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Abstract

The Shortest Cycle Cover Conjecture asserts that the edges of
every bridgeless graph with m edges can be covered by cycles of total
length at most 7m/5 = 1.4m. We show that every bridgeless graph
with minimum degree three that contains m edges has a cycle cover
comprised of three cycles of total length at most 44m/27 ≈ 1.6296m;
this extends a bound of Fan [J. Graph Theory 18 (1994), 131–141] for
cubic graphs to the class of all graphs with minimum degree three.

1 Introduction

Cycle covers of graphs are closely related to several deep and open problems
in graph theory. A cycle in a graph is a subgraph with all degrees even. A
cycle cover is a collection of cycles such that each edge is contained in at least
one of the cycles; we say that each edge is covered. The Cycle Double Cover
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Conjecture of Seymour [24] and Szekeres [26] asserts that every bridgeless
graph G has a collection of cycles containing each edge of G exactly twice
which is called a cycle double cover. In fact, it was conjectured by Celmins [5]
and Preissmann [22] that every graph has such a collection of five cycles.

The Cycle Double Cover Conjecture is known to be implied by several
other conjectures, e.g., the Berge-Fulkerson Conjecture [10] asserting that
every cubic bridgeless graph G has 6 perfect matchings covering each edge of
G twice. Another conjecture that implies the Cycle Double Cover Conjecture
is the Shortest Cycle Cover Conjecture of Alon and Tarsi [1] asserting that
every bridgeless graph with m edges has a cycle cover of total length at most
7m/5. Recall that the length of a cycle is the number of edges contained in
it and the length of the cycle cover is the sum of the lengths of its cycles.
The reduction of the Cycle Double Cover Conjecture to the Shortest Cycle
Cover Conjecture can be found in the paper of Jamshy and Tarsi [15].

The best known general result on short cycle covers is due to Alon and
Tarsi [1] and Bermond, Jackson and Jaeger [3]: every bridgeless graph with
m edges has a cycle cover of total length at most 5m/3 ≈ 1.667m. As it is
the case with most conjectures in this area, there are numerous results on
short cycle covers for special classes of graphs, e.g., graphs with no short
cycles, well connected graphs or graphs admitting a nowhere-zero 4-/5-flow,
see e.g. [7, 8, 12, 13, 16, 23]. The reader is referred to the monograph of
Zhang [27] for further exposition of such results where an entire chapter is
devoted to results on the Shortest Cycle Cover Conjecture.

The least restrictive of such refinements of the general bound of Alon and
Tarsi [1] and Bermond, Jackson and Jaeger [3] is the result of Fan [7] that
every cubic bridgeless with m edges has a cycle cover of total length at most
44m/27 ≈ 1.630m. This result has recently been improved in [17] where it
is shown that every cubic bridgeless graph with m edges has a cycle cover
of total length at most 34m/21 ≈ 1.619m. In this paper, we strengthen the
result of Fan [7] in another direction: we show that every m-edge bridgeless
graph with minimum degree three has a cycle cover of total length at most
44m/27 ≈ 1.630m, i.e., we extend the result from [7] on cubic graphs to
all graphs with minimum degree three. As in [7], the cycle cover that we
construct consists of at most three cycles.

Though the improvements of the original bound of 5m/3 = 1.667m on
the length of a shortest cycle cover of an m-edge bridgeless graph can seem
to be rather minor, obtaining a bound below 8m/5 = 1.600m for a significant
class of graphs might be quite challenging since the bound of 8m/5 is implied
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by Tutte’s 5-Flow Conjecture [16].

2 Notation

Let us briefly introduce notation used throughout this paper. We only focus
on those terms where confusion could arise and refer the reader to standard
graph theory textbooks, e.g. [6], for exposition of other notions.

Graphs considered in this paper can have loops and multiple (parallel)
edges. If E is a set of edges of a graph G, G \ E denotes the graph with
the same vertex set with the edges of E removed. If E = {e}, we simply
write G \ e instead of G \ {e}. For an edge e of G, G/e is the graph obtained
by contracting the edge e, i.e., G/e is the graph with the end-vertices of e
identified, the edge e removed and all the other edges, including new loops
and parallel edges, preserved. Note that if e is a loop, then G/e = G \ e.
Finally, for a set E of edges of a graph G, G/E denotes the graph obtained
by contracting all edges contained in E. If G is a graph and v is a vertex of
G of degree two, then the graph obtained from G by suppressing the vertex v
is the graph obtained from G by contracting one of the edges incident with v,
i.e., the graph obtained by replacing the two-edge path with the inner vertex
v by a single edge.

An edge-cut in a graph G is a set E of edges such that the vertices of
G can be partitioned into two sets A and B such that E contains exactly
edges with one end-vertex in A and the other in B. Such an edge-cut is also
denoted by E(A, B). Note that edge-cuts need not be minimal sets of edges
whose removal increases the number of components of G. An edge forming
an edge-cut of size one is called a bridge and graphs with no edge-cuts of size
one are said to be bridgeless. Note that we do not require bridgeless graphs
to be connected. Also observe that if G has no edge-cuts of size k, then G/F
also has no edge-cuts of size k for every set F of edges of G.

As said before, a cycle of a graph G is a subgraph of G with all vertices
of even degree. A circuit is a connected subgraph with all vertices of degree
two and a 2-factor is a spanning subgraph with all vertices of degree two.
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3 Rainbow Lemma

In this section, we state and prove a variant of the following folklore lemma,
referred to as the Rainbow Lemma. The Rainbow Lemma has been implicitly
used in some of previous work, e.g. [7, 18, 20], and is closely related to the
notion of parity 3-edge-colorings from the Ph.D. thesis of Goddyn [11].

Lemma 1 (Rainbow Lemma). Let G be a bridgeless cubic graph. G contains
a 2-factor F such that the edges of G not contained in F can be colored with
three colors, red, green and blue in the following way:

• every even circuit of F contains an even number of vertices incident
with red edges, an even number of vertices incident with green edges
and an even number number of vertices incident with blue edges, and

• every odd circuit of F contains an odd number of vertices incident with
red edges, an odd number of vertices incident with green edges and an
odd number number of vertices incident with blue edges.

In the rest of this paper, a 2-factor F with an edge-coloring satisfying the
constraints given in Lemma 1 will be called a rainbow 2-factor.

In this section, we prove a weighted variant of the Rainbow Lemma which
is needed in our further considerations. Later, in Section 7, we further gen-
eralize the argument to exclude certain edge-colorings of the edges not con-
tained in the 2-factor F . However, we think that presenting a less general
version of the lemma first will help the reader to follow our arguments later.

A key ingredient of the proof of Lemma 1 is the following classical result
of Jaeger:

Theorem 2 (Jaeger [14]). If G is a graph that contains no edge-cuts of size
one or three, then G has a nowhere-zero 4-flow.

Another ingredient for the proof of our modifications of the Rainbow
Lemma is the notion of fractional perfect matchings. Let us briefly survey
some classical results from this area. The reader is referred to a recent
monograph of Schrijver [25] for a more detailed exposition.

A perfect matching M of a graph G is the set of edges such that every
vertex of G is incident with exactly one edge of M . A perfect matching M
can also be viewed as a zero-one vector uM ∈ {0, 1}E(G) such that for each
vertex v, the entries of u corresponding to the edges incident v sum to one. A
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fractional perfect matching is a generalization of this notion: a non-negative
vector u ∈ R

E(G) is said to be a fractional perfect matching of the graph G
if it can be expressed as a convex combination of vectors uM corresponding
to perfect matchings M of G. The convex polytope formed by all vectors
corresponding to fractional perfect matching is called the perfect matching
polytope of the graph G.

