
Complexity of the Packing Coloring Problem

of Trees∗

Jǐŕı Fiala† Petr A. Golovach‡

Abstract

Packing coloring is a partitioning of the vertex set of a graph with
the property that vertices in the i-th class have pairwise distance
greater than i. We solve an open problem of Goddard et al. and
show that the decision whether a tree allows a packing coloring with
at most k classes is NP-complete.

We accompany this negative result by a polynomial time algo-
rithm for trees for closely related variant of the packing coloring prob-
lem where the lower bounds on the distances between vertices inside
color classes are determined by an infinite nondecreasing sequence of
bounded integers.

Keywords: Packing coloring, computational complexity, graph
algorithm, chordal graph.

1 Introduction

The concept of packing coloring comes from the area of frequency planning
in wireless networks. This model emphasizes the fact that some frequencies
might be used more sparely than the others.

In graph terms, we ask for a partitioning of the vertex set of a graph G

into disjoint classes X1, . . . , Xk (representing frequency usage) according to

∗The research was initiated at WFAP’07 — Second Workshop on Frequency Assignment
Problems in Wireless Networks organized in September 23–27, 2007 at Sádek u Třeb́ıče by
DIMATIA and ITI, whose generous support of both authors is gratefully acknowledged.

†Department of Applied Mathematics and Institute for Theoretical Computer Science
(ITI), Charles University, Prague, Czech Republic, email: fiala@kam.mff.cuni.cz. ITI
is supported by the Ministry of Education of the Czech Republic as project 1M0021620808.

‡Department of Informatics, University of Bergen, 5020 Bergen, Norway, email:
petrg@ii.uib.no. Supported by Norwegian Research Council.

1



the following constraints. Each color class Xi should be an i-packing i.e. a
set of vertices with the property that any distinct pair u, v ∈ Xi satisfies that
dist(u, v) > i. Here dist(u, v) is the distance between u and v, i.e. the length
of some shortest path from u to v and it is declared to be infinite when u

and v belong to distinct components of connectivity.
Such partitioning into k classes is called a packing k-coloring, even though

it is allowed that some sets Xi can be empty. The smallest integer k for which
exists a packing k-coloring of G is called the packing chromatic number of
G, and it is denoted by χp(G). The notion of the packing chromatic number
was established by Goddard et al. [7] under the name broadcast chromatic

number. The term packing chromatic number was introduced by Brešar et
al. [2].

Determining the packing chromatic number is difficult, even for special
graph classes. For example, Sloper [11] showed that for trees of maximum
degree three the the upper bound is seven, while χp is unbounded already on
trees of maximum degree four. Goddard et al. [7] provided polynomial time
algorithms for cographs and split graphs.

The packing chromatic number of the hexagonal grid is also seven as was
shown by Brešar et al. [2] (the lower bound) and by Fiala and Lidický [per-
sonal communication] (the upper bound). Goddard et al. [7] also showed
that the χp of the infinite two-dimensional square grid lies between 9 and 22.
On the other hand, Finbow and Rall [10] proved that the packing chromatic
numbers of the triangular infinite lattice as well as of the infinite three-
dimensional square grid are unbounded.

The following decision problem arises naturally:

Packing Coloring

Instance: A graph G and a positive integer k.
Question: Does G allow a packing k-coloring?

Goddard et al. [7] showed that the Packing Coloring problem is NP-
complete for general graphs and k = 4. They also asked about the com-
putational complexity of this problem for trees. It was suggested by Brešar
et al. [2] that the problem for trees can be difficult. Our main result is an
affirmative proof of this conjecture:

Theorem 1. The Packing Coloring problem is NP-complete for trees.

In contrary, the existence of a packing k-coloring can be expressed by a
formula in Monadic Second Order Logic (MSOL), when k becomes fixed. It
follows from work of Courcelle [3] that the Packing Coloring problem is
solvable in polynomial time for bounded treewidth graphs when k is fixed.
In addition, we get the following corollaries for closely related graph classes:

2



Corollary 1. The Packing Coloring problem is fixed parameter tractable

for chordal graphs with respect to the parameter k.

