph is the N]-local

connectivity. The following statement is a straightforward consequence of Theorem 4.

Corollary 2. Let G be a 2-connected graph, let t be a positive integer. If dlc(G) = m,
then x(G) <n — (k—1)(t + 1), where k = | 22].

t+1
Proof of Theorem 3. Let u,v denote the end vertices of a diameter path in G.
Since G is k-connected, there are at least k vertex-disjoint u,v-paths Py, ..., P, in G by
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Menger’s theorem. Since distg(u,v) = d, each of P, i = 1,..., k, has length at least d.
Let w;; denote a vertex on P; such that distg(u,u;;) = j,i=1,....k, j=1,...,d.
Since d > t, there is at least one vertex u;; on F;, i = 1,..., k, including the end-vertex
v, such that j > ¢, j=t+1,...d. If d—t =1, then u; 41 = v for every i € {1,..., k}.
We define colouring x of vertices of G in such a way that x(v) = x(u) and x(x) # x(v)
for all pairs x,y € V(G) \ {u,v}. Clearly x is a t-distance colouring of G and

xP(G)<n—1.

Suppose that d —t > 1. We define a colouring x of vertices of GG in such a way that the
vertices of NI (u) have distinct colours in G, x(u) = x(u; 1) and x(v) = x(uia__1) for
some ¢ € {1,..., k}. Moreover, if d —t > 2, then, for every i € {1,..., k}, x(wijt14+1) =
X (u; ), since distg(u;;, wijpiq1) =t +1, 7 =1,...,d—t—2. Clearly x is a t-distance
colouring of G. Hence there are at least k(d — t — 2) + 2 vertices with previously used
colours, implying that
XP(G)<n—k(d—t—2)—2.

O

For the proofs of Theorem 4 and Theorem 5 we need some auxiliary statements. The

following lemma is the analogue of Lemma 3.

Lemma 4. Let G be a 2-connected graph, x € V(G) and m be a positive integer. If «
is not NJ'-locally connected, then there is an induced cycle C' containing x of length at

least 2m + 3 such that, in an orientation of C,

distq(z=9, x) =i and distg(z® 2) =i, i=1,..., m+1,

Proof. The vertex x is not Nj*-locally connected. The NJ*-neighbourhood of a vertex
x consists of at least two components G, Gy. Since G is 2-connected, there is a cycle
C containing z, such that =M € G; and 2t € G, in an orientation of C. Choose C
shortest possible with this property. Since z is not Ni*-locally connected, |V (C)| > 2m+3.
It is easy to see that C' has the required property since otherwise there is a shorter cycle.

O

From the definition of a t-distance colouring we obtain the following clear observation.

Proposition 1. Let G be a 2-connected graph of order n, let t be a positive integer, let
d denote the diameter of G. Then x)(G) = n if and only if d < t.
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Corollary 3. Let G be a 2-connected graph of order n, let t be a positive integer. If
xW(G) = n, then G is Ni-locally connected.

Proof. Suppose that G is not Ni-locally connected, i.e., there is a vertex z € V(QG)
such that x is not N{-locally connected in G. By Proposition 1, d < ¢t. By Lemma 3,
there is an induced cycle C' in G of length at least 2¢ 4+ 2, which contradicts the fact that
d<t. O

Proof of Theorem 4. Suppose that G is not N{"-locally connected, i.e., there is a
vertex x which is not /Nj"-locally connected. By Lemma 3 there is an induced cycle C'
containing z, such that |V (C)| > 2m+2. Moreover distg(z, 2~®) = distg(z, 2+®) =4 for
t=1,...,m. Since z is not N{"—locally connected, the cycle C' can be chosen such that
2~ and 2+ belong to different components of (NJ"(z)). Clearly distg(x~®,z70)) =
i — j|, fori,j =0,...,m where 27 = z.

We define a colouring y of vertices of G in such a way that all the vertices =@, ... z=®

have distinct colours, x(z~®) = y(z= 1Y) § = 0,...,¢, since [V(C)| > 2(t +1). If
k> 1, then y(x~H0FD)) = (2= (+G=DED)) for 4 =0,..., tand j =1,..., 2k — 1. All
the remaining vertices of G will be coloured with distinct unused colours. Clearly x is a

t-vertex distance colouring in G.