A natural question is whether it is possible to explicitly find the inequali-
ties describing the perfect matching polytope for a graph G. Clearly, all vec-
tors u of the perfect matching polytope have non-negative entries between 0
and 1 (inclusively) and satisfy that the sum of the entries of u corresponding
to the edges incident a vertex v sum to one for every vertex v. These two
constraints turn out to fully describe the perfect matching polytope if the
graph is bipartite [2], however, they are not sufficient for a full description of
the perfect matching polytope of non-bipartite graphs. In the general case,
the description of the perfect matching polytope is given as follows:

Theorem 3 (Edmonds [4]). Let G be a graph. A vector u ∈ R
E(G) is con-

tained in the perfect matching polytope of G if and only if:

• all the entries of u are between 0 and 1 (inclusively),

• the sum of the entries corresponding to the edges incident with a vertex
v is equal to one for every vertex v of G, and

• the sum of the entries corresponding to the edges with one end-vertex
in a subset V ′ ⊆ V (G) and with the other end-vertex not in V ′ is at
least one for every subset V ′ ⊆ V (G) of odd cardinality.

Note that the last condition of Theorem 3 applied for V ′ = V (G) implies
that the perfect matching polytope is empty if the number of the vertices of
G is odd.

We are now ready to prove a weighted variant of the Rainbow Lemma.

Lemma 4. Let G be a bridgeless cubic graph with edges assigned weights
and let w0 be the total weight of all the edges of G. The graph G contains
a rainbow 2-factor F such that the total weight of the edges of F is at least
2w0/3 and the 2-factor F contains no circuits of length three.

Proof. Observe first that Theorem 3 implies that the vector u ∈ R
E(G) with

all entries equal to 1/3 is contained in the perfect matching polytope of
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G. Hence, there exist perfect matchings M1, . . . , Mk of G and coefficients
αi ∈ (0, 1], i = 1, . . . , k, such that

u =

k
∑

i=1

αiuMi
and

k
∑

i=1

αi = 1 .

Let wi be the sum of the weights of the edges contained in the perfect match-
ing Mi. Since u =

∑

k

i=1 αiuMi
, we conclude that

w0/3 =
k

∑

i=1

αiwi .

Since w0/3 is a convex combination of the weights wi, there exists an index
i0 ∈ {1, . . . , k} such that wi0 ≤ w0/3. Let F be the complement of Mi0 .

Let us now focus on the graph H = G/F . Every edge-cut of H corre-
sponds to an edge-cut of G of the same size. In particular, H has no edge-cuts
of size one. Assume that H has an edge-cut of size three and let V1 and V2

be the vertices of G corresponding to the two parts of H. Since the graph G
is cubic and the size of the edge-cut E(V1, V2) is odd, both the parts V1 and
V2 must contain an odd number of vertices of G.

Let E(V1, V2) = {e1, e2, e3}. The sum of the entries of each of the vectors
uM1

, . . . , uMk
corresponding to the edges e1, e2 and e3 is at least one since V1

contains an odd number of vertices. On the other hand, the sum of the entries
of the vector u, which is a convex combination of the vectors uM1

, . . . , uMk
,

is equal to one. Hence, the sum of the three entries of each of the vectors
uM1

, . . . , uMk
corresponding to the edges e1, e2 and e3 must also be equal to

one. In particular, Mi0 contains exactly one of the edges e1, e2 and e3 which
is impossible since {e1, e2, e3} ⊆ Mi0 . We conclude that H has no edge-cuts
of size one or three. This also implies that F has no circuits of length three.

Theorem 2 yields that H has a nowhere-zero 4-flow. Fix a nowhere-zero
flow ϕ : E(H) → Z

2
2. The edges of ϕ−1(01) are colored with red, the edges of

ϕ−1(10) with green and the edges of ϕ−1(11) with blue. Since ϕ is a Z
2
2-flow

of H, a vertex of H of odd degree is incident with an odd number of red edges,
an odd number of green edges and an odd number of blue edges (counting
loops twice). Similarly, the vertices of H of even degree are incident with an
even number of red edges, green edges and blue edges. Since the weight of
the edges of Mi0 is at most w0/3, the statement of the lemma follows.
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Figure 1: Splitting the pair v1 and v2 from the vertex v.

4 Intermezzo

In order to help the reader to follow our arguments, we present another
proof of the classical result of Alon and Tarsi [1] and Bermond, Jackson and
Jaeger [3] that every bridgeless graph with m edges has a cycle cover of length
at most 5m/3. In the rest of the paper, we refine the arguments presented
above to obtain an improved bound for graphs with minimum degree three.

The core of our proof is the Rainbow Lemma. In order to apply the
lemma, we first reduce vertices of degrees four or more. This will be achieved
through vertex splitting which we now introduce. Consider a graph G, a
vertex v and two neighbors v1 and v2 of v. The graph G.v1vv2 that is obtained
by removing the edges vv1 and vv2 from G and adding a two-edge path v1v2

(see Figure 1) is said to be obtained by splitting the pair v1 and v2 from
the vertex v. Note that if v1 = v 6= v2, i.e., the edge vv1 is a loop, the
graph G.v1vv2 is the graph obtained from G by removing the loop vv1 and
subdividing the edge vv2. Similarly, if v1 6= v = v2, G.v1vv2 is obtained by
removing the loop vv2 and subdividing the edge vv1. Finally, if v1 = v = v2,
then the graph G.v1vv2 is obtained from G by removing the loops vv1 and
vv2 and introducing a new vertex joined by two parallel edges to v.

There are several deep results on splitting vertices in graphs preserving
edge-connectivity, see the classical works of Fleischner [9], Mader [21] and
Lovász [19]. Let us now formulate one of the simplest possible corollaries of
results in this area.

Lemma 5. Let G be a bridgeless graph. For every vertex v of G of degree
four or more, there exist two neighbors v1 and v2 of the vertex v such that
the graph G.v1vv2 is also bridgeless.

Let us now reprove the upper bound of 5m/3 on the length of the shortest
cycle cover of an m-edge bridgeless graph. The proof that we present differs
both from the proof of Alon and Tarsi [1] which is based on 6-flows and the
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proof of Bermond, Jackson and Jaeger [3] based on 8-flows; on the other
hand, its main idea resembles the proof of Fan [7] for cubic graphs.

Theorem 6. Let G be a bridgeless graph with m edges. G has a cycle cover
of length at most 5m/3.

Proof. If G has a vertex v of degree four or more, then, by Lemma 5, v has
two neighbors v1 and v2 such that the graph G.v1vv2 is also bridgeless. Let G′

be the graph G.v1vv2. The number of edges of G′ is the same as the number
of edges of G and every cycle of G′ corresponds to a cycle of G of the same
length. Hence, a cycle cover of G′ corresponds to a cycle cover of G of the
same length. Through this process we can reduce any bridgeless graph to a
bridgeless graph with maximum degree three. In particular, we can assume
without loss of generality that the graph G has maximum degree three and
G is connected (otherwise, cover each component separately).