Proof. If the given chordal graph G has a clique of size greater than k, then
no packing k-coloring exists, since vertices of the clique have to be colored
by distinct colors.

Otherwise, G has bounded clique size. Consequently it has also bounded
treewidth and the result follows.

Consequently, even in the case when k is not fixed, the Packing Col-

oring problem becomes is easy for special tree-like graphs:

Corollary 2. The Packing Coloring problem is solvable in polynomial

time for graphs of bounded treewidth and of bounded diameter.

Proof. Let us consider the following maximization problem: for a given graph
G we ask for some induced subgraph G′ of G of maximum size that allows a
packing d-coloring. By the results of Arnborg et al. [1] this problem can be
solved by a linear algorithm on graphs of restricted treewidth for any fixed
d, if the tree decomposition is given. (Also follows from a result of Courcelle
et al. [4] on an adaptation of MSOL for optimization problems.)

Suppose that d is the upper bound on diameters of the considered graph
class. If k ≤ d then the Packing Coloring problem can be solved in
polynomial time. Otherwise any color c > d can be used on at most one
vertex of G. Therefore, χp(G) = d + |VG \ VG′|, where G′ is an optimal
solution of the auxiliary maximization problem.

Finally, we focus our attention to more general concept of S-packing
coloring introduced by Goddard et al. [7]. Let S be an infinite nondecreasing
sequence of positive integers. In this new setting, vertices in the i-th class
Xi are required to have distance greater than si. For example, the concept
of the ordinary packing coloring is the S-packing coloring for S = (1, 2, . . . ).
We address the following decision problem:

S-Packing Coloring

Parameter: A nondecreasing sequence S.
Instance: A graph G and a positive integer k.
Question: Does G allow an S-packing coloring with at most k

color classes?

We show that minimum number of color classes can be determined in
polynomial time when the sequence S is bounded from above.

3



Theorem 2. For nondecreasing sequences S with values bounded by a con-

stant t the S-Packing Coloring problem can be solved for trees by an

algorithm with running time O(n2t+3).

Our algorithm involves dynamic programming to evaluate all partial col-
orings for the initial classes with si < t while minimizing the maximal number
of uncolored vertices that are pairwise at distance at most t (i.e. the number
of remaining color classes).

To our knowledge the machinery of MSOL developed by Courcelle et
al. [4] cannot be used directly for this minimax optimization problem. Hence,
we provide an explicit algorithm for the S-Packing Coloring problem to
prove Theorem 2.

2 Proof of Theorem 1

For integers a ≤ b we define discrete intervals as [a, b] := {a, a + 1, . . . , b}.

2.1 Auxiliary constructions

We first construct a gadget where some vertices are forced predetermined
colors in an arbitrary packing k-coloring.

Construction 1. Let t ≤ k be a positive integer. Construct a tree St with
three levels as follows: The only vertex v0 of the first level, called the central

vertex, is of degree t − 1, and all its neighbors v1, v2, . . . , vt−1 are of degree
k. The vertices v0, v1, . . . , vt−1 are called the inner vertices of St.

Lemma 1. For every packing k-coloring of St the inner vertices are colored

by distinct colors. Also for every subset I of [1, k] of size at least t, a packing

k-coloring of St exists such that the inner vertices are colored by distinct

colors from I.

Proof. If a packing k-coloring of St exists, then none of vertices vi, i ∈ [1, t−1]
is colored by color 1, since it would be impossible to find k distinct colors in
[2, k] to color the neighbors of vi. Hence, the colors of all inner vertices are
greater or equal to 2, and each may present at most once as the maximal
distance on the inner vertices is two.

For the second claim we construct the packing k-coloring from I as follows:
Use elements of I bijectively on the inner vertices with the rule that the
central vertex is colored by 1, if it presents in I. All leaves in the third level
are colored by the color 1.