We have coloured 2k(t + 1) vertices of C' with only ¢ + 1 colours. Since m = k(t +1) — 1,

we have coloured 2m + 2 vertices of C' with only ¢ + 1 colours, implying that
X(G)<n—2m+2)+ (t+1)=n— 2k —1)(t+1),

a contradiction. O

Proof of Theorem 5. We will use similar arguments as is the proof of Theorem
4. Suppose that G is not Nj*-locally connected, i.e., there is a vertex z which is not
N3*-locally connected. By Lemma 4 there is an induced cycle C' containing z, such that
IV(C)| > 2m + 3. Moreover distg(z,2~®) = distg(z,27®) =i fori = 1,...,m+ 1.
Since x is not NJ'—locally connected, the cycle C' can be chosen such that =) and
2+ belong to different components of (N3*(z)). Clearly distg (2=, 270)) = |i — j|, for

i,5=0,...,m+1 where 270 = g.

We define a colouring y of vertices of G in such a way that all the vertices =@, ... z=®
have distinct colours, y(z~®) = y(a=*++D) 4 = 0,... ¢, since |[V(C)| > 2(t +1). If
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k> 1, then x(z~ (D)) = (o= (+0=DED)) for 4 = 0,..., t and j = 1,..., 2k, since
V(C)| > 2m+3 = (2k+ 1)(t + 1). All the remaining vertices of G will be coloured with

distinct unused colours. Clearly y is a t-vertex distance colouring in G.

Thus we can colour (2k + 1)(¢ + 1) vertices of C' with only ¢ + 1 colours. Hence we have
X(G) < n—2k(t+1),

a contradiction. O

Now we give an example which show that conditions of Theorem 3 are sharp. Let d and
k > 2 be two positive integers. Consider two vertices v and v and d—1 cliques K, ... K4 4
of order k. We construct a graph GG by joining each vertex of K; with u, each vertex of
K, 1 with v and each vertex of K; with each vertex of K,y for each i € {1,...,d —2}.
The diameter of G is d, the graph G is k-connected and the t-distance chromatic number
is equal to
n—1 ift=d—1,
{ n—(d—t—2k—-2 ift<d-—1.

For the following two examples the conditions of Theorem 3 give better upper bound
on the t-distance chromatic number than the conditions of Theorem B and C. Let d be
a positive integer. Consider two vertices u,v and d — 1 cliques Ky,... Ky 1 of order 3.
Construct a graph G by joining each vertex of K; with u, each vertex of Ky | with v.
Now pair vertices of K; with vertices of K, 1, for each i € {1,...,d —2}. The structure

of G is shown in Fig. 1.

K K, Kq o Ky

Fig. 1.

The graph G is 3-connected, the diameter of G is d and G is planar, because the graph
on the following picture (Fig. 2.) is isomorphic with G.

15



Fig. 2.

From Theorem 3 we obtain x®(G) < 3(t 4+ 1) and from Theorem B we get x(G) <

2((7)"' = 1) + 6. For ¢ > 2 the upper bound of Theorem 3 is better.

For any positive integer d, consider two vertices u, v, and d — 1 cliques Ky, ... K41, such
that K7 and K4 | are triangles and K, ... K o are alternatively cliques of orders 3 and
4. Construct a graph G in such a way that we join each vertex of K; with u, each vertex
of K41 with v and we pair vertices of K; with vertices of K1, for all i € {1,...d — 2},

in such a way that is shown in Fig. 3.

K Ky K3 K Ki

Fig 3.

This graph G is 3-connected, the diameter of GG is d and G is planar, because the graph
on the following picture (Fig. 4.) is isomorphic with G.

16



Fig. 4.

From Theorem 3 we get x(G) < 3(t + 1) + 2 + 41, and, from Theorem B we obtain

xD(G) < 2((7)""! — 1) + 6. Comparing these two values, the upper bound of Theorem 3

is asymptotically better for t > 2 and d < 7°.
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