If G is a circuit, the statement is trivial. Otherwise, we proceed as de-
scribed in the rest. First, we suppress all vertices of degree two in G. Let
G0 be the resulting cubic (bridgeless) graph. We next assign each edge e of
G0 the weight equal to the number of edges in the path corresponding to e
in G. In particular, the total weight of the edges of G is equal to m. Let F0

be a rainbow 2-factor with the properties described in Lemma 4.
The 2-factor F0 corresponds to a set F of disjoint circuits of the graph G

which do not necessarily cover all the vertices of G. Let wF be the weight of
the edges contained in the 2-factor F0, and r, g and b the weight of red, green
and blue edges, respectively. By symmetry, we can assume that r ≤ g ≤ b.
Since the weight wF of the edges contained in the 2-factor F0 is at least 2m/3,
the sum r + g + b is at most m/3. Finally, let R be the set of edges of G
corresponding to red edges of G0, G the set of edges corresponding to green
edges, and B the set of edges corresponding to blue edges. By the choice
of edge-weights, the cardinality of R is r, the cardinality of G is g and the
cardinality of B is b.

For a circuit C contained in F and for a set of edges of E such that
C ∩ E = ∅, we define C(E) to be the set of vertices of C incident with the
edges of E. If C(E) has even cardinality, it is possible to partition the edges
of C into two sets C(E)A and C(E)B such that

• each vertex of C(E) is incident with one edge of C(E)A and one edge
of C(E)B, and
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• each vertex of C not contained in C(E) is incident with either two
edges of C(E)A or two edges of C(E)B.

Note that if C(E) = ∅, then C(E)A contains no edges of C and C(E)B

contains all the edges of C (or vice versa). We will always assume that the
number of edges of C(E)A does not exceed the number of edges of C(E)B,
i.e., |C(E)A| ≤ |C(E)B|.

The desired cycle cover of G which is comprised of three cycles can now
be defined. The first cycle C1 contains all the red and green edges and the
edges of C(R ∪ G)A for all circuits C of the 2-factor F . The second cycle
C2 contains all the red and green edges and the edges of C(R ∪ G)B for all
circuits C of F . Finally, the third cycle C3 contains all the red and blue edges
and the edges of C(R ∪ B)A for all circuits C of F .

Let us first verify that the cycles C1, C2 and C3 cover the edges of G.
Clearly, every edge not contained in F , i.e., a red, green or blue edge, is
covered by at least one of the cycles. On the other hand, every edge of F is
contained either in the cycle C1 or the cycle C2. Hence, the cycles C1, C2 and
C3 form a cycle cover of G.

It remains to estimate the lengths of the cycles C1, C2 and C3. Each edge
of F is covered once by the cycles C1 and C2; since |C(E)A| ≤ |C(E)B| for
every circuit C of F , at most half of the edges of F is also covered by the
cycle C3. We conclude that the total length of the constructed cycle cover is
at most:

3r + 2g + b + |F | + |F |/2 ≤ 2(r + g + b) + 3wF/2 =

3(r + g + b + wF )/2 + (r + g + b)/2 ≤ 3m/2 + m/6 = 5m/3 .

This finishes the proof of the theorem.

5 Splitting and expanding vertices

In Section 9, we will apply the Rainbow Lemma in a way analogous to that
in the proof of Theorem 6. However, not every edge-coloring is suitable for
our further needs. In order to exclude some “bad” edge-colorings, we will
first modify the graph H = G/F0 from the proof of the Rainbow Lemma
to assure that some of its edges must get the same color. This modification
will be done through splitting some of the vertices of H = G/F0 without
introducing edge-cuts of size one or three.
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Another corollary of the classical results on vertex splittings is that it
is always possible to split off a pair of neighbors of every vertex without
introducing edge-cuts of size one or three:

Lemma 7. Let G be a graph with no edge-cuts of size one or three. For
every vertex v of G of degree four, six or more, there exist two neighbors v1

and v2 of the vertex v such that the graph G.v1vv2 also contains no edge-cuts
of size one or three.

Not even this lemma is sufficient for our purposes and we will need some
corollaries of results on vertex splitting established in [17].

Lemma 8. Let G be a graph with no edge-cuts of size one or three, and let v
be a vertex of degree four and v1, v2, v3 and v4 its four neighbors. The graph
G.v1vv2 or the graph G.v2vv3 contains no edge-cuts of size one or three.

Lemma 9. Let G be a graph with no edge-cuts of size one or three, and let
v be a vertex of degree six and v1, . . . , v6 its neighbors. At least one of the
graphs G.v1vv2, G.v2vv3 and G.v3vv4 contains no edge-cuts of size one or
three.

Lemma 10. Let G be a graph with no edge-cuts of size one or three, and
let v be a vertex of degree six or more and v1, . . . , vk its neighbors (k ≥ 6).
At least one of the graphs G.v1vv2, G.v2vv3, G.v3vv4, G.v4vv5 and G.v5vv6

contains no edge-cuts of size one or three.

In [17], these lemmas are stated and proven for simple graphs and for an-
other variant of vertex splitting in which the newly created vertices of degree
two are suppressed. Since the two notions of vertex splitting differ only by
subdividing some of the edges, and every graph can be made simple by sub-
dividing all its edges, and subdividing edges cannot create edge-cuts of size
one or three if they did not exist before, the proofs presented in [17] readily
translate to our scenario.

We need one more vertex operation in our arguments in Section 9—vertex
expansions. If G is a graph, v a vertex of G and V1 and V2 a partition of the
neighbors of v into two sets, then the graph G : v : V1 is the graph obtained
from G by removing the vertex v and introducing two new vertices v1 and
v2, joining v1 to the vertices of V1, v2 to the neighbors of v not contained in
V1, and adding an edge v1v2. We say that G : v : V1 is obtained by expanding
the vertex v with respect to the set V1. See Figure 2 for an example. Let us
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V1

v
V2

G

V1

v1 v2

V2

G : v : V1

Figure 2: An example of the expansion a vertex v with respect to set V1.

remark that this operation will be applied only to vertices v incident with
no parallel edges.

In Section 9, we use the following auxiliary lemma which directly follows
from results of Fleischner [9]:

Lemma 11. Let G be a bridgeless graph and v a vertex of degree four in
G incident with no parallel edges. Further, let v1, v2, v3 and v4 be the four
neighbors of v. The graph G : v : {v1, v2} or the graph G : v : {v2, v3} is also
bridgeless.

6 Special types of Z
2
2-flows

As mentioned before, we need a modification of the Rainbow Lemma exclud-
ing certain edge-colorings of the graph H = G/F0. Some of the “bad” edge-
colorings will be excluded by vertex splitting introduced in Section 5. How-
ever, vertex splitting itself is not sufficient to exclude all bad edge-colorings.
In this section, we establish an auxiliary lemma that guarantees the existence
of a special nowhere-zero Z

2
2-flow.

Lemma 12. Let G be a bridgeless graph admitting a nowhere-zero Z
2
2-flow.

Assume that

• for every vertex v of degree five, there are given two multisets Av and
Bv of three edges incident with v such that |Av ∩ Bv| = 2 (loops can
appear twice in the same set), and

• for every vertex v of degree six, the incident edges are partitioned into
three multisets Av, Bv and Cv of size two each (loops appear twice in
these sets).
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AB AB
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A

A

C

B

B

Figure 3: Bad vertices of degree five and six (symmetric cases are omitted).
The letters indicate edges contained in the sets A, B and C.