4



Given some tree St, choose one of its leaves arbitrarily and call it the
root of St. To simplify some expressions we involve an auxiliary parameter
d := 28.

Construction 2. For an odd k > d and any i ∈ [d + 1, k] we construct the
tree Ti as follows:

1. Take a copy of the tree Si with the root u3.

2. If i < k, then add a copy of Sk and join u3 with the root of Sk by a
path u3, u4, . . . , uk−3 of length k − 6.

3. If i < k − 2 then for each odd j such that i < j < k we add two copies
of the tree Sj. The root of one of the two copies of Sj, called the top
copy, is joined by a path of length d j

2
e−3 to the vertex udj/2e. The root

of the other one, called the bottom copy, is joined to the same udj/2e

by a path of length d j
2
e − 4.

4. Finally, if i < k− 1 and i is odd, we add an extra copy of Si+1 and join
its root to ud i

2
e by a path of length d i

2
e − 3.

Denote by U the set of inner vertices of the copy of Si in Ti. We choose
the root of Ti as some leaf in the copy of Si that is at distance four from u3.

The construction of the tree Tk−8 is depicted in Figure 1.

uk−3 u3

Sk−2

Sk−4

Sk−6

Sk Sk−8

Sk−7

Sk−6

Sk−4

Sk−2

ubk/2c

Figure 1: The tree Tk−8

5



Lemma 2. If i and k satisfy assumptions of Construction 2 then

1. the vertices of U are colored by different colors from the set [1, i] in any

packing k-coloring of Ti;

2. the tree Ti admits a packing k-coloring such that the vertices colored by

a color c ∈ [i + 1, k] are at distance more than c from the root of Ti.

Moreover, the root of Ti is colored by the color 1, and vertices colored

by the colors i, i − 1, i − 2 are at distance at least three from the root.

Proof. Assume first that a packing k-coloring of Ti is given. By Lemma 1
the inner vertices vertices of Sk are colored only by colors [1, k], which proves
the lemma in the case i = k.

We now determine the maximal distances between the inner vertices of
used copies of Sj. They are summarized in the following table:

From To Max. distance

top Sj Sk 3 + d j
2
e − 3 + (k − 3 − d j

2
e) + 3 = k

top S ′
j, j

′ > j d j
2
e + j′−j

2
+ d j′

2
e = j ′ + 1

bottom S ′
j, j

′ > j d j
2
e + j′−j

2
+ d j′

2
e − 1 = j ′

bottom Sj Sk d j
2
e − 1 + (k − d j

2
e) = k − 1

top S ′
j, j

′ > j d j
2
e + j′−j

2
+ d j′

2
e = j ′ + 1

bottom S ′
j, j

′ > j d j
2
e + j′−j

2
+ d j′

2
e − 1 = j ′

top Sj d j
2
e + d j

2
e − 1 = j

Si+1 Sk d i
2
e + (k − d i

2
e) = k

top Sj d i
2
e + j−i

2
+ d j

2
e = j + 1

bottom Sj d i
2
e + j−i

2
+ d j

2
e − 1 = j

Si Sk 3 + k − 6 + 3 = k

top Sj d j
2
e + d j

2
e = j + 1

bottom Sj d j
2
e + d j

2
e − 1 = j

Si+1 d i
2
e + d i

2
e = i + 1

On the bottom copy of Sj cannot be used any color j ′ > j since they
are used either on the top copies of Sj′−1 — for even j ′ — or on the bottom
copies of Sj′ — for odd j ′. The case of Sk−2 has to be treated separately, but
in this case applies distance k − 1 to Sk. Hence, by Lemma 1 the interval
[1, j] is used on any bottom copy of Sj.

For the top copies of Sj holds an analogous argument with close distance
to copies of Sj′ with j ′ > j. In addition, the color j is forbidden there, since
it is used on the bottom copy of Sj and the distance is at most j. Again, by
Lemma 1 the set [1, j + 1] \ {j} is used on the inner vertices of Sj.