The graph G has a nowhere-zero Z
2
2-flow ϕ such that

• for every vertex v of degree five, the flow ϕ is constant on neither of
the sets Av and Bv, and

• for every vertex v of degree six, the edges incident with v have all the
three possible flow values, or the flow ϕ is constant on Av, or it is
constant on Bv, or it is not constant on Cv.

Proof. By Theorem 2, G has a nowhere-zero Z
2
2-flow ϕ. For simplicity, we

refer to edges with the flow value 01 red, 10 green and 11 blue. Note that
each vertex of odd degree is incident with odd numbers of red, green and
blue edges and each vertex of even degree is incident with even numbers of
red, green and blue edges (counting loops twice). We say that a vertex v of
degree five is bad if ϕ is constant on Av or on Bv, and it is good, otherwise.
Similarly, a vertex v of degree six is bad if ϕ has only two possible flow values
at v and it is not constant on Av and on Bv and is constant on Cv; otherwise,
v is good. Choose a Z

2
2-flow ϕ of H with the least number of bad vertices. If

there are no bad vertices, then there is nothing to prove. Assume that there
is a bad vertex v.

Let us first analyze the case that the degree of v is five. Let e1, . . . , e5

be the edges incident with v. By symmetry, we can assume that Av =
{e1, e2, e3}, Bv = {e2, e3, e4}, the edges e1, e2 and e3 are red, the edge e4 is
green and the edge e5 is blue (see Figure 3). We now define a closed trail W
in H formed by red and blue edges. The first edge of W is e1.

Let f = ww′ be the last edge of W defined so far. If w′ = v, then f is
one of the edges e2, e3 and e5 and the definition of W is finished. Assume
that w′ 6= v. If w′ is not a vertex of degree five or six or w′ is a bad vertex,
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AB AB

B A

AB AB

B A

AB AB

B

A

AB AB

B A

AB AB

B A

AB AB

B

Figure 4: Routing the trail W (indicated by dashed edges) through a good
vertex of degree five with three red edges. The letters indicate edges con-
tained in the sets A and B. Symmetric cases are omitted.

add to the trail W any red or blue edge incident with w′ that is not already
contained in W .

If w′ is a good vertex of degree five, let f1, . . . , f5 be the edges incident
with w′, Aw′ = {f1, f2, f3} and Bw′ = {f2, f3, f4}. If w′ is incident with a
single red and a single blue edge, leave w′ through the other edge that is red
or blue. Otherwise, there are three red edges and one blue edge or vice versa.
The next edge f ′ of the trail W is determined as follows (note that the role
of red and blue can be swapped):

Red edges Blue edge f = f1 f = f2 f = f3 f = f4 f = f5

f1, f2, f4 f3 f ′ = f4 f ′ = f3 f ′ = f2 f ′ = f1 N/A
f1, f2, f4 f5 f ′ = f2 f ′ = f1 N/A f ′ = f5 f ′ = f4

f1, f2, f5 f3 f ′ = f5 f ′ = f3 f ′ = f2 N/A f ′ = f1

f1, f2, f5 f4 f ′ = f2 f ′ = f1 N/A f ′ = f5 f ′ = f4

f1, f4, f5 f2 f ′ = f2 f ′ = f1 N/A f ′ = f5 f ′ = f4

f2, f3, f5 f1 f ′ = f2 f ′ = f1 f ′ = f5 N/A f ′ = f3

See Figure 4 for an illustration of these rules.
If w′ is a good vertex of degree six, proceed as follows. If ϕ is constant

on Aw′ and f ∈ Aw′, let the next edge f ′ of W be the other edge contained
in Aw′; if ϕ is constant on Aw′ and f 6∈ Aw′, let f ′ be any red or blue edge
not contained in Aw′ or in W . A symmetric rule applies if ϕ is constant on
Bw′, i.e., f ′ is the other edge of Bw′ if f ∈ Bw′ and f ′ is a red or blue edge
not contained in Bw′ or W , otherwise.
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If ϕ is not constant on Cw′ and f ∈ Cw′ and the other edge of Cw′ is red
or blue, set f ′ to be the other edge of Cw′; if f ∈ Cw′ and the other edge of
Cw′ is green, choose f ′ to be any red or blue edge incident with w′ that is
not contained in W . If f 6∈ Cw′ (and ϕ is not constant on Cw′), choose f ′ to
be a red or blue edge incident with w′ not contained in W that is also not
contained in Cw′. If such an edge does not exist, choose f ′ to be the red or
blue edge contained in Cw′ (note that the other edge of Cw′ is green since w′

is incident with an even number of red, green and blue edges).
It remains to consider the case that w′ is incident with two edges of each

color and is constant on Cw′ and neither of Aw′ and Bw′. If f is blue, set f ′

to be any red edge incident with w′ not contained in W and if f is red, set
f to be any such blue edge. See Figure 5 for an illustration of these rules.

The definition of the trail W is now finished. Let us swap the red and blue
colors on W . It is straightforward to verify that all good vertices remain good
and the vertex v become good (see Figures 3–5). In particular, the number
of bad vertices is decreased which contradicts the choice of ϕ.

Let us now analyze the case that there is a bad vertex v of degree six,
i.e., the colors of the edges of Av are distinct, the colors of the edges of Bv

are distinct and the colors of the edges of Cv are the same and not all the
flow values are present at the vertex v (see Figure 3). By symmetry, we can
assume that the two edges of Av are red and green, the two edges of Bv are
also red and green, and the two edges of Cv are both red (recall that the
vertex v is incident with even numbers of red, green and blue edges). As
in the case of vertices of degree five, we find a trail formed by red and blue
edges and swap the colors of the edges on the trail. The first edge of the trail
is any red edge incident with v and the trail W is finished when it reaches
again the vertex v. After swapping red and blue colors on the trail W , the
vertex v is incident with two edges of each of the three colors. Again, the
number of bad vertices has been decreased which contradicts our choice of
the flow ϕ.

7 Rainbow Lemma revisited

In this section, we establish a modification of the Rainbow Lemma from
Section 3. In addition to the statement of Lemma 4, we exclude certain
edge-colorings of edges incident with short circuits of the chosen 2-factor.
Let us be more precise. If C = v1 . . . vk is a circuit of a cubic graph and ei
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Figure 5: Routing the trail W (indicated by dashed edges) through a good
vertex of degree six. The letters indicate edges contained in the sets A, B
and C. Symmetric cases are omitted.
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the edge incident with vi not contained in C, then the pattern of C is a k-tuple
X1 . . .Xk where Xi is R if the color of ei is red, G if it is green, and B if it is
blue. A pattern P is compatible with a pattern P ′ if P ′ can be obtained from
P by a permutation of the red, green and blue colors followed by replacement
of some of the colors with the letter x (which represents a wild-card). For
example, the pattern RGRGBBGG is compatible with RBRxxxBx.

We can now state and prove the modification of the Rainbow Lemma.

Lemma 13. Let G be a bridgeless cubic graph with edges assigned non-
negative integer weights and w0 be the total weight of the edges. In addition,
suppose that no two edges with weight zero have a vertex in common. The
graph G contains a rainbow 2-factor F such that the total weight of the edges
of F is at most 2w0/3. Moreover, the patterns of circuits with four edges of
weight one are restricted as follows. Every circuit C = v1 . . . vk of F that
consists of four edges of weight one and at most four edges of weight zero
(and no other edges) has a pattern:

• compatible with RRxx or xRRx if C has no edges of weight zero (and
thus k = 4),

• compatible with RxGxx or RRRGB if the only edge of C of weight zero
is v4v5 (and thus k = 5),

• compatible with xxRRxx, xxxxRR, xxRGGR or xRxGGR if the only
edges of C of weight zero are v3v4 and v5v6 (and thus k = 6),

• not compatible with RRGRRG, RRGRGR, RGRRRG or RGRRGR if
the only edges of C of weight zero are v2v3 and v5v6 (and thus k = 6),

• compatible with xRRxxxx, xxxRRxx, xxxxxRR, xRGxxRB, xRGxxBR,
xRGxxGB, xRGxxBG, xxxRGRG or xxxRGGR if the only edges of C
of weight zero are v2v3, v4v5 and v6v7 (and thus k = 7), and

• compatible with RRxxxxxx, xxRRxxxx, xxxxRRxx, xxxxxxRR,
RGGRxxxx, xxRGGRxx, xxxxRGGR or GRxxxxRG if the edges
v1v2, v3v4, v5v6 and v7v8 of C have weight zero (and thus k = 8).

Proof. As in the proof of Lemma 4, we first find a perfect matching M with
weight at least w0/3 such that the graph H = G/F has no edge-cuts of size
one or three where F is the 2-factor of G complementary to M . Note that in
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the proof of Lemma 4, we found a matching M with weight at most w0/3 but
the same argument also yields the existence of a matching M with weight at
least w0/3.

Next, we modify the graph H = G/F in such a way that an application
of Lemma 12 will yield a Z

2
2-flow that yields an edge-coloring satisfying the

conditions from the statement of the lemma. Let w be a vertex of H corre-
sponding to a circuit v1 . . . vk of F consisting of four edges with weight one
and some edges with weight zero, and let ei be the edge of M incident with
vi. Finally, let wi be the neighbor of w in H that corresponds to the circuit
containing the other end-vertex of the edge ei. The graph H is modified as
follows (see Figure 6):

• if k = 4, split the pair w1 and w2 or the pair w2 and w3 from w in such
a way that the resulting graph has no edge-cuts of size one or three (at
least one of the two splittings works by Lemma 8).

• if k = 5 and the weight of the edge v4v5 is zero, set Aw = {e1, e3, e5}
and Bw = {e1, e3, e4}.

• if k = 6 and the weights of the edges v3v4 and v5v6 are zero, split the
pair w3 and w4, w4 and w5, or w5 and w6 from w without creating
edge-cuts of size one or three (one of the splitting works by Lemma 9).
If the pair w4 and w5 is split off, split further the pair w2 and w6, or
the pair w3 and w6 from w again without creating edge-cuts of size one
or three (one of the splitting works by Lemma 8).

• if k = 6 and the weights of the edges v2v3 and v5v6 are zero, set Aw =
{e2, e3}, Bw = {e5, e6} and Cw = {e1, e4}.

• if k = 7 and the weights of the edges v2v3, v4v5 and v6v7 are zero, split
one of the pairs wi and wi+1 from w for i ∈ {2, 3, 4, 5, 6} (the existence
of such a splitting is guaranteed by Lemma 10). If w3 and w4 is split
off, set Aw = {e1, e2, e6} and Bw = {e1, e2, e7}. If w5 and w6 is split off,
set Aw = {e1, e2, e7} and Bw = {e1, e3, e7}.

• if k = 8 and the weights of the edges v1v2, v3v4, v5v6 and v7v8 are equal
to zero, split one of the pairs wi and wi+1 from w for some i ∈ {1, . . . , 8}
(indices taken modulo eight) without creating edge-cuts of size one or
three. This is possible by Lemma 10. If i is odd, then there are no
further modifications to be performed. If i is even, one of the pairs
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Figure 6: Modifications of the graph H performed in the proof of Lemma 6.
The edges of weight one are solid and the edges of weight zero are dashed.
The sets Aw, Bw and Cw are indicated by letters near the edges. Vertices of
degree two obtained through splittings are not depicted and some symmetric
cases are omitted in the case of a circuit of length eight.
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wi+3 and wi+4, wi+4 and wi+5, and wi+5 and wi+6 is further split off
from the vertex w in such a way that no edge-cuts of size one or three
are created (one of the splittings has this property by Lemma 9). In
case that the vertices wi+4 and wi+5 are split off, split further the pair
of vertices wi+2 and wi+3 or the pair of vertices wi+3 and wi+6, again,
without creating edge-cuts of size one or three (and do not split off
other pairs of vertices in the other cases). Lemma 8 guarantees that
one of the two splittings work.

Fix a nowhere-zero Z
2
2-flow ϕ with the properties described in Lemma 12

with respect to the sets Aw, Bw and Cw as defined before (and where the
sets Aw, Bw and Cw are undefined, choose them arbitrarily). The edges of
ϕ−1(01) are colored with red, the edges of ϕ−1(10) with green and the edges
of ϕ−1(11) with blue as in the proof of Lemma 4. This defines the coloring
of the edges of G not contained in F .

Clearly, F is a rainbow 2-factor. It remains to verify that the patterns
of circuits with four edges of weight one are as described in the statement of
the lemma. Let C = v1 . . . vk be a circuit of F consisting of four edges with
weight one and some edges with weight zero, and let ci be the color of the
edge of M incident with vi. We distinguish six cases based on the value of k
and the position of zero-weight edges (symmetric cases are omitted):

• if k = 4, then all the edges of C have weight one. By the modification
of H, it holds that c1 = c2 or c2 = c3. Hence, the pattern of C is
compatible with RRxx or xRRx.

• if k = 5 and the weight of v4v5 is zero, then either c1 6= c3, or c1 = c3 6∈
{c4, c5}. Since C is incident with an odd number of edges of each color,
its pattern is compatible with RxGxx or RRRGB.

• if k = 6 and the weights of v3v4 and v5v6 are zero, then c3 = c4, or
c4 = c5 and c2 = c6, or c4 = c5 and c3 = c6, or c5 = c6. Hence,
the pattern of C is compatible with xxRRxx, xRxRRR or xRxGGR,
xxRRRR or xxRGGR, or xxxxRR.

• if k = 6 and the weights of v2v3 and v5v6 are zero, then the pattern of
C contains all three possible colors or it is compatible with xRRxxx,
xxxxRR or RxxGxx. In particular, it is not compatible with any of the
patterns listed in the statement of the lemma.
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• if k = 7 and the weights of v2v3, v4v5 and v6v7 are zero, then ci = ci+1

for some i ∈ {2, 3, 4, 5, 6} by the modification of H. If i is even, then
the pattern of C is compatible with xRRxxxx, xxxRRxx or xxxxxRR.
If i = 3, then c1 6= c2 or c1 = c2 6∈ {c6, c7}. Hence, the pattern of C
is compatible with RGRRxxx, RGBBxxx, RRGGxGB or RRGGxBG
(unless c2 = c3). Since C is incident with an odd number of edges of
each colors, its pattern is compatible with one of the patterns listed in
the statement of the lemma. A symmetric argument applies if i = 5
and either c1 6= c7 or c1 = c7 6∈ {c2, c3}.