6



2 2 2 2 2 23 3 34 4 45 56 67 7

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 23 3 3

2 2 2 2 2 2 2 2 2 2 2 23 3 38 8

9 9

1 1

2 2

1 1

2 2

3

3

1 4

ubk/2c

Figure 2: The periodic coloring pattern used for the central part of Ti

The cases of Si+1 and Si are treated in the same way.
Now we describe a packing k-coloring of Ti which satisfies the second

claim. On each copy of Sj we use the coloring with colors from [1, j], such that
the center and all leaves are colored by the color 1, and the neighbor of the
root of Si is colored by 2. In addition, the neighbor of the root of Ti is colored
by 3. We continue with the part of the tree around vertices ubk/2c, . . . , udi/2e.
The periodic coloring pattern is depicted in Fig. 2 and uses only colors from
the interval [1, 9]. What remains yet uncolored are paths, each of length at
least eight. Along these paths we use pattern 1, 2, 1, 3, 1, 2, . . . with possible
appearance of the color 4 so the path coloring fits well with the coloring
determined so far. By careful observation of distances between inner sets of
trees Sj one can verify that we get a valid packing k-coloring. Moreover,
vertices colored by the color j > i are at distance more than j from the root
of Ti as it was required.

Construction 3. Given L ⊂ [d+1, k] of at most three elements we construct
a tree TL as follows. Take a copy of the tree Sd+1, and choose an inner vertex
u arbitrarily. For every j ∈ [d+1, k]\L take an extra copy of the tree Tj and
connect its root with a unique leaf neighbor of u by a path of length j − 6
(i.e., use different neighbors of u for different trees Tj).

The root of TL is any leaf of Sd+1 that is at distance three from u.

Lemma 3. If L and k satisfy assumptions of Construction 3, then

1. for every packing k-coloring of TL the inner vertices of Sd+1 are colored

by different colors from the set [1, d] ∪ L;

2. for every packing k-coloring of TL at least one inner vertex of Sd+1 is

colored by the color from the set L;

7



3. for every set I ⊂ [1, d] ∪ L, |I| = d + 1, the tree TL admits a packing

k-coloring such that

• the inner vertices of Sd+1 are colored by the colors from I,

• vertices colored by the color j for j ∈ [d + 1, k] \ I are at distance

more than j from the root of TL, and

• vertices colored by the colors from L are 3-distant from the root.

Proof. The first two claims follow immediately from the Lemmas 2 and 1.
For the proof of the third claim we construct the required packing k-

coloring of TL as follows: All vertices adjacent to the inner vertices of Sd+1

are colored by the color 1. If 1 ∈ I then the central vertex of Sd+1 is also
colored by 1 as well. Then t = |L| inner vertices of Sd+1 which are different
from the central vertex and from u, and that are not adjacent to the root,
are chosen and colored by the colors from L. The remaining inner vertices
of Sd+1 are colored by the remaining colors from I. The vertices of trees Tj

are colored according to the second claim of Lemma 2. Finally, every path
between the root of some Tj and u is colored by colors 1, 2, 3, with possible
one appearance of the color 4.

2.2 Polynomial reduction

We proceed with reduction of the well known NP-complete 3-Satisfiability

problem [6, problem L02, page 259] to our Packing Coloring problem for
trees.

Let Φ be a boolean formula in conjunctive normal form with variables
x1, x2, . . . , xn and clauses c1, c2, . . . , cm. Each clause consists of three literals.
We choose k := 4n + 2d − 1 and r := 2(d + n − 1). For every variable xi we
define the set Xi := {2i + r, 2i + r + 1}.

For every clause cj a three element set Cj ⊂ [1, k] is constructed as follows:
If the clause cj contains the literal xi then the integer 2i + r is included to
the set Cj. On the other hand, if xi ∈ cj then 2i + r + 1 ∈ Cj.