• if k = 8 and the weights vivi+1, i = 1, 3, 5, 7, then ci = ci+1 for
i ∈ {1, . . . , 8} by the modification of H. If there is such odd i, the
pattern of C is compatible with RRxxxxxx, xxRRxxxx, xxxxRRxx or
xxxxxxRR. Otherwise, at least one of the following holds for some even
i: ci+3 = ci+4, ci+4 = ci+5 or ci+5 = ci+6. In the first and the last case,
the pattern is again compatible with RRxxxxxx, xxRRxxxx, xxxxR-
Rxx or xxxxxxRR. If ci+4 = ci+5, then ci+2 = ci+3 or ci+3 = ci+6.
Hence, the pattern of C is compatible with xRRGGRRx, xRRGGBBx,
xRRxRGGR, xRRxGRRG, xRRxGBBG or one of the patterns rotated
by two, four or six positions. All these patterns are listed in the state-
ment of the lemma.

8 Reducing parallel edges

In this section, we show that it is enough to prove our main theorem for
graphs that do not contain parallel edges of certain type. We state and prove
four auxiliary lemmas that simplify our arguments presented in Section 9.
The first two lemmas deal with the cases when there is a vertex incident only
with parallel edges leading to the same vertex.

Lemma 14. Let G be an m-edge bridgeless graph with vertices v1 and v2

joined by k ≥ 3 parallel edges. If the degree of v1 is k, the degree of v2 is at
least k + 3 and the graph G′ = G \ v1 has a cycle cover with three cycles of
length at most 44(m − k)/27, then G has a cycle cover with three cycles of
length at most 44m/27.
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Proof. Let C1, C2 and C3 be the cycles of total length at most 44(m − k)/27
covering the edges of G′ and e1, . . . , ek the k parallel edges between the ver-
tices v1 and v2. If k is even, add the edges e1, . . . , ek to C1. If k is odd, add
the edges e1, . . . , ek−1 to C1 and the edges ek−1 and ek to C2. Clearly, we have
obtained a cycle cover of G with three cycles. The length of the cycles is
increased at most by k + 1 and thus it is at most

44m − 44k

27
+ k + 1 =

44m − 17k + 27

27
≤

44m

27
.

Lemma 15. Let G be an m-edge bridgeless graph with vertices v1 and v2

joined by k ≥ 4 parallel edges. If the degree of v1 is k, the degree of v2 is
k + 2 and the graph G′ obtained from G by removing all the edges between
v1 and v2 and suppressing the vertex v2 has a cycle cover with three cycles of
length at most 44(m − k − 1)/27, then G has a cycle cover with three cycles
of length at most 44m/27.

Proof. Let C1, C2 and C3 be the cycles of total length at most 44(m − k −
1)/27 covering the edges of G′ and e1, . . . , ek the k parallel edges between
the vertices v1 and v2. Let v′ and v′′ be the two neighbors of v2 distinct
from v1. Note that it can hold that v′ = v′′. The edges v2v

′ and v2v
′′ are

included in those cycles Ci that contain the edge v′v′′. The edges e1, . . . , ek−1

are included to C1. In addition, the edge ek is included to C1 if k is even.
Otherwise, the edges ek−1 and ek are included to C2.

The length of all the cycles is increased by at most 3 + k + 1 = k + 4.
Hence, the total length of the cycle cover is at most

44m − 44k − 44

27
+ k + 4 =

44m − 17k + 64

27
≤

44m

27
.

In the next two lemmas, we deal with the case that each of the two vertices
joined by several parallel edges is also incident with another vertex.

Lemma 16. Let G be an m-edge bridgeless graph with vertices v1 and v2

joined by k ≥ 2 parallel edges. If the degree of v1 is at least k + 1, the
degree of v2 is at least k + 2 and the graph G′ obtained by contracting all the
edges between v1 and v2 has a cycle cover with three cycles of length at most
44(m − k)/27, then G has a cycle cover with three cycles of length at most
44m/27.
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Proof. Let C1, C2 and C3 be the cycles of total length at most 44(m − k)/27
covering the edges of G′ and e1, . . . , ek the k parallel edges between the ver-
tices v1 and v2. By symmetry, we can assume that the cycles C1, . . . , Ci0 con-
tain an odd number of edges incident with v1 and the cycles Ci0+1, . . . , C3 con-
tain an even number of such edges for some i0 ∈ {0, 1, 2, 3}. Since C1, . . . , C3

form a cycle cover of G′, if v1 is incident with an odd number of edges of Ci,
i = 1, 2, 3, then v2 is incident with an odd number of edges of Ci and vice
versa.

The edges are added to the cycles C1, C2 and C3 as follows based on the
value of i0 and the parity of k:

i0 k C1 C2 C3

0 odd e1, . . . , ek−1 ek−1, ek

0 even e1, . . . , ek

1 odd e1, . . . , ek

1 even e1, . . . , ek−1 ek−1, ek

2 odd e1, . . . , ek ek

2 even e1, . . . , ek−1 ek

3 odd e1, . . . , ek−2 ek−1 ek

3 even e1, . . . , ek−1 ek−1 ek

Clearly, we have obtained a cycle cover of G with three cycles. The length
of the cycles is increased at most by k + 1 and thus it is at most

44m − 44k

27
+ k + 1 =

44m − 17k + 27

27
≤

44m

27
.

Lemma 17. Let G be an m-edge bridgeless graph with vertices v1 and v2

joined by k ≥ 3 parallel edges. If the degrees of v1 and v2 are k + 1 and
the graph G′ obtained by contracting all the edges between v1 and v2 and
suppressing the resulting vertex of degree two has a cycle cover with three
cycles of length at most 44(m − k − 1)/27, then G has a cycle cover with
three cycles of length at most 44m/27.

Proof. Let C1, C2 and C3 be the cycles of total length at most 44(m−k−1)/27
covering the edges of G′, let e1, . . . , ek be the k parallel edges between the
vertices v1 and v2, and let v′

i
be the other neighbor of vi, i = 1, 2. Add the

edges incident with v1v
′

1 and v2v
′

2 to those cycles C1, C2 and C3 that contain
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the edge v′

1v
′

2 and then proceed as in the proof of Lemma 16. The length of
the cycles is increased by at most 3 + k + 1 = k + 4 and thus it is at most

44m − 44k − 44

27
+ k + 4 =

44m − 17k + 64

27
≤

44m

27

where the last inequality holds unless k = 3. If k = 3 and the edge v ′

1v
′

2 is
contained in at most two of the cycles, the length is increased by at most
2 + k + 1 = k + 3 = 6. If k = 3 and the edge v ′

1v
′

2 is contained in three of the
cycles, each of the parallel edges is added to exactly one of the cycles and
thus the length is increased by at most 3 + k = 6. In both cases, the length
of the new cycle cover can be estimated as follows:

44m − 44 · 3 − 44

27
+ 6 =

44m − 14

27
≤

44m

27
.

9 Main result

We are now ready to prove the main result of this paper.

Theorem 18. Let G be a bridgeless graph with m edges and with minimum
degree three or more. The graph G has a cycle cover of total length at most
44m/27 that is comprised of at most three cycles.

Proof. By Lemmas 14–17, we can assume without loss of generality that if
vertices v1 and v2 of G are joined by k parallel edges, then either k = 2 and
the degrees of both v1 and v2 are equal to k+1 = 3, or k = 3, the degree of v1

is k = 3 and the degree of v2 is k + 2 = 5 (in particular, both v1 and v2 have
odd degrees). Note that the graphs G′ from the statement of Lemmas 14–17
are also bridgeless graphs with minimum degree three and have fewer edges
than G which implies that the reduction process described in Lemmas 14–17
eventually finishes.

Let us now proceed with the proof under the assumption that the only
parallel edges contained in G are pairs of edges between two vertices of degree
three and triples of edges between a vertex of degree three and a vertex of
degree five. As the first step, we modify the graph G into bridgeless graphs
G1, G2, . . . eventually obtaining a bridgeless graph G′ with vertices of degree
two, three and four. Set G1 = G. If Gi has no vertices of degree five or more,
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let G′ = Gi. If Gi has a vertex v of degree five or more, then Lemma 5 yields
that there are two neighbors v1 and v2 of v such that the graph Gi.v1vv2 is
also bridgeless. We set Gi+1 to be the graph Gi.v1vv2. We continue while the
graph Gi has vertices of degree five or more. Clearly, the final graph G′ has
the same number of edges as the graph G and every cycle of G′ corresponds
to a cycle of G.

Next, each edge of G′ is assigned weight one, each vertex of degree four
is expanded to two vertices of degree three as described in Lemma 11 and
the edge between the two new vertices of degree three is assigned weight zero
(note that the vertex splitting preserves the parity of the degree of the split
vertex and thus no vertex of degree four is incident with parallel edges). The
resulting graph is denoted by G0. Note that every cycle C of G0 corresponds
to a cycle C ′ of G and the length of C ′ in G is equal to the sum of the weights
of the edges of C. Next, the vertices of degree two in G0 are suppressed and
each edge e is assigned the weight equal to the sum of the weights of edges
of the path of G0 corresponding to e. The resulting graph is denoted by G′

0.
Clearly, G′

0 is a cubic bridgeless graph. Also note that all the edges of weight
zero in G0 are also contained in G′

0 and no vertex of G′

0 is incident with two
edges of weight zero. Finally, observe that the total weight of the edges of
G′

0 is equal to m.
We apply Lemma 13 to the cubic graph G′

0. Let F ′

0 be the rainbow 2-
factor of G′

0 and let F0 be the cycle of G0 corresponding to the 2-factor of F ′

0.
Note that F0 is a union of disjoint circuits. Let R0, G0 and B0 be the sets of
edges of G0 contained in paths corresponding to red, green and blue edges in
G′

0. Let r0 be the weight of the red edges in G0, g0 the weight of green edges
and b0 the weight of blue edges. Lemma 13 yields r0 + g0 + b0 ≥ m/3.

We construct two different cycle covers, each comprised of three cycles,
and eventually combine the bounds on their lengths to obtain the bound
claimed in the statement of the theorem.

The first cycle cover. The first cycle cover that we construct is a cycle
cover of the graph G0 (which yields a cycle cover of G of the same length as
explained earlier). Let d` be the number of circuits of F0 of weight `. Note
that d3 can be non-zero since a circuit of weight three need not have length
three in G0. The cycle C1 contains all the red and green edges, i.e., the edges
contained in R0 ∪ G0, the cycle C2 contains the red and blue edges and the
cycle C3 contains the green and blue edges. Recall now the notation C(E)A

and C(E)B used in the proof of Theorem 6 for circuits C and set E of edges
that are incident with even number of vertices of C. In addition, C(E)A

∗
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denotes the edges of C(E)A with weight one and C(E)B
∗

denotes such edges
of C(E)B. In the rest of the construction of the first cycle cover, we always
assume that |C(E)A

∗
| ≤ |C(E)B

∗
|. The sets C1, C2 and C3 are completed to

cycles in a way similar to that used in the proof of Theorem 6.
For a circuit C of F0, the edges of C1 = C(R0 ∪ G0)

A are added to the
cycle C1. The edges C2 added to C2 are either the edges of C(R ∪ B)A or
C(R∪B)B—we choose the set with fewer edges with weight one in common
with C1 = C(R ∪ G)A. Finally, the edges added to C3 are chosen so that
every edge of C is covered an odd number of times; explicitly, the edges
C3 = C1 4 C2 4 C are added to C3. Note that C3 is either C(G ∪ B)A or
C(G ∪ B)B. In particular, the sets C1, C2 and C3 form cycles.

We now estimate the number of the edges of C of weight one contained
in C1, C2 and C3. Let C∗ be the edges of weight one contained in the circuit
C, ` = |C∗| and Ci

∗
= Ci ∩C∗ for i = 1, 2, 3. By the choice of C2, the number

of edges of weight one in C1 ∩ C2 is |C1
∗
∩ C2

∗
| ≤ |C1

∗
|/2. Consequently, the

number of edges of C of weight one contained in the cycles C1, C2 and C3 is:

|C1
∗
| + |C2

∗
| + |C1

∗
4 C2

∗
4 C∗| =

|C1
∗
∪ C2

∗
| + |C1

∗
∩ C2

∗
| + |C∗ \ (C1

∗
∪ C2

∗
)| + |C1

∗
∩ C2

∗
| =

|C∗| + 2|C1
∗
∩ C2

∗
| .

Since |C(R0 ∪ G0)
A
∗
| ≤ |C(R0 ∪ G0)

B
∗
|, the number of edges contained in the

set C1
∗

= C(R0∪G0)
A
∗

is at most `/2. By the choice of C2, |C1
∗
∩C2

∗
| ≤ |C1

∗
|/2.

Consequently, it holds that

|C1
∗
∩ C2

∗
| ≤ |C1

∗
|/2 ≤ `/4 (1)

and eventually conclude that the sets C1, C2 and C3 contain at most `+2b`/4c
edges of the circuit C with weight one.

If ` = 4, the estimate given in (1) can be further refined. Let C ′ be the
circuit of G′ corresponding to C. Clearly, C ′ is a circuit of length four. Color
a vertex v of the circuit C ′

red if v has degree three and is incident with a red edge, or v has degree
four and is incident with green and blue edges,

green if v has degree three and is incident with a green edge, or v has degree
four and is incident with red and blue edges,
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Figure 7: An improvement for circuits of length four considered in the proof
of Theorem 18. The letters R, G, B and W stand for red, green, blue and
white colors. Note that it is possible to freely permute the red, green and
blue colors. The edges included to C(R0 ∪ G0)

A are bold. Symmetric cases
are omitted.

blue if v has degree three and is incident with a blue edge, or v has degree
four and is incident with red and green edges, and

white otherwise.

Observe that either C ′ contains a white vertex or it contains an even number
of red vertices, an even number of green vertices and an even number of blue
vertices. If C ′ contains a white vertex, it is easy to verify that

|C1
∗
| = |C(R0 ∪ G0)

A

∗
| ≤ 1 (2)

for a suitable permutation of red, green and blue colors. The same holds if
C ′ contains two adjacent vertices of the same color (see Figure 7).

If the circuit of F ′

0 corresponding to C contains an edge of weight two or
more, then C contains a white vertex and the estimate (2) holds. Otherwise,
all vertices of C have degree three in G0 and thus the circuit C is also
contained in F ′

0. Since the edges of C have weight zero and one only, the
pattern of C is one of the patterns listed in Lemma 13. A close inspection
of possible patterns of C ′ yields that the cycle C ′ contains a white vertex or
it contains two adjacent vertices with the same color. We conclude that the
estimate (2) applies. Hence, if ` = 4, the estimate (1) can be improved to 0.