Construction 4. We construct the final tree TΦ from the disjoint union of
trees TXi

over all variables xi together with trees TCj
over all clauses cj. In

addition we insert an extra new vertex u and join it to the roots of trees
TX1

, TX2
, . . . , TXn

by paths of length d − 3. We also join u with the roots of
TC1

, TC2
, . . . , TCm

by paths of length dk
2
e − 3.

Lemma 4. The tree TΦ has a packing k-coloring if and only if the formula

Φ can be satisfied.

8



Proof. Suppose that a packing k-coloring of TΦ exists. According to the
second claim of Lemma 3 at least one element of the set Xi is used for among
colors of the inner vertices of Sd+1 in any TXi

(in the sequel we denote this
set of inner vertices by Ui). If the color 2i + t is used then we set xi := false,
and xi := true otherwise.

For every j ∈ [1, m] at least one color c ∈ Cj is used on an inner vertex
of Sd+1 in TCi

(this set we denote by Wj). Suppose that c = 2i + t for some
i ∈ [1, n]. Then the clause Cj contains the literal xi. Since vertices of Wj

and Ui are at distance at most d+d k
2
e = 2n+2d ≤ 2i+2(d+n−1) = 2i+r,

the color 2i + r is not on the set Ui, and the variable xi has to be assigned
true.

Analogously, if c = 2i+r+1 for some i ∈ [1, n], then the clause cj contains
literal xi. By the same arguments as before, the color 2i + r + 1 is not used
on Ui, and xi = false.

Assume that a satisfying assignment of variables x1, x2, . . . , xn for the
formula Φ exists. For every i ∈ [1, n] vertices of On any tree TXi

we use the
coloring described in the third statement of Lemma 3 arranged such that the
vertices of Ui are colored by the set [1, d] ∪ {2i + r + 1} if xi = true, and by
the set [1, d] ∪ {2i + r} in the case when xi = false.

Note that the distance between different sets Ui is least 2d − 4. Also, if
some color c ∈ [d + 1, k] is used among the sets Ui then it is used only for
a single vertex in a single set. Suppose that given clause Cj is satisfied by
positively evaluated literal xi = true. Then the vertices of Wj are colored by
the colors of the set [1, d]∪{2i+r} as described in Lemma 3. If Cj is satisfied
by a literal xi = true, then vertices of Wj are colored by [1, d]∪ {2i + r + 1}.

The distance between different sets Wi is least 2dk
2
e−4, and by Lemma 3

vertices of different sets Wj which are colored by the colors from [d + 1, k]
are at distance 2dk

2
e > k = 4n + 2d − 1 = 2n + 1 + r ≥ 2i + 1 + r for any

i ∈ [1, n]. Also if a color c ∈ [d + 1, , k] is used for coloring of vertices of Wj

then it can not be used on any set Ui.
Finally, we complete the packing k-coloring of TΦ on the vertex u and

the vertices from the paths between u and trees TXi
and TCj

. We proceed
similarly as in the previous constructions — color u by 4, and use pattern
1, 2, 1, 3, 1, 2, . . . on the paths, with possible one more appearance of the color
4, if necessary.

Since trees Si have O(k2) vertices, and trees Ti have O(k3) vertices, the
final tree TΦ has O(n4(n + m)) vertices. Hence our reduction is polynomial
and the proof Theorem 1 is finished.

9



3 Proof of Theorem 2

Without loss of generality assume that sr is the last element of S smaller
than t. For every k ≤ r the S-packing coloring problem can be solved
polynomially for trees (and for graphs of restricted treewidth), e.g., by the
machinery of MSOL.

We construct a dynamic programming algorithm under assumptions that
k > r and s2 > 1. (If s2 = 1 then two color classes always suffices for any
tree; one class can be used only if the tree has only one vertex.)

Assume that T is a rooted tree on n vertices. If W is a subset of children of
some node v then we denote by Tv,W subtree of T rooted in v and containing
all vertices from W together with all their descendants.

For a tree Tv,W we explore all its partial (s1, . . . , sr)-packing colorings
with respect to the following parameters:

• the distances di between the root v and the closest vertex from the i-th
class for every i ∈ [1, r]; it’s only essential to know the distance only
when di ≤ si,

• the numbers pj of uncolored vertices that are at distance at most j ≤ t

from v for every j ∈ [0, t].

Formally, we encode these two sets of parameters by sequences D =
(d1, d2, . . . , dr−1) such that di ∈ [0, si] ∪ {∞}, and P = (p0, p1, . . . , pt) such
that 0 ≤ p1 ≤ p2 ≤ · · · ≤ n.

Among those partial colorings that provide the same parameters we iden-
tify the maximal number of uncolored vertices that are pairwise at distance
smaller than t and choose the coloring that minimizes this value. In partic-
ular, our algorithm computes for each triple Tv,W , D, P the minimal integer
c(Tv,W , D, P ) such that there is a partition of V (Tv,W ) into sets X1, . . . , Xr, Y

for which the following conditions are fulfilled:

• for every i ∈ [1, r] the set Xi is an Si packing in Tv,W ,

• for every i ∈ [1, r] : di = min{dist(v, z) : z ∈ Xi, dist(v, z) ≤ si};
it is assumed that di = ∞ if no such z exists,

• for every j ∈ [0, t] : pj = |{z ∈ Y : dist(v, z) ≤ j}|,

• for every Z ⊂ Y , satisfying u, v ∈ Z : dist(u, v) ≤ t, holds that |Z| ≤
c(Tv,W , D, P ).

10



If no such partition exists then we define c(Tv,W , D, P ) = ∞.
The sequences D are used to properly extend partial packing colorings,

while sequences P allow us to determine the maximum size of the set Z. In
other words Z induces a clique in the t-th power of T . (In the t-th power
vertices are adjacent if and only if they are at distance at most t in the
original graph). Here we strongly rely on the well known fact that powers of
trees are chordal [8, 9], and their chromatic numbers are equal to the size of
their maximum clique.

The algorithm consists from three subroutines. The first subroutine Leaf
is called if Tv has only one vertex v (i.e. v is a leaf of T ).

The subroutine NewRoot is called for a vertex v with a child w, and it
computes c(Tv,{w}, D, P ) from the values of c(Tw,N(w), D

′, P ′). Here N(w)
stands for the set of children of w.

The last subroutine Join is called for vertices of T which are not leaves.
It computes from the tables of values c(Tv,Wi

, Di, Pi) for two subtrees Tv,W1

and Tv,W2
with a unique common vertex v, which is the root of the trees, the

value of c(Tv,W , D, P ) for the union of these trees Tv,W , where W = W1∪W2.
Our algorithm starts from leaves of the tree T and constructs for them

tables of values c(Tv,∅, D, P ) by the subroutine Leaf. If v is not a leaf then we
use the subroutine NewRoot if it has only one child. If v has more children
w1, w2, . . . , wl then the subroutine NewRoot is used for the construction of
auxiliary tables for values c(Tv,{wi}, D, P ) for all i ∈ [1, l]. Then we use the
subroutine Join and construct consecutively tables for trees Tv,{w1,w2,...,wi}

for i = 2, 3, . . . , l. Finally, table is constructed for the root u. Then if there
are D and P for which c(Tu,N(u), D, P ) + r > k then the tree T allows an
S-packing k-coloring. Otherwise no such coloring exists.

Due the space restrictions the explicit description of these routines is
given in the appendix.

Now we estimate the time complexity. Since the sequence S is fixed,
there is a constant number of sequences D. There are O(nt+1) sequences
P and all such sequences can be listed in time O(nt+2). Note that we have
to list these sequences only once. The construction of the tables with all
values c(Tv,∅, D, P ) for leaves of T by the subroutine Leaf demands O(nt+2)
operations, since T has no more than n leaves. Each call of the subroutine
NewRoot takes O(n) operations. Since we use this subroutine for every edge of
T , the total number of operations is O(nt+2). At every call of the subroutine
Join all possible sequences P1, P2, D1 and D2 are considered. For any
sequence P there are O(nt+1) such sequences, and all such sequences for all
P can be listed in time n2t+3. We can use this table of sequences for the all
calls of the subroutine. Then every call of the subroutine demands O(nt+1)
operations, and the table of all values of c(Tv,W , D, P ) can be constructed in

11



time O(n2t+2). The total number of such tables is no more than the number
of edges of T . Correspondingly, the total number of operations is O(n2t+3).