We now estimate the length of the cycle cover of G0 formed by the cycles
C1, C2 and C3. Since each red, green and blue edge is covered by exactly two
of the cycles, we conclude that:

2(r0 + g0 + b0) + 2d2 + 3d3 + 4d4 + 7d5 + 8d6 + 9d7 +
∞

∑

`=8

3`

2
d` =

26



2(r0 + g0 + b0) +
3

2

∞
∑

`=2

`d` − d2 − 3d3/2 − 2d4 − d5/2 − d6 − 3d7/2 =

3m

2
+

r0 + g0 + b0

2
− d2 − 3d3/2 − 2d4 − d5/2 − d6 − 3d7/2 . (3)

Note that we have used the fact that the sum r0 + g0 + b0 +
∑

∞

`=2 `d` is equal
to the number of the edges of G.

The second cycle cover. The second cycle cover is constructed in an
auxiliary graph G′′ which we now describe. Every vertex v of G is eventually
split to a vertex of degree three or four in G′. The vertex of degree four is
then expanded. Let r(v) be the vertex of degree three obtained from v or
one of the two vertices obtained by the expansion of the vertex of degree
four obtained from v. By the construction of F0, each r(v) is contained in
a circuit of F0. The graph G′′ is constructed from the graph G0 as follows:
every vertex of G0 of degree two not contained in F0 that is obtained by
splitting from a vertex v is identified with the vertex r(v). The edges of
weight zero contained in the cycle F0 are then contracted. Let F be the cycle
of G′′ corresponding to the cycle F0 of G0. Note that F is formed by disjoint
circuits and it contains d` circuits of weight/length `.

Observe that G′′ can be obtained from G by splitting some of its vertices
(perform exactly those splittings yielding vertices of degree two contained in
the circuits of F0) and then expanding some vertices. In particular, every
cycle of G′′ is also a cycle of G. Edges of weight one of G′′ one-to-one
correspond to edges of weight one of G0, and edges of weight zero of G′′

correspond to edges of weight zero of G0 not contained in F0. Hence, the
weight of a cycle in G′′ is the length of the corresponding cycle in G.

The edges not contained in F are red, green and blue (as in G0). Each
circuit of F is incident either with an odd number of red edges, an odd
number of green edges and an odd number of blue edges, or with an even
number of red edges, an even number of green edges and an even number of
blue edges (chords are counted twice). Let H = G′′/F . If H contains a red
circuit (which can be a loop), recolor such a circuit to blue. Similarly, recolor
green circuits to blue. Let R, G and B be the resulting sets of red, green and
blue edges and r, g and b their weights. Clearly, r + g + b = r0 + g0 + b0.
Also note that each circuit of F is still incident either with an odd number of
red edges, an odd number of green edges and an odd number of blue edges,
or with an even number of red edges, an even number of green edges and an
even number of blue edges. Since the red edges form an acyclic subgraph of
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H = G′′/F , there are at most
∑

∞

`=2 d`−1 red edges and thus the total weight
r of red edges is at most

∑

∞

`=2 d` (we forget “−1” since it is not important
for our further estimates). A symmetric argument yields that g ≤

∑

∞

`=2 d`.
Let us have a closer look at circuits of F with weight two. Such circuits

correspond to pairs of parallel edges of G′′ (and thus of G). By our assump-
tion, the only parallel edges contained in G are pairs of edges between two
vertices v1 and v2 of degree three and triples of edges between vertices v1 and
v2 of degree three and five.

In the former case, both v1 and v2 have degree three in G′′. Consequently,
each of them is incident with a single colored edge. By the assumption on
the edge-coloring, the two edges have the same color.

In the latter case, the third edge v1v2 which corresponds to a loop in
G′′/F is blue. Hence, the other two edges incident with v2 must have the
same color, which is red, green or blue.

In both cases, the vertex of H corresponding to the circuit v1v2 is an
isolated vertex in the subgraph of H formed by red edges or in the subgraph
formed by green edges (or both). It follows we can improve the estimate on
r and g:

r + g ≤ 2
∞

∑

`=2

d` − d2 = d2 + 2
∞

∑

`=3

d` (4)

We are now ready to construct the cycle cover of the graph G′′. Its
construction closely follows the one presented in the proof of Theorem 6.
The cycle cover is formed by three cycles C1, C2 and C3. The cycles C1 and
C2 contain all red and green edges and the cycle C3 contains all red and blue
edges. We now explain how to alter the definition of the sets C(E)A and
C(E)B to the setting needed in the construction of these three cycles. Let
C be a circuit of F . Consider a set E of edges disjoint from C with an even
number of end-vertices on the circuit C. The set C(E) is defined to be the
set of the vertices of C incident with an odd number of edges of E. Clearly,
|C(E)| is even. As before, it is possible to partition the edges of C into two
sets C(E)A and C(E)B such that

• each vertex of C(E) is incident with one edge of C(E)A and one edge
of C(E)B, and

• each vertex of C not contained in C(E) is incident with either two
edges of C(E)A or two edges of C(E)B.

28



As before, we always assume that |C(E)A| ≤ |C(E)B|. Note that if all the
vertices of C have degree three, the new definition coincides with the earlier
one.

For every circuit C of F , the edges of C(R ∪ G)A are added to the cycle
C1, the edges of C(R ∪ G)B to the cycle C2, and the edges of C(R ∪ B)A to
the cycle C3. Clearly, the sets C1, C2 and C3 are cycles of G′′ and correspond
to cycles of G whose length is equal to the the weight of the cycles C1, C2

and C3 in G′′.
We now estimate the total weight of the cycles C1, C2 and C3. Each red

edge is covered three times, each green edge twice and each blue edge once.
Each edge of F is contained in either C1 or C2 and for every circuit C of F
at most half of its edges are also contained in C3. We conclude that the total
length of the cycles C1, C2 and C3 can be bounded as follows (note that we
apply (4) to estimate the sum r+g and we also use the fact that the number
of the edges of F is at most 2m/3 by Lemma 13):

3r + 2g + b +
∞

∑

`=2

⌊

3`

2

⌋

d` =

m + 2r + g +

∞
∑

`=2

⌊

`

2

⌋

d` ≤

m − d2 +

∞
∑

`=2

(⌊

`

2

⌋

+ 3

)

d` =

13m

8
−

5(r0 + g0 + b0)

8
− d2 +

∞
∑

`=2

(⌊

`

2

⌋

+ 3 −
5`

8

)

d` ≤

43m

24
−

5(r0 + g0 + b0)

8
− d2 +

∞
∑

`=2

(⌊

`

2

⌋

+ 3 −
7`

8

)

d` ≤

43m

24
−

5(r0 + g0 + b0)

8
− d2 +

6
∑

`=2

(⌊

`

2

⌋

+ 3 −
7`

8

)

d` =

43m

24
−

5(r0 + g0 + b0)

8
+ 5d2/4 + 11d3/8 + 3d4/2 + 5d5/8 + 3d6/4 . (5)

The last inequality follows from the fact that
⌊

`

2

⌋

+ 3 − 7`

8
≤ 0 for ` ≥ 7.

The length of the shortest cycle cover of G with three cycles exceeds
neither the bound given in (3) nor the bound given in (5). Hence, the length
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of such a cycle cover of G is bounded by any convex combination of the two
bounds, in particular, by the following:

5

9
·

(

3m

2
+

r0 + g0 + b0

2
− d2 − 3d3/2 − 2d4 − d5/2 − d6 − 3d7/2

)

+

4

9
·

(

43m

24
−

5(r0 + g0 + b0)

8
+ 5d2/4 + 11d3/8 + 3d4/2 + 5d5/8 + 3d6/4

)

=

44m

27
− 2d3/9 − 4d4/9 − 2d6/9 − 5d7/6 ≤

44m

27
.

The proof of Theorem 18 is now completed.
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