4 Conclusion and open problems

We have shown that for bounded sequences the S-Packing Coloring prob-
lem is solvable in polynomial time for trees. On the other hand, Theorem 1
shows that it is NP-complete for the sequence (1, 2, 3, . . . ). It would be inter-
esting to classify computational complexity of the S-Packing Coloring

problem for different sequences. It can be easily seen that the proof of Theo-
rem 1 can be extended for sequences S = (s1, s2, s3, . . . ) of different positive
integers such that si = Θ(ic) for some constant c.

Another interesting question is the complexity of the S-Packing Col-

oring problem for bounded sequences S and graphs of restricted treewidth.
The fact that powers of trees are chordal graphs does not apply in this case.
But it is known [12] that if S = (s, s, s, . . . ) for some constant s then the
problem can be solved polynomially for the graphs of restricted treewidth.
On the other hand, the S-Packing Coloring problem might belong to
the family of coloring problems that allow an polynomial time algorithm for
trees, but that are NP-complete for graphs of restricted treewidth — see our
paper [5] for an example.

As a consequence of a result of Sloper [11] and Corollary 1 the packing
chromatic number can be computed polynomially for trees of maximum de-
gree three. This raises the question whether χp can be determined efficiently
for bounded degree trees.

References

[1] S. Arnborg, J. Lagergren, and D. Seese, Easy problems for tree-

decomposable graphs, J. Algorithms, 12 (1991), pp. 308–340.

[2] B. Brešar, S. Klavžar, and D. F. Rall, On the packing chromatic

number of cartesian products, hexagonal lattice, and trees, Discrete Ap-
plied Mathematics, 155 (2007), pp. 2303–2311.

[3] B. Courcelle, The monadic second-order logic of graphs iii: tree-

decompositions, minor and complexity issues, ITA, 26 (1992), pp. 257–
286.

[4] B. Courcelle, J. Makowsky, and U. Rotics, Linear time solv-

able optimization problems on graphs of bounded clique width, in WG,

12



J. Hromkovic and O. Sýkora, eds., vol. 1517 of Lecture Notes in Com-
puter Science, Springer, 1998, pp. 1–16.

[5] J. Fiala, P. A. Golovach, and J. Kratochv́ıl, Distance con-

strained labelings of graphs of bounded treewidth, in ICALP, L. Caires,
G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, eds., vol. 3580
of Lecture Notes in Computer Science, Springer, 2005, pp. 360–372.

[6] M. Garey and D. Johnson, Computers and Intractability. A Guide

to the Theory of NP-Completeness, W.H. Freeman and Company, 1979.

[7] W. Goddard, S. M. Hedetniemi, S. T. Hedetniemi, J. M. Har-

ris, and D. F. Rall, Broadcast chromatic numbers of graphs, Ars
Combinatoria, 86 (2008).

[8] P. E. Kearney and D. G. Corneil, Tree powers, J. Algorithms, 29
(1998), pp. 111–131.

[9] Y. L. Lin and S. S. Skiena, Algorithms for square roots of graphs,
SIAM J. Discrete Math., 8 (1995), pp. 99–118.

[10] D. F. Rall and A. Finbow, On the packing chromatic number of

some infinite graphs. manuscript, 2007.

[11] C. Sloper, An eccentric coloring of trees, Australas. J. Combin., 29
(2004), pp. 309–321.

[12] T. Zhou, Y. Kanari, and T. Nishizeki, Generalized vertex-coloring

of partial k-trees, IEICE Trans. on Fundamentals of Electronics, Com-
munication and Computer Sciences, E83-A (2000), pp. 671–678.

13



A Subroutines

Subroutine Leaf(Tv, D, P );
if d1 = d2 = · · · = dr = ∞ and p0 = p1 = · · · = pt = 1 then

c(Tv,∅, D, P ) := 1;

else
if ∃i ∈ [1, r] such that di = 0 and dj = ∞ for all j ∈ [1, r] \ {i},

and p0 = p1 = · · · = pt = 0 then
c(Tv,∅, D, P ) := 0;

else
c(Tv,∅, D, P ) := ∞;

Return c(Tv,∅, D, P )

Subroutine NewRoot(Tv,{w}, D, P );
c(Tv,{w}, D, P ) := ∞;
if ( ∃i ∈ [1, r] such that di = 0 and dj > 0 for all j ∈ [1, r] \ {i}, and

p0 = 0 )
or ( dj > 0 for all j ∈ [1, r] and p0 = 1 ) then
for j := 1 to t do

p′j−1 := pj;

J := {j ∈ [1, r] : dj = 0 or dj = ∞};
forall j ∈ [1, r] \ J do

d′
j := dj − 1;

for p′t := p′t−1 to n do
P ′ := (p′0, p

′
1, . . . , p

′
t);

for every choice d′
j ∈ {sj,∞} for all j ∈ J do

D′ := (d′
1, d

′
2, . . . , d

′
r);

if c(Tv,{w}, D, P ) > c(Tw,N(w), D
′, P ′) then

c(Tv,{w}, D, P ) := c(Tw,N(w), D
′, P ′);

Return c(Tv,{w}, D, P )

14



Subroutine Join(Tv,W1
, Tv,W2

, D, P );
c(Tv,W , D, P ) := ∞;
if ∃i ∈ [1, r] such that di = 0 and dj > 0 for all j ∈ [1, r] \ {i}, and

p0 = 0 then

forall P1 := (p
(1)
0 , p

(1)
1 , . . . , p

(1)
t ) and P2 := (p

(2)
0 , p

(2)
1 , . . . , p

(2)
t )

such that p
(1)
j + p

(2)
j = pj for all j ∈ [0, t] do

forall D1 := (d
(1)
1 , d

(1)
2 , . . . , d

(1)
r ) and D2 := (d

(2)
1 , d

(2)
2 , . . . , d

(2)
r )

such that di = min{d
(1)
j , d

(2)
j } for all j ∈ [1, r],

and d
(1)
j + d

(2)
j > sj for all j ∈ [1, r] \ {i} do

m := max{c(Tv,W1
, D1, P1), c(Tv,W2

, D2, P2)};
for j := 0 to t do

if m < p
(1)
j + p

(2)
t−j then m := p

(1)
j + p

(2)
t−j;

if c(Tv,W , D, P ) > m then c(Tv,W , D, P ) := m;

if di > 0 for all i ∈ [1, r] and p0 = 1 then

forall P1 := (p
(1)
0 , p

(1)
1 , . . . , p

(1)
t ) and P2 := (p

(2)
0 , p

(2)
1 , . . . , p

(2)
t )

such that p
(1)
j + p

(2)
j = pj for all j ∈ [1, t] and p

(1)
0 = p

(2)
0 = 1 do

forall D1 := (d
(1)
1 , d

(1)
2 , . . . , d

(1)
r ) and D2 := (d

(2)
1 , d

(2)
2 , . . . , d

(2)
r )

such that di = min{d
(1)
j , d

(2)
j } and d

(1)
j + d

(2)
j > sj for all

j ∈ [1, r] do
m := max{c(Tv,W1

, D1, P1), c(Tv,W2
, D2, P2)};

for j := 0 to t do

if m < p
(1)
j + p

(2)
t−j − 1 then m := p

(1)
j + p

(2)
t−j − 1;

if c(Tv,W , D, P ) > m then c(Tv,W , D, P ) := m

Return c(Tv,W , D, P )

